Bessais, Lotfi

Link to this page

Authority KeyName Variants
25ae4d16-8cd3-42fb-86d9-cfa1a4667c38
  • Bessais, Lotfi (3)
Projects

Author's Bibliography

Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species

Dojčinović, Biljana; Jančar, Boštjan; Bessais, Lotfi; Kremenović, Aleksandar; Jović-Jovičić, Nataša; Banković, Predrag; Stanković, Dalibor; Ognjanović, Miloš; Antić, Bratislav

(IOP Publishing, 2019)

TY  - JOUR
AU  - Dojčinović, Biljana
AU  - Jančar, Boštjan
AU  - Bessais, Lotfi
AU  - Kremenović, Aleksandar
AU  - Jović-Jovičić, Nataša
AU  - Banković, Predrag
AU  - Stanković, Dalibor
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3243
AB  - Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3−x Y x O4 nanoparticles formed. The series of Fe3−x Y x O4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 °C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3−x Y x O4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO3 3−) and As(V) (arsenate, AsO4 3−), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t 1/2) of As(V) (Y00: pH 2–3, t 1/2 = 3.12 min; Y05: pH 2–6, t 1/2 = 2.12 min and Y10: pH 2–10, t 1/2 = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.
PB  - IOP Publishing
T2  - Nanotechnology
T1  - Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species
VL  - 30
IS  - 47
SP  - 475702
DO  - 10.1088/1361-6528/ab3ca2
ER  - 
@article{
author = "Dojčinović, Biljana and Jančar, Boštjan and Bessais, Lotfi and Kremenović, Aleksandar and Jović-Jovičić, Nataša and Banković, Predrag and Stanković, Dalibor and Ognjanović, Miloš and Antić, Bratislav",
year = "2019",
abstract = "Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3−x Y x O4 nanoparticles formed. The series of Fe3−x Y x O4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 °C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3−x Y x O4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO3 3−) and As(V) (arsenate, AsO4 3−), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t 1/2) of As(V) (Y00: pH 2–3, t 1/2 = 3.12 min; Y05: pH 2–6, t 1/2 = 2.12 min and Y10: pH 2–10, t 1/2 = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.",
publisher = "IOP Publishing",
journal = "Nanotechnology",
title = "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species",
volume = "30",
number = "47",
pages = "475702",
doi = "10.1088/1361-6528/ab3ca2"
}
Dojčinović, B., Jančar, B., Bessais, L., Kremenović, A., Jović-Jovičić, N., Banković, P., Stanković, D., Ognjanović, M.,& Antić, B.. (2019). Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology
IOP Publishing., 30(47), 475702.
https://doi.org/10.1088/1361-6528/ab3ca2
Dojčinović B, Jančar B, Bessais L, Kremenović A, Jović-Jovičić N, Banković P, Stanković D, Ognjanović M, Antić B. Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology. 2019;30(47):475702.
doi:10.1088/1361-6528/ab3ca2 .
Dojčinović, Biljana, Jančar, Boštjan, Bessais, Lotfi, Kremenović, Aleksandar, Jović-Jovičić, Nataša, Banković, Predrag, Stanković, Dalibor, Ognjanović, Miloš, Antić, Bratislav, "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species" in Nanotechnology, 30, no. 47 (2019):475702,
https://doi.org/10.1088/1361-6528/ab3ca2 . .
5
2
5

Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species

Dojčinović, Biljana; Jančar, Boštjan; Bessais, Lotfi; Kremenović, Aleksandar; Jović-Jovičić, Nataša; Banković, Predrag; Stanković, Dalibor; Ognjanović, Miloš; Antić, Bratislav

(IOP Publishing, 2019)

TY  - JOUR
AU  - Dojčinović, Biljana
AU  - Jančar, Boštjan
AU  - Bessais, Lotfi
AU  - Kremenović, Aleksandar
AU  - Jović-Jovičić, Nataša
AU  - Banković, Predrag
AU  - Stanković, Dalibor
AU  - Ognjanović, Miloš
AU  - Antić, Bratislav
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3244
AB  - Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3−x Y x O4 nanoparticles formed. The series of Fe3−x Y x O4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 °C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3−x Y x O4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO3 3−) and As(V) (arsenate, AsO4 3−), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t 1/2) of As(V) (Y00: pH 2–3, t 1/2 = 3.12 min; Y05: pH 2–6, t 1/2 = 2.12 min and Y10: pH 2–10, t 1/2 = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.
PB  - IOP Publishing
T2  - Nanotechnology
T1  - Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species
VL  - 30
IS  - 47
SP  - 475702
DO  - 10.1088/1361-6528/ab3ca2
ER  - 
@article{
author = "Dojčinović, Biljana and Jančar, Boštjan and Bessais, Lotfi and Kremenović, Aleksandar and Jović-Jovičić, Nataša and Banković, Predrag and Stanković, Dalibor and Ognjanović, Miloš and Antić, Bratislav",
year = "2019",
abstract = "Herein we report effects of partial substitution of Fe3+ by Y3+ in magnetite (Fe3O4) on morphology and inorganic arsenic species adsorption efficiency of the Fe3−x Y x O4 nanoparticles formed. The series of Fe3−x Y x O4 (x = 0.00, 0.042 and 0.084, labeled as Y00, Y05 and Y10, respectively) was synthesized using co-precipitation followed by microwave-hydrothermal treatment (MW) at 200 °C. With increase of yttrium content (x value), both the morphological inhomogeneity of the samples and the fraction of spinel nanorods as compared to spinel pseudospherical particles increased. By both transmission electron microscopy and x-ray powder diffraction analyses, it was determined that the direction of growth of the spinel nanorods is along the [110] crystallographic direction. The Fe3−x Y x O4 affinities of adsorption toward the inorganic arsenic species, As(III) (arsenite, AsO3 3−) and As(V) (arsenate, AsO4 3−), were investigated. Increased Y3+ content related to changes in sample morphology was followed by a decrease of As(III) removal efficiency and vice versa for As(V). The increase in Y3+ content, in addition to increasing the adsorption capacity for As(V), significantly expanded the optimum pH range for the maximum removal and decreased the contact time for necessary 50% removal (t 1/2) of As(V) (Y00: pH 2–3, t 1/2 = 3.12 min; Y05: pH 2–6, t 1/2 = 2.12 min and Y10: pH 2–10, t 1/2 = 1.12 min). The results point to incorporation of Y3+ in the crystal lattice of magnetite, inducing nanorod spinel structure formation with significant changes in sorption properties important for the removal of inorganic arsenic from waters.",
publisher = "IOP Publishing",
journal = "Nanotechnology",
title = "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species",
volume = "30",
number = "47",
pages = "475702",
doi = "10.1088/1361-6528/ab3ca2"
}
Dojčinović, B., Jančar, B., Bessais, L., Kremenović, A., Jović-Jovičić, N., Banković, P., Stanković, D., Ognjanović, M.,& Antić, B.. (2019). Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology
IOP Publishing., 30(47), 475702.
https://doi.org/10.1088/1361-6528/ab3ca2
Dojčinović B, Jančar B, Bessais L, Kremenović A, Jović-Jovičić N, Banković P, Stanković D, Ognjanović M, Antić B. Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species. in Nanotechnology. 2019;30(47):475702.
doi:10.1088/1361-6528/ab3ca2 .
Dojčinović, Biljana, Jančar, Boštjan, Bessais, Lotfi, Kremenović, Aleksandar, Jović-Jovičić, Nataša, Banković, Predrag, Stanković, Dalibor, Ognjanović, Miloš, Antić, Bratislav, "Differently shaped nanocrystalline (Fe, Y)3O4 and its adsorption efficiency toward inorganic arsenic species" in Nanotechnology, 30, no. 47 (2019):475702,
https://doi.org/10.1088/1361-6528/ab3ca2 . .
5
2
5

Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach

Stanković, Dalibor; Ognjanović, Miloš; Espinosa, Ana; del Puerto Morales, Maria; Bessais, Lotfi; Zehani, Karim; Antić, Bratislav; Dojčinović, Biljana

(Springer Science and Business Media LLC, 2019)

TY  - JOUR
AU  - Stanković, Dalibor
AU  - Ognjanović, Miloš
AU  - Espinosa, Ana
AU  - del Puerto Morales, Maria
AU  - Bessais, Lotfi
AU  - Zehani, Karim
AU  - Antić, Bratislav
AU  - Dojčinović, Biljana
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3250
AB  - In this study, for the first time, we developed a novel platform for the removal of the synthetic organic dye Reactive Blue 52 based on a screen-printed electrode (SPCE). Additionally, SPCE was supported on a nanocomposite obtained by decoration of reduced graphene oxide (RGO) with iron oxide nanoflowers (IONFs), labeled as IONF@RGO/SPCE. IONFs were synthesized by polyol-mediated reduction of iron (III) chloride and characterized. Nanocomposite was prepared using a microwave hydrothermal-assisted procedure. The high stability (service life) of the IONF@RGO/SPCE electrode was measured, and it remained almost unchanged over time, achieving the same removal efficiency after 50 cycles of usage. Electrical impedance spectroscopy (EIS) tests indicated the synergetic effect of the used IONF@RGO by reducing resistivity of the system and improving its catalytic activity, which was confirmed with cyclic voltammetry (CV tests) where the great increase of the electrochemically active surface area sites was obvious. The results clearly indicate that with this approach, the optimum removal time of the selected pollutant was only 30 min, at a working potential of 3 V and with potassium chloride as the supporting electrolyte, with color removal efficiency of 99%, while chemical oxygen demand (COD) of more than 40%, total organic carbon (TOC) decrease of around 20%, and biochemical oxygen demand (BOD5), i.e., biodegradability (BOD5/COD ratio) significantly increased were measured after only 1 h of the treatment. Overall, the electrochemical removal procedure proposed in this study could be a reliable novel system, opening a new approach to using screen print–based electrodes.
PB  - Springer Science and Business Media LLC
T2  - Electrocatalysis
T1  - Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach
VL  - 10
IS  - 6
SP  - 663
EP  - 671
DO  - 10.1007/s12678-019-00554-1
ER  - 
@article{
author = "Stanković, Dalibor and Ognjanović, Miloš and Espinosa, Ana and del Puerto Morales, Maria and Bessais, Lotfi and Zehani, Karim and Antić, Bratislav and Dojčinović, Biljana",
year = "2019",
abstract = "In this study, for the first time, we developed a novel platform for the removal of the synthetic organic dye Reactive Blue 52 based on a screen-printed electrode (SPCE). Additionally, SPCE was supported on a nanocomposite obtained by decoration of reduced graphene oxide (RGO) with iron oxide nanoflowers (IONFs), labeled as IONF@RGO/SPCE. IONFs were synthesized by polyol-mediated reduction of iron (III) chloride and characterized. Nanocomposite was prepared using a microwave hydrothermal-assisted procedure. The high stability (service life) of the IONF@RGO/SPCE electrode was measured, and it remained almost unchanged over time, achieving the same removal efficiency after 50 cycles of usage. Electrical impedance spectroscopy (EIS) tests indicated the synergetic effect of the used IONF@RGO by reducing resistivity of the system and improving its catalytic activity, which was confirmed with cyclic voltammetry (CV tests) where the great increase of the electrochemically active surface area sites was obvious. The results clearly indicate that with this approach, the optimum removal time of the selected pollutant was only 30 min, at a working potential of 3 V and with potassium chloride as the supporting electrolyte, with color removal efficiency of 99%, while chemical oxygen demand (COD) of more than 40%, total organic carbon (TOC) decrease of around 20%, and biochemical oxygen demand (BOD5), i.e., biodegradability (BOD5/COD ratio) significantly increased were measured after only 1 h of the treatment. Overall, the electrochemical removal procedure proposed in this study could be a reliable novel system, opening a new approach to using screen print–based electrodes.",
publisher = "Springer Science and Business Media LLC",
journal = "Electrocatalysis",
title = "Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach",
volume = "10",
number = "6",
pages = "663-671",
doi = "10.1007/s12678-019-00554-1"
}
Stanković, D., Ognjanović, M., Espinosa, A., del Puerto Morales, M., Bessais, L., Zehani, K., Antić, B.,& Dojčinović, B.. (2019). Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach. in Electrocatalysis
Springer Science and Business Media LLC., 10(6), 663-671.
https://doi.org/10.1007/s12678-019-00554-1
Stanković D, Ognjanović M, Espinosa A, del Puerto Morales M, Bessais L, Zehani K, Antić B, Dojčinović B. Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach. in Electrocatalysis. 2019;10(6):663-671.
doi:10.1007/s12678-019-00554-1 .
Stanković, Dalibor, Ognjanović, Miloš, Espinosa, Ana, del Puerto Morales, Maria, Bessais, Lotfi, Zehani, Karim, Antić, Bratislav, Dojčinović, Biljana, "Iron Oxide Nanoflower–Based Screen Print Electrode for Enhancement Removal of Organic Dye Using Electrochemical Approach" in Electrocatalysis, 10, no. 6 (2019):663-671,
https://doi.org/10.1007/s12678-019-00554-1 . .
15
7
14