Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering)

Link to this page

info:eu-repo/grantAgreement/MESTD/inst-2020/200042/RS//

Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200042 (University of Belgrade, Institute of Molecular Genetics and Genetic Engineering) (en)
Ministarstvo prosvete, nauke i tehnološkog razvoja Republike Srbije, Ugovor br. 451-03-68/2020-14/200042 (Univerzitet u Beogradu, Institut za molekularnu genetiku i genetičko inženjerstvo) (sr_RS)
Министарство просвете, науке и технолошког развоја Републике Србије, Уговор бр. 451-03-68/2020-14/200042 (Универзитет у Београду, Институт за молекуларну генетику и генетичко инжењерство) (sr)
Authors

Publications

Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion

Stanković, Mia; Kljun, Jakob; Stevanović, Nevena Lj.; Lazić, Jelena; Skaro Bogojevic, Sanja; Vojnović, Sandra; Zlatar, Matija; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(Royal Society of Chemistry (RSC), 2024)

TY  - JOUR
AU  - Stanković, Mia
AU  - Kljun, Jakob
AU  - Stevanović, Nevena Lj.
AU  - Lazić, Jelena
AU  - Skaro Bogojevic, Sanja
AU  - Vojnović, Sandra
AU  - Zlatar, Matija
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7296
AB  - Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01–27.1 and 2.61–47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1–3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.
PB  - Royal Society of Chemistry (RSC)
T2  - Dalton Transactions
T1  - Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion
VL  - 53
SP  - 2218
EP  - 2230
DO  - 10.1039/D3DT03010E
ER  - 
@article{
author = "Stanković, Mia and Kljun, Jakob and Stevanović, Nevena Lj. and Lazić, Jelena and Skaro Bogojevic, Sanja and Vojnović, Sandra and Zlatar, Matija and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2024",
abstract = "Inspired by the emergence of resistance to currently available antifungal therapy and by the great potential of metal complexes for the treatment of various diseases, we synthesized three new silver(I) complexes containing clinically used antifungal azoles as ligands, [Ag(ecz)2]SbF6 (1, ecz is econazole), {[Ag(vcz)2]SbF6}n (2, vcz is voriconazole), and [Ag(ctz)2]SbF6 (3, ctz is clotrimazole), and investigated their antimicrobial properties. The synthesized complexes were characterized by mass spectrometry, IR, UV-vis and 1H NMR spectroscopy, cyclic voltammetry, and single-crystal X-ray diffraction analysis. In the mononuclear complexes 1 and 3 with ecz and ctz, respectively, the silver(I) ion has the expected linear geometry, in which the azoles are monodentately coordinated to this metal center through the N3 imidazole nitrogen atom. In contrast, the vcz-containing complex 2 has a polymeric structure in the solid state in which the silver(I) ions are coordinated by four nitrogen atoms in a distorted tetrahedral geometry. DFT calculations were done to predict the most favorable structures of the studied complexes in DMSO solution. All the studied silver(I) complexes have shown excellent antifungal and good to moderate antibacterial activities with minimal inhibitory concentration (MIC) values in the ranges of 0.01–27.1 and 2.61–47.9 μM on the selected panel of fungi and bacteria, respectively. Importantly, the complexes 1–3 have exhibited a significantly improved antifungal activity compared to the free azoles, with the most pronounced effect observed in the case of complex 2 compared to the parent vcz against Candida glabrata with an increase of activity by five orders of magnitude. Moreover, the silver(I)-azole complexes 2 and 3 significantly inhibited the formation of C. albicans hyphae and biofilms at the subinhibitory concentration of 50% MIC. To investigate the impact of the complex 3 more thoroughly on Candida pathogenesis, its effect on the adherence of C. albicans to A549 cells (human adenocarcinoma alveolar basal epithelial cells), as an initial step of the invasion of host cells, was studied.",
publisher = "Royal Society of Chemistry (RSC)",
journal = "Dalton Transactions",
title = "Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion",
volume = "53",
pages = "2218-2230",
doi = "10.1039/D3DT03010E"
}
Stanković, M., Kljun, J., Stevanović, N. Lj., Lazić, J., Skaro Bogojevic, S., Vojnović, S., Zlatar, M., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2024). Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion. in Dalton Transactions
Royal Society of Chemistry (RSC)., 53, 2218-2230.
https://doi.org/10.1039/D3DT03010E
Stanković M, Kljun J, Stevanović NL, Lazić J, Skaro Bogojevic S, Vojnović S, Zlatar M, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion. in Dalton Transactions. 2024;53:2218-2230.
doi:10.1039/D3DT03010E .
Stanković, Mia, Kljun, Jakob, Stevanović, Nevena Lj., Lazić, Jelena, Skaro Bogojevic, Sanja, Vojnović, Sandra, Zlatar, Matija, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "Silver(I) complexes containing antifungal azoles: significant improvement of the anti-Candida potential of the azole drug after its coordination to the silver(I) ion" in Dalton Transactions, 53 (2024):2218-2230,
https://doi.org/10.1039/D3DT03010E . .
4
1

Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L

Novaković, Miroslav; Ilić-Tomić, Tatjana; Đorđević, Iris; Anđelković, Boban D.; Tešević, Vele; Milosavljević, Slobodan; Asakawa, Yoshinori

(Elsevier, 2023)

TY  - JOUR
AU  - Novaković, Miroslav
AU  - Ilić-Tomić, Tatjana
AU  - Đorđević, Iris
AU  - Anđelković, Boban D.
AU  - Tešević, Vele
AU  - Milosavljević, Slobodan
AU  - Asakawa, Yoshinori
PY  - 2023
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7188
AB  - Bisbibenzyls are specialized metabolites found exclusively in liverworts, until recently; they represent chemical markers of liverworts. Their occurrence in vascular plants was noticed in 2007, when they were found in Primula veris subsp. macrocalyx from Russia. This report prompted us to chemically analyze the two most common Serbian Primula species, P. veris subsp. columnae and P. acaulis, in order to determine the presence of bisbibenzyls in them. Our study revealed nine structurally distinct bisbibenzyls (1–9), identified based on 1D and 2D NMR, IR, UV and HRESIMS data. Among them were five previously undescribed compounds (2–6). The remaining com­ pounds found and previously described in the literature were: the bisbibenzyls riccardin C (1), isoperrottetin A (7), isoplagiochin E (8) and 11-O-demethylmarchantin I (9), as well as 4-hydroxyphenylmethylketone (10) and 4-hydroxy-3-methoxyphenylmethylketone (11). Riccardin C was the most dominant bisbibenzyl in both species studied. Previously, it was the first bisbibenzyl found in vascular plants (P. veris subsp. macrocalyx). An assessment of the cytotoxic activity of the isolated compounds against A549 lung cancer and healthy MRC5 cell lines was also the subject of our study. Compounds 6 and 9 exhibited significant cytotoxic activity expressed by IC50 values of 12 μM, but the selectivity was not satisfactory.
PB  - Elsevier
T2  - Phytochemistry
T1  - Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L
VL  - 212
SP  - 113719
DO  - 10.1016/j.phytochem.2023.113719
ER  - 
@article{
author = "Novaković, Miroslav and Ilić-Tomić, Tatjana and Đorđević, Iris and Anđelković, Boban D. and Tešević, Vele and Milosavljević, Slobodan and Asakawa, Yoshinori",
year = "2023, 2023",
abstract = "Bisbibenzyls are specialized metabolites found exclusively in liverworts, until recently; they represent chemical markers of liverworts. Their occurrence in vascular plants was noticed in 2007, when they were found in Primula veris subsp. macrocalyx from Russia. This report prompted us to chemically analyze the two most common Serbian Primula species, P. veris subsp. columnae and P. acaulis, in order to determine the presence of bisbibenzyls in them. Our study revealed nine structurally distinct bisbibenzyls (1–9), identified based on 1D and 2D NMR, IR, UV and HRESIMS data. Among them were five previously undescribed compounds (2–6). The remaining com­ pounds found and previously described in the literature were: the bisbibenzyls riccardin C (1), isoperrottetin A (7), isoplagiochin E (8) and 11-O-demethylmarchantin I (9), as well as 4-hydroxyphenylmethylketone (10) and 4-hydroxy-3-methoxyphenylmethylketone (11). Riccardin C was the most dominant bisbibenzyl in both species studied. Previously, it was the first bisbibenzyl found in vascular plants (P. veris subsp. macrocalyx). An assessment of the cytotoxic activity of the isolated compounds against A549 lung cancer and healthy MRC5 cell lines was also the subject of our study. Compounds 6 and 9 exhibited significant cytotoxic activity expressed by IC50 values of 12 μM, but the selectivity was not satisfactory.",
publisher = "Elsevier",
journal = "Phytochemistry",
title = "Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L",
volume = "212",
pages = "113719",
doi = "10.1016/j.phytochem.2023.113719"
}
Novaković, M., Ilić-Tomić, T., Đorđević, I., Anđelković, B. D., Tešević, V., Milosavljević, S.,& Asakawa, Y.. (2023). Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L. in Phytochemistry
Elsevier., 212, 113719.
https://doi.org/10.1016/j.phytochem.2023.113719
Novaković M, Ilić-Tomić T, Đorđević I, Anđelković BD, Tešević V, Milosavljević S, Asakawa Y. Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L. in Phytochemistry. 2023;212:113719.
doi:10.1016/j.phytochem.2023.113719 .
Novaković, Miroslav, Ilić-Tomić, Tatjana, Đorđević, Iris, Anđelković, Boban D., Tešević, Vele, Milosavljević, Slobodan, Asakawa, Yoshinori, "Bisbibenzyls from Serbian Primula veris subsp. Columnae (Ten.) Lȕdi and P. acaulis (L.) L" in Phytochemistry, 212 (2023):113719,
https://doi.org/10.1016/j.phytochem.2023.113719 . .

Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications

Šokarda Slavić, Marinela; Kojić, Milan; Margetić, Aleksandra; Stanisavljević, Nemanja; Gardijan, Lazar; Božić, Nataša; Vujčić, Zoran

(Elsevier, 2023)

TY  - JOUR
AU  - Šokarda Slavić, Marinela
AU  - Kojić, Milan
AU  - Margetić, Aleksandra
AU  - Stanisavljević, Nemanja
AU  - Gardijan, Lazar
AU  - Božić, Nataša
AU  - Vujčić, Zoran
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6458
AB  - α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60–80 °C and is active and stable over a wide pH range (4.0–9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.
PB  - Elsevier
T2  - International Journal of Biological Macromolecules
T1  - Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications
VL  - 249
SP  - 126055
DO  - 10.1016/j.ijbiomac.2023.126055
ER  - 
@article{
author = "Šokarda Slavić, Marinela and Kojić, Milan and Margetić, Aleksandra and Stanisavljević, Nemanja and Gardijan, Lazar and Božić, Nataša and Vujčić, Zoran",
year = "2023",
abstract = "α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60–80 °C and is active and stable over a wide pH range (4.0–9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.",
publisher = "Elsevier",
journal = "International Journal of Biological Macromolecules",
title = "Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications",
volume = "249",
pages = "126055",
doi = "10.1016/j.ijbiomac.2023.126055"
}
Šokarda Slavić, M., Kojić, M., Margetić, A., Stanisavljević, N., Gardijan, L., Božić, N.,& Vujčić, Z.. (2023). Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. in International Journal of Biological Macromolecules
Elsevier., 249, 126055.
https://doi.org/10.1016/j.ijbiomac.2023.126055
Šokarda Slavić M, Kojić M, Margetić A, Stanisavljević N, Gardijan L, Božić N, Vujčić Z. Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. in International Journal of Biological Macromolecules. 2023;249:126055.
doi:10.1016/j.ijbiomac.2023.126055 .
Šokarda Slavić, Marinela, Kojić, Milan, Margetić, Aleksandra, Stanisavljević, Nemanja, Gardijan, Lazar, Božić, Nataša, Vujčić, Zoran, "Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications" in International Journal of Biological Macromolecules, 249 (2023):126055,
https://doi.org/10.1016/j.ijbiomac.2023.126055 . .
1

Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin

Ponjavić, Marijana; Malagurski, Ivana; Lazić, Jelena; Jeremić, Sanja; Pavlović, Vladimir; Prlainović, Nevena; Maksimović, Vesna; Ćosović, Vladan; Atanase, Leonard Ionut

(Switzerland : Multidisciplinary Digital Publishing Institute (MDPI), 2023)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Malagurski, Ivana
AU  - Lazić, Jelena
AU  - Jeremić, Sanja
AU  - Pavlović, Vladimir
AU  - Prlainović, Nevena
AU  - Maksimović, Vesna
AU  - Ćosović, Vladan
AU  - Atanase, Leonard Ionut
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5690
AB  - The quest for sustainable biomaterials with excellent biocompatibility and tailorable
properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production
costs and the lack of bioactivity limit their market penetration. To address this, poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong
anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. The
samples were produced in the form of films 115.6–118.8  m in thickness using the solvent casting
method. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinity
and thermal stability) and functionality of the obtained biomaterials were investigated. PG
has acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability and
morphology of the films. All samples with PG had a more organized internal structure and higher
melting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymer
was 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively.
Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (colon
cancer) cells, thus advancing PHBV biomedical application potential.
PB  - Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)
T2  - International Journal of Molecular Sciences
T1  - Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin
VL  - 24
SP  - 1906
DO  - 10.3390/ijms24031906
ER  - 
@article{
author = "Ponjavić, Marijana and Malagurski, Ivana and Lazić, Jelena and Jeremić, Sanja and Pavlović, Vladimir and Prlainović, Nevena and Maksimović, Vesna and Ćosović, Vladan and Atanase, Leonard Ionut",
year = "2023",
abstract = "The quest for sustainable biomaterials with excellent biocompatibility and tailorable
properties has put polyhydroxyalkanoates (PHAs) into the research spotlight. However, high production
costs and the lack of bioactivity limit their market penetration. To address this, poly(3-
hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) was combined with a bacterial pigment with strong
anticancer activity, prodigiosin (PG), to obtain functionally enhanced PHBV-based biomaterials. The
samples were produced in the form of films 115.6–118.8  m in thickness using the solvent casting
method. The effects of PG incorporation on the physical properties (morphology, biopolymer crystallinity
and thermal stability) and functionality of the obtained biomaterials were investigated. PG
has acted as a nucleating agent, in turn affecting the degree of crystallinity, thermal stability and
morphology of the films. All samples with PG had a more organized internal structure and higher
melting and degradation temperatures. The calculated degree of crystallinity of the PHBV copolymer
was 53%, while the PG1, PG3 and PG3 films had values of 64.0%, 63.9% and 69.2%, respectively.
Cytotoxicity studies have shown the excellent anticancer activity of films against HCT116 (colon
cancer) cells, thus advancing PHBV biomedical application potential.",
publisher = "Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)",
journal = "International Journal of Molecular Sciences",
title = "Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin",
volume = "24",
pages = "1906",
doi = "10.3390/ijms24031906"
}
Ponjavić, M., Malagurski, I., Lazić, J., Jeremić, S., Pavlović, V., Prlainović, N., Maksimović, V., Ćosović, V.,& Atanase, L. I.. (2023). Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. in International Journal of Molecular Sciences
Switzerland : Multidisciplinary Digital Publishing Institute (MDPI)., 24, 1906.
https://doi.org/10.3390/ijms24031906
Ponjavić M, Malagurski I, Lazić J, Jeremić S, Pavlović V, Prlainović N, Maksimović V, Ćosović V, Atanase LI. Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin. in International Journal of Molecular Sciences. 2023;24:1906.
doi:10.3390/ijms24031906 .
Ponjavić, Marijana, Malagurski, Ivana, Lazić, Jelena, Jeremić, Sanja, Pavlović, Vladimir, Prlainović, Nevena, Maksimović, Vesna, Ćosović, Vladan, Atanase, Leonard Ionut, "Advancing PHBV Biomedical Potential with the Incorporation of Bacterial Biopigment Prodigiosin" in International Journal of Molecular Sciences, 24 (2023):1906,
https://doi.org/10.3390/ijms24031906 . .
2
10

Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/ P(3HO) scaffolds for tissue engineering applications

Solarz, Daria; Witko, Tomasz; Karcz, Robert; Malagurski, Ivana; Ponjavić, Marijana; Levic, Steva; Nešić, Aleksandra; Guzik, Maciej; Savić, Sanja; Nikodinović-Runić, Jasmina

(Royal Society of Chemistry (RSC), 2023)

TY  - JOUR
AU  - Solarz, Daria
AU  - Witko, Tomasz
AU  - Karcz, Robert
AU  - Malagurski, Ivana
AU  - Ponjavić, Marijana
AU  - Levic, Steva
AU  - Nešić, Aleksandra
AU  - Guzik, Maciej
AU  - Savić, Sanja
AU  - Nikodinović-Runić, Jasmina
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7170
AB  - Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.
PB  - Royal Society of Chemistry (RSC)
T2  - RSC Advances
T1  - Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/ P(3HO) scaffolds for tissue engineering applications
VL  - 13
IS  - 34
SP  - 24112
EP  - 24128
DO  - 10.1039/D3RA03021K
ER  - 
@article{
author = "Solarz, Daria and Witko, Tomasz and Karcz, Robert and Malagurski, Ivana and Ponjavić, Marijana and Levic, Steva and Nešić, Aleksandra and Guzik, Maciej and Savić, Sanja and Nikodinović-Runić, Jasmina",
year = "2023",
abstract = "Polyhydroxyoctanoate, as a biocompatible and biodegradable biopolymer, represents an ideal candidate for biomedical applications. However, physical properties make it unsuitable for electrospinning, currently the most widely used technique for fabrication of fibrous scaffolds. To overcome this, it was blended with polylactic acid and polymer blend fibrous biomaterials were produced by electrospinning. The obtained PLA/PHO fibers were cylindrical, smaller in size, more hydrophilic and had a higher degree of biopolymer crystallinity and more favorable mechanical properties in comparison to the pure PLA sample. Cytotoxicity evaluation with human lung fibroblasts (MRC5 cells) combined with confocal microscopy were used to visualize mouse embryonic fibroblasts (MEF 3T3 cell line) migration and distribution showed that PLA/PHO samples support exceptional cell adhesion and viability, indicating excellent biocompatibility. The obtained results suggest that PLA/PHO fibrous biomaterials can be potentially used as biocompatible, biomimetic scaffolds for tissue engineering applications.",
publisher = "Royal Society of Chemistry (RSC)",
journal = "RSC Advances",
title = "Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/ P(3HO) scaffolds for tissue engineering applications",
volume = "13",
number = "34",
pages = "24112-24128",
doi = "10.1039/D3RA03021K"
}
Solarz, D., Witko, T., Karcz, R., Malagurski, I., Ponjavić, M., Levic, S., Nešić, A., Guzik, M., Savić, S.,& Nikodinović-Runić, J.. (2023). Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/ P(3HO) scaffolds for tissue engineering applications. in RSC Advances
Royal Society of Chemistry (RSC)., 13(34), 24112-24128.
https://doi.org/10.1039/D3RA03021K
Solarz D, Witko T, Karcz R, Malagurski I, Ponjavić M, Levic S, Nešić A, Guzik M, Savić S, Nikodinović-Runić J. Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/ P(3HO) scaffolds for tissue engineering applications. in RSC Advances. 2023;13(34):24112-24128.
doi:10.1039/D3RA03021K .
Solarz, Daria, Witko, Tomasz, Karcz, Robert, Malagurski, Ivana, Ponjavić, Marijana, Levic, Steva, Nešić, Aleksandra, Guzik, Maciej, Savić, Sanja, Nikodinović-Runić, Jasmina, "Biological and physiochemical studies of electrospun polylactid/polyhydroxyoctanoate PLA/ P(3HO) scaffolds for tissue engineering applications" in RSC Advances, 13, no. 34 (2023):24112-24128,
https://doi.org/10.1039/D3RA03021K . .
3
1
1

Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Počkaj, Marta; Zlatar, Matija; Vojnović, Sandra; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(Royal Society of Chemistry (RSC), 2023)

TY  - JOUR
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Počkaj, Marta
AU  - Zlatar, Matija
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5654
AB  - Dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz) was used as a ligand for the synthesis of new copper(II) and silver(I) complexes, [CuCl2(py-2pz)]2 (1), [Cu(CF3SO3)(H2O)(py-2pz)2]CF3SO3·2H2O (2), [Ag(py-2pz)2]PF6 (3) and {[Ag(NO3)(py-2pz)]·0.5H2O}n (4). The complexes were characterized by spectroscopic and electrochemical methods, while their structures were determined by single crystal X-ray diffraction analysis. The X-ray analysis revealed the bidentate coordination mode of py-2pz to the corresponding metal ion via its pyridine and pyrazine nitrogen atoms in all complexes, while in polynuclear complex 4, the heterocyclic pyrazine ring of one py-2pz additionally behaves as a bridging ligand between two Ag(I) ions. DFT calculations were performed to elucidate the structures of the investigated complexes in solution. The antimicrobial potential of the complexes 1–4 was evaluated against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two Candida (C. albicans and C. parapsilosis) species. Silver(I) complexes 3 and 4 have shown good antibacterial and antifungal properties with minimal inhibitory concentration (MIC) values ranging from 4.9 to 39.0 μM (3.9–31.2 μg mL−1). All complexes inhibited the filamentation of C. albicans and hyphae formation, while silver(I) complexes 3 and 4 had also the ability to inhibit the biofilm formation process of this fungus. The binding affinity of the complexes 1–4 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy to clarify the mode of their antimicrobial activity. Catechol oxidase biomimetic catalytic activity of copper(II) complexes 1 and 2 was additionally investigated by using 3,5-di-tert-butylcatechol (3,5-DTBC) and o-aminophenol (OAP) as substrates.
PB  - Royal Society of Chemistry (RSC)
T2  - RSC Advances
T1  - Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex
VL  - 13
IS  - 7
SP  - 4376
EP  - 4393
DO  - 10.1039/D2RA07401J
ER  - 
@article{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Počkaj, Marta and Zlatar, Matija and Vojnović, Sandra and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "Dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz) was used as a ligand for the synthesis of new copper(II) and silver(I) complexes, [CuCl2(py-2pz)]2 (1), [Cu(CF3SO3)(H2O)(py-2pz)2]CF3SO3·2H2O (2), [Ag(py-2pz)2]PF6 (3) and {[Ag(NO3)(py-2pz)]·0.5H2O}n (4). The complexes were characterized by spectroscopic and electrochemical methods, while their structures were determined by single crystal X-ray diffraction analysis. The X-ray analysis revealed the bidentate coordination mode of py-2pz to the corresponding metal ion via its pyridine and pyrazine nitrogen atoms in all complexes, while in polynuclear complex 4, the heterocyclic pyrazine ring of one py-2pz additionally behaves as a bridging ligand between two Ag(I) ions. DFT calculations were performed to elucidate the structures of the investigated complexes in solution. The antimicrobial potential of the complexes 1–4 was evaluated against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two Candida (C. albicans and C. parapsilosis) species. Silver(I) complexes 3 and 4 have shown good antibacterial and antifungal properties with minimal inhibitory concentration (MIC) values ranging from 4.9 to 39.0 μM (3.9–31.2 μg mL−1). All complexes inhibited the filamentation of C. albicans and hyphae formation, while silver(I) complexes 3 and 4 had also the ability to inhibit the biofilm formation process of this fungus. The binding affinity of the complexes 1–4 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy to clarify the mode of their antimicrobial activity. Catechol oxidase biomimetic catalytic activity of copper(II) complexes 1 and 2 was additionally investigated by using 3,5-di-tert-butylcatechol (3,5-DTBC) and o-aminophenol (OAP) as substrates.",
publisher = "Royal Society of Chemistry (RSC)",
journal = "RSC Advances",
title = "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex",
volume = "13",
number = "7",
pages = "4376-4393",
doi = "10.1039/D2RA07401J"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Počkaj, M., Zlatar, M., Vojnović, S., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2023). Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex. in RSC Advances
Royal Society of Chemistry (RSC)., 13(7), 4376-4393.
https://doi.org/10.1039/D2RA07401J
Andrejević TP, Aleksić I, Kljun J, Počkaj M, Zlatar M, Vojnović S, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex. in RSC Advances. 2023;13(7):4376-4393.
doi:10.1039/D2RA07401J .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Počkaj, Marta, Zlatar, Matija, Vojnović, Sandra, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex" in RSC Advances, 13, no. 7 (2023):4376-4393,
https://doi.org/10.1039/D2RA07401J . .
9
4
4

CCDC 2220146: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Počkaj, Marta; Zlatar, Matija; Vojnović, Sandra; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(The Cambridge Crystallographic Data Centre (CCDC), 2023)

TY  - DATA
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Počkaj, Marta
AU  - Zlatar, Matija
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5669
AB  - TEZLOD : New Structure undergoing enhancement  Space Group: P 1 (2), Cell: a 7.7916(6)Å b 8.9848(6)Å c 11.9955(7)Å, α 104.394(6)° β 106.396(6)° γ 104.368(6)°
PB  - The Cambridge Crystallographic Data Centre (CCDC)
T1  - CCDC 2220146: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"
DO  - 10.5517/ccdc.csd.cc2dj7mt
ER  - 
@misc{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Počkaj, Marta and Zlatar, Matija and Vojnović, Sandra and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "TEZLOD : New Structure undergoing enhancement  Space Group: P 1 (2), Cell: a 7.7916(6)Å b 8.9848(6)Å c 11.9955(7)Å, α 104.394(6)° β 106.396(6)° γ 104.368(6)°",
publisher = "The Cambridge Crystallographic Data Centre (CCDC)",
title = "CCDC 2220146: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"",
doi = "10.5517/ccdc.csd.cc2dj7mt"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Počkaj, M., Zlatar, M., Vojnović, S., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2023). CCDC 2220146: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 
The Cambridge Crystallographic Data Centre (CCDC)..
https://doi.org/10.5517/ccdc.csd.cc2dj7mt
Andrejević TP, Aleksić I, Kljun J, Počkaj M, Zlatar M, Vojnović S, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. CCDC 2220146: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 2023;.
doi:10.5517/ccdc.csd.cc2dj7mt .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Počkaj, Marta, Zlatar, Matija, Vojnović, Sandra, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "CCDC 2220146: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"" (2023),
https://doi.org/10.5517/ccdc.csd.cc2dj7mt . .

CCDC 2220147: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Počkaj, Marta; Zlatar, Matija; Vojnović, Sandra; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(The Cambridge Crystallographic Data Centre (CCDC), 2023)

TY  - DATA
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Počkaj, Marta
AU  - Zlatar, Matija
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5669
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5670
AB  - TEZLUJ : New Structure undergoing enhancement  Space Group: P 1 (2), Cell: a 8.2856(3)Å b 12.1191(5)Å c 19.2393(6)Å, α 82.105(3)° β 86.220(3)° γ 77.071(3)°
PB  - The Cambridge Crystallographic Data Centre (CCDC)
T1  - CCDC 2220147: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"
DO  - 10.5517/ccdc.csd.cc2dj7nv
ER  - 
@misc{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Počkaj, Marta and Zlatar, Matija and Vojnović, Sandra and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "TEZLUJ : New Structure undergoing enhancement  Space Group: P 1 (2), Cell: a 8.2856(3)Å b 12.1191(5)Å c 19.2393(6)Å, α 82.105(3)° β 86.220(3)° γ 77.071(3)°",
publisher = "The Cambridge Crystallographic Data Centre (CCDC)",
title = "CCDC 2220147: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"",
doi = "10.5517/ccdc.csd.cc2dj7nv"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Počkaj, M., Zlatar, M., Vojnović, S., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2023). CCDC 2220147: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 
The Cambridge Crystallographic Data Centre (CCDC)..
https://doi.org/10.5517/ccdc.csd.cc2dj7nv
Andrejević TP, Aleksić I, Kljun J, Počkaj M, Zlatar M, Vojnović S, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. CCDC 2220147: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 2023;.
doi:10.5517/ccdc.csd.cc2dj7nv .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Počkaj, Marta, Zlatar, Matija, Vojnović, Sandra, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "CCDC 2220147: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"" (2023),
https://doi.org/10.5517/ccdc.csd.cc2dj7nv . .

CCDC 2220148: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Počkaj, Marta; Zlatar, Matija; Vojnović, Sandra; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(The Cambridge Crystallographic Data Centre (CCDC), 2023)

TY  - DATA
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Počkaj, Marta
AU  - Zlatar, Matija
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5671
AB  - TEZMAQ; Space Group: P 1 (2), Cell: a 8.2856(3)Å b 12.1191(5)Å c 19.2393(6)Å, α 82.105(3)° β 86.220(3)° γ 77.071(3)°
PB  - The Cambridge Crystallographic Data Centre (CCDC)
T1  - CCDC 2220148: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"
DO  - 10.5517/ccdc.csd.cc2dj7pw
ER  - 
@misc{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Počkaj, Marta and Zlatar, Matija and Vojnović, Sandra and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "TEZMAQ; Space Group: P 1 (2), Cell: a 8.2856(3)Å b 12.1191(5)Å c 19.2393(6)Å, α 82.105(3)° β 86.220(3)° γ 77.071(3)°",
publisher = "The Cambridge Crystallographic Data Centre (CCDC)",
title = "CCDC 2220148: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"",
doi = "10.5517/ccdc.csd.cc2dj7pw"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Počkaj, M., Zlatar, M., Vojnović, S., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2023). CCDC 2220148: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 
The Cambridge Crystallographic Data Centre (CCDC)..
https://doi.org/10.5517/ccdc.csd.cc2dj7pw
Andrejević TP, Aleksić I, Kljun J, Počkaj M, Zlatar M, Vojnović S, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. CCDC 2220148: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 2023;.
doi:10.5517/ccdc.csd.cc2dj7pw .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Počkaj, Marta, Zlatar, Matija, Vojnović, Sandra, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "CCDC 2220148: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"" (2023),
https://doi.org/10.5517/ccdc.csd.cc2dj7pw . .

CCDC 2220149: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Počkaj, Marta; Zlatar, Matija; Vojnović, Sandra; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(The Cambridge Crystallographic Data Centre (CCDC), 2023)

TY  - DATA
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Počkaj, Marta
AU  - Zlatar, Matija
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5672
AB  - TEZMEU: Space Group: P 1 (2), Cell: a 7.4731(4)Å b 11.7049(4)Å c 17.6092(8)Å, α 97.285(4)° β 96.617(4)° γ 102.781(4)°
PB  - The Cambridge Crystallographic Data Centre (CCDC)
T1  - CCDC 2220149: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"
DO  - 10.5517/ccdc.csd.cc2dj7qx
ER  - 
@misc{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Počkaj, Marta and Zlatar, Matija and Vojnović, Sandra and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "TEZMEU: Space Group: P 1 (2), Cell: a 7.4731(4)Å b 11.7049(4)Å c 17.6092(8)Å, α 97.285(4)° β 96.617(4)° γ 102.781(4)°",
publisher = "The Cambridge Crystallographic Data Centre (CCDC)",
title = "CCDC 2220149: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"",
doi = "10.5517/ccdc.csd.cc2dj7qx"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Počkaj, M., Zlatar, M., Vojnović, S., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2023). CCDC 2220149: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 
The Cambridge Crystallographic Data Centre (CCDC)..
https://doi.org/10.5517/ccdc.csd.cc2dj7qx
Andrejević TP, Aleksić I, Kljun J, Počkaj M, Zlatar M, Vojnović S, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. CCDC 2220149: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 2023;.
doi:10.5517/ccdc.csd.cc2dj7qx .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Počkaj, Marta, Zlatar, Matija, Vojnović, Sandra, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "CCDC 2220149: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"" (2023),
https://doi.org/10.5517/ccdc.csd.cc2dj7qx . .

CCDC 2220150: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Počkaj, Marta; Zlatar, Matija; Vojnović, Sandra; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(The Cambridge Crystallographic Data Centre (CCDC), 2023)

TY  - DATA
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Počkaj, Marta
AU  - Zlatar, Matija
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5673
AB  - TEZMIY: Space Group: P 21/n (14), Cell: a 11.0042(12)Å b 12.8657(8)Å c 12.5820(12)Å, α 90° β 115.436(13)° γ 90°
PB  - The Cambridge Crystallographic Data Centre (CCDC)
T1  - CCDC 2220150: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"
DO  - 10.5517/ccdc.csd.cc2dj7ry
ER  - 
@misc{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Počkaj, Marta and Zlatar, Matija and Vojnović, Sandra and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "TEZMIY: Space Group: P 21/n (14), Cell: a 11.0042(12)Å b 12.8657(8)Å c 12.5820(12)Å, α 90° β 115.436(13)° γ 90°",
publisher = "The Cambridge Crystallographic Data Centre (CCDC)",
title = "CCDC 2220150: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"",
doi = "10.5517/ccdc.csd.cc2dj7ry"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Počkaj, M., Zlatar, M., Vojnović, S., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2023). CCDC 2220150: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 
The Cambridge Crystallographic Data Centre (CCDC)..
https://doi.org/10.5517/ccdc.csd.cc2dj7ry
Andrejević TP, Aleksić I, Kljun J, Počkaj M, Zlatar M, Vojnović S, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. CCDC 2220150: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". 2023;.
doi:10.5517/ccdc.csd.cc2dj7ry .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Počkaj, Marta, Zlatar, Matija, Vojnović, Sandra, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "CCDC 2220150: Experimental Crystal Structure Determination. Crystallographic data for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"" (2023),
https://doi.org/10.5517/ccdc.csd.cc2dj7ry . .

Electronic Supplementary Information for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"

Andrejević, Tina P.; Aleksić, Ivana; Kljun, Jakob; Počkaj, Marta; Zlatar, Matija; Vojnović, Sandra; Nikodinović-Runić, Jasmina; Turel, Iztok; Đuran, Miloš; Glišić, Biljana

(Royal Society of Chemistry (RSC), 2023)

TY  - DATA
AU  - Andrejević, Tina P.
AU  - Aleksić, Ivana
AU  - Kljun, Jakob
AU  - Počkaj, Marta
AU  - Zlatar, Matija
AU  - Vojnović, Sandra
AU  - Nikodinović-Runić, Jasmina
AU  - Turel, Iztok
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5674
AB  - Dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz) was used as a ligand for the synthesis of new copper(II) and silver(I) complexes, [CuCl2(py-2pz)]2 (1), [Cu(CF3SO3)(H2O)(py-2pz)2]CF3SO3·2H2O (2), [Ag(py-2pz)2]PF6 (3) and {[Ag(NO3)(py-2pz)]·0.5H2O}n (4). The complexes were characterized by spectroscopic and electrochemical methods, while their structures were determined by single crystal X-ray diffraction analysis. The X-ray analysis revealed the bidentate coordination mode of py-2pz to the corresponding metal ion via its pyridine and pyrazine nitrogen atoms in all complexes, while in polynuclear complex 4, the heterocyclic pyrazine ring of one py-2pz additionally behaves as a bridging ligand between two Ag(I) ions. DFT calculations were performed to elucidate the structures of the investigated complexes in solution. The antimicrobial potential of the complexes 1–4 was evaluated against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two Candida (C. albicans and C. parapsilosis) species. Silver(I) complexes 3 and 4 have shown good antibacterial and antifungal properties with minimal inhibitory concentration (MIC) values ranging from 4.9 to 39.0 μM (3.9–31.2 μg mL−1). All complexes inhibited the filamentation of C. albicans and hyphae formation, while silver(I) complexes 3 and 4 had also the ability to inhibit the biofilm formation process of this fungus. The binding affinity of the complexes 1–4 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy to clarify the mode of their antimicrobial activity. Catechol oxidase biomimetic catalytic activity of copper(II) complexes 1 and 2 was additionally investigated by using 3,5-di-tert-butylcatechol (3,5-DTBC) and o-aminophenol (OAP) as substrates.
AB  - 1H NMR spectrum of py-2pz S5 1H NMR spectrum of complex 3 S6 1H NMR spectrum of complex 4 S7 Fig. S1 UV-Vis spectra of copper(II) complexes 1 and 2 recorded in DMSO at room  temperature. S8 Fig. S2 UV-Vis spectra of silver(I) complexes 3 and 4 in respect to the spectrum of  uncoordinated py-2pz recorded in DMSO at room temperature. S9 Fig. S3 Time-dependant UV-Vis spectra of copper(II) complex 2 and silver(I)  complex 3 recorded in DMSO/PBS (v/v 2 : 1 and 1 : 42.9 for 2 and 3, respectively)  at room temperature. S10 Fig. S4 Cyclic voltammogram of py-2pz ligand at GC electrode in DMSO (c = 1 ×  10-3 M) and 0.1 M TBAHP as a supporting electrolyte with a scan rate of 50  mV s-1 . S11 Fig. S5 Graphical representation of the spin density of the high-spin state of 1.  Isosurfaces were drawn at 0.003 a.u. with α-spin depicted by blue surfaces. S12 Fig. S6 Inhibition of violacein and prodigiosin production in the presence of  complexes 1 – 4 and py-2pz ligand tested on Chromobacterium violaceum CV026  and Serratia marcescens at 100 µg per disc concentration. DMSO was used as a  control. S13 Scheme S1 Catechol oxidase (CAO) and phenoxazinone synthase (PHS) activity. S14 Table S1 C. albicans ATCC10231 biofilm inhibition (%) in the presence of silver(I)  complexes 3 and 4 in range of subinhibitory concentrations. Table S2 Details of the crystal structure determination for copper(II) complexes  1 and 2 S16 Table S3 Details of the crystal structure determination for silver(I) complexes  3 and 4 S17 Cartesian coordinates of all DFT optimized structures S18.
PB  - Royal Society of Chemistry (RSC)
T2  - RSC Advances
T1  - Electronic Supplementary Information for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"
DO  - 10.1039/D2RA07401J
ER  - 
@misc{
author = "Andrejević, Tina P. and Aleksić, Ivana and Kljun, Jakob and Počkaj, Marta and Zlatar, Matija and Vojnović, Sandra and Nikodinović-Runić, Jasmina and Turel, Iztok and Đuran, Miloš and Glišić, Biljana",
year = "2023",
abstract = "Dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz) was used as a ligand for the synthesis of new copper(II) and silver(I) complexes, [CuCl2(py-2pz)]2 (1), [Cu(CF3SO3)(H2O)(py-2pz)2]CF3SO3·2H2O (2), [Ag(py-2pz)2]PF6 (3) and {[Ag(NO3)(py-2pz)]·0.5H2O}n (4). The complexes were characterized by spectroscopic and electrochemical methods, while their structures were determined by single crystal X-ray diffraction analysis. The X-ray analysis revealed the bidentate coordination mode of py-2pz to the corresponding metal ion via its pyridine and pyrazine nitrogen atoms in all complexes, while in polynuclear complex 4, the heterocyclic pyrazine ring of one py-2pz additionally behaves as a bridging ligand between two Ag(I) ions. DFT calculations were performed to elucidate the structures of the investigated complexes in solution. The antimicrobial potential of the complexes 1–4 was evaluated against two bacterial (Pseudomonas aeruginosa and Staphylococcus aureus) and two Candida (C. albicans and C. parapsilosis) species. Silver(I) complexes 3 and 4 have shown good antibacterial and antifungal properties with minimal inhibitory concentration (MIC) values ranging from 4.9 to 39.0 μM (3.9–31.2 μg mL−1). All complexes inhibited the filamentation of C. albicans and hyphae formation, while silver(I) complexes 3 and 4 had also the ability to inhibit the biofilm formation process of this fungus. The binding affinity of the complexes 1–4 with calf thymus DNA (ct-DNA) and bovine serum albumin (BSA) was studied by fluorescence emission spectroscopy to clarify the mode of their antimicrobial activity. Catechol oxidase biomimetic catalytic activity of copper(II) complexes 1 and 2 was additionally investigated by using 3,5-di-tert-butylcatechol (3,5-DTBC) and o-aminophenol (OAP) as substrates., 1H NMR spectrum of py-2pz S5 1H NMR spectrum of complex 3 S6 1H NMR spectrum of complex 4 S7 Fig. S1 UV-Vis spectra of copper(II) complexes 1 and 2 recorded in DMSO at room  temperature. S8 Fig. S2 UV-Vis spectra of silver(I) complexes 3 and 4 in respect to the spectrum of  uncoordinated py-2pz recorded in DMSO at room temperature. S9 Fig. S3 Time-dependant UV-Vis spectra of copper(II) complex 2 and silver(I)  complex 3 recorded in DMSO/PBS (v/v 2 : 1 and 1 : 42.9 for 2 and 3, respectively)  at room temperature. S10 Fig. S4 Cyclic voltammogram of py-2pz ligand at GC electrode in DMSO (c = 1 ×  10-3 M) and 0.1 M TBAHP as a supporting electrolyte with a scan rate of 50  mV s-1 . S11 Fig. S5 Graphical representation of the spin density of the high-spin state of 1.  Isosurfaces were drawn at 0.003 a.u. with α-spin depicted by blue surfaces. S12 Fig. S6 Inhibition of violacein and prodigiosin production in the presence of  complexes 1 – 4 and py-2pz ligand tested on Chromobacterium violaceum CV026  and Serratia marcescens at 100 µg per disc concentration. DMSO was used as a  control. S13 Scheme S1 Catechol oxidase (CAO) and phenoxazinone synthase (PHS) activity. S14 Table S1 C. albicans ATCC10231 biofilm inhibition (%) in the presence of silver(I)  complexes 3 and 4 in range of subinhibitory concentrations. Table S2 Details of the crystal structure determination for copper(II) complexes  1 and 2 S16 Table S3 Details of the crystal structure determination for silver(I) complexes  3 and 4 S17 Cartesian coordinates of all DFT optimized structures S18.",
publisher = "Royal Society of Chemistry (RSC)",
journal = "RSC Advances",
title = "Electronic Supplementary Information for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"",
doi = "10.1039/D2RA07401J"
}
Andrejević, T. P., Aleksić, I., Kljun, J., Počkaj, M., Zlatar, M., Vojnović, S., Nikodinović-Runić, J., Turel, I., Đuran, M.,& Glišić, B.. (2023). Electronic Supplementary Information for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". in RSC Advances
Royal Society of Chemistry (RSC)..
https://doi.org/10.1039/D2RA07401J
Andrejević TP, Aleksić I, Kljun J, Počkaj M, Zlatar M, Vojnović S, Nikodinović-Runić J, Turel I, Đuran M, Glišić B. Electronic Supplementary Information for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex". in RSC Advances. 2023;.
doi:10.1039/D2RA07401J .
Andrejević, Tina P., Aleksić, Ivana, Kljun, Jakob, Počkaj, Marta, Zlatar, Matija, Vojnović, Sandra, Nikodinović-Runić, Jasmina, Turel, Iztok, Đuran, Miloš, Glišić, Biljana, "Electronic Supplementary Information for: "Copper(II) and silver(I) complexes with dimethyl 6-(pyrazine-2-yl)pyridine-3,4-dicarboxylate (py-2pz): the influence of the metal ion on the antimicrobial potential of the complex"" in RSC Advances (2023),
https://doi.org/10.1039/D2RA07401J . .
9
4

Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts

Smiljanić, Katarina; Prodić, Ivana; Trifunović, Sara; Krstić-Ristivojević, Maja; Aćimović, Milica G.; Stanković Jeremić, Jovana; Lončar, Biljana; Tešević, Vele

(MDPI, 2023)

TY  - JOUR
AU  - Smiljanić, Katarina
AU  - Prodić, Ivana
AU  - Trifunović, Sara
AU  - Krstić-Ristivojević, Maja
AU  - Aćimović, Milica G.
AU  - Stanković Jeremić, Jovana
AU  - Lončar, Biljana
AU  - Tešević, Vele
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7198
AB  - As byproducts of essential oil distillation, hydrolates are used in natural cosmetics/biomedicine due to their beneficial skin effects. However, data on their safety with relevant biological targets, such as human skin cells, are scarce. Therefore, we have tested nine hydrolates from the Lamiaceae family with skin fibroblasts that are responsible for extracellular collagenous matrix builds. Thyme, oregano, and winter savoury hydrolates showed several times higher total phenolics, which correlated strongly with their radical scavenging and antioxidative capacity; there was no correlation between their viability profiles and the reducing sugar levels. No proteins/peptides were detected. All hydrolates appeared safe for prolonged skin exposure except for 10-fold diluted lavender, which showed cytotoxicity (~20%), as well as rosemary and lavandin (~10%) using viability, DNA synthesis, and cell count testing. Clary sage, oregano, lemon balm, and thyme hydrolates (10-fold diluted) increased fibroblast viability and/or proliferation by 10–30% compared with the control, while their viability remained unaffected by Mentha and winter savoury. In line with the STITCH database, increased viability could be attributed to thymol presence in oregano and thyme hydrolates in lemon balm, which is most likely attributable to neral and geranial. The proliferative effect of clary sage could be supported by alpha-terpineol, not linalool. The major volatile organic compounds (VOCs) associated with cytotoxic effects on fibroblasts were borneol, 1,8-cineole, and terpinene-4-ol. Further research with pure compounds is warranted to confirm the roles of VOCs in the observed effects that are relevant to cosmetic and wound healing aspects.
PB  - MDPI
T2  - Antioxidants
T1  - Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts
VL  - 12
IS  - 11
DO  - 10.3390/antiox12111988
ER  - 
@article{
author = "Smiljanić, Katarina and Prodić, Ivana and Trifunović, Sara and Krstić-Ristivojević, Maja and Aćimović, Milica G. and Stanković Jeremić, Jovana and Lončar, Biljana and Tešević, Vele",
year = "2023",
abstract = "As byproducts of essential oil distillation, hydrolates are used in natural cosmetics/biomedicine due to their beneficial skin effects. However, data on their safety with relevant biological targets, such as human skin cells, are scarce. Therefore, we have tested nine hydrolates from the Lamiaceae family with skin fibroblasts that are responsible for extracellular collagenous matrix builds. Thyme, oregano, and winter savoury hydrolates showed several times higher total phenolics, which correlated strongly with their radical scavenging and antioxidative capacity; there was no correlation between their viability profiles and the reducing sugar levels. No proteins/peptides were detected. All hydrolates appeared safe for prolonged skin exposure except for 10-fold diluted lavender, which showed cytotoxicity (~20%), as well as rosemary and lavandin (~10%) using viability, DNA synthesis, and cell count testing. Clary sage, oregano, lemon balm, and thyme hydrolates (10-fold diluted) increased fibroblast viability and/or proliferation by 10–30% compared with the control, while their viability remained unaffected by Mentha and winter savoury. In line with the STITCH database, increased viability could be attributed to thymol presence in oregano and thyme hydrolates in lemon balm, which is most likely attributable to neral and geranial. The proliferative effect of clary sage could be supported by alpha-terpineol, not linalool. The major volatile organic compounds (VOCs) associated with cytotoxic effects on fibroblasts were borneol, 1,8-cineole, and terpinene-4-ol. Further research with pure compounds is warranted to confirm the roles of VOCs in the observed effects that are relevant to cosmetic and wound healing aspects.",
publisher = "MDPI",
journal = "Antioxidants",
title = "Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts",
volume = "12",
number = "11",
doi = "10.3390/antiox12111988"
}
Smiljanić, K., Prodić, I., Trifunović, S., Krstić-Ristivojević, M., Aćimović, M. G., Stanković Jeremić, J., Lončar, B.,& Tešević, V.. (2023). Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts. in Antioxidants
MDPI., 12(11).
https://doi.org/10.3390/antiox12111988
Smiljanić K, Prodić I, Trifunović S, Krstić-Ristivojević M, Aćimović MG, Stanković Jeremić J, Lončar B, Tešević V. Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts. in Antioxidants. 2023;12(11).
doi:10.3390/antiox12111988 .
Smiljanić, Katarina, Prodić, Ivana, Trifunović, Sara, Krstić-Ristivojević, Maja, Aćimović, Milica G., Stanković Jeremić, Jovana, Lončar, Biljana, Tešević, Vele, "Multistep Approach Points to Compounds Responsible for the Biological Activity and Safety of Hydrolates from Nine Lamiaceae Medicinal Plants on Human Skin Fibroblasts" in Antioxidants, 12, no. 11 (2023),
https://doi.org/10.3390/antiox12111988 . .
2
1

Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis

Radaković, Nataša; Nikolić, Andrea; Terzić-Jovanović, Nataša; Stojković, Pavle; Stanković, Nada; Šolaja, Bogdan; Opsenica, Igor; Pavić, Aleksandar

(Elsevier, 2022)

TY  - JOUR
AU  - Radaković, Nataša
AU  - Nikolić, Andrea
AU  - Terzić-Jovanović, Nataša
AU  - Stojković, Pavle
AU  - Stanković, Nada
AU  - Šolaja, Bogdan
AU  - Opsenica, Igor
AU  - Pavić, Aleksandar
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5235
AB  - Candida albicans remains the main causal agent of candidiasis, the most common fungal infection with disturbingly high mortality rates worldwide. The limited diversity and efficacy of clinical antifungal drugs, exacerbated by emerging drug resistance, have resulted in the failure of current antifungal therapies. This imposes an urgent demand for the development of innovative strategies for effective eradication of candidal infections. While the existing clinical drugs display fungicidal or fungistatic activity, the strategy specifically targeting C. albicans filamentation, as the most important virulence trait, represents an attractive approach for overcoming the drawbacks related to clinical antifungals. The results acquired in this study revealed the significant potential of 5-aminotetrazoles as a new class of effective and safe anti-virulence agents. Moreover, these novel agents were active when applied both alone and in combination with clinically approved polyenes. Complete prevention of C. albicans morphogenetic yeast-to-hyphae transition was achieved at doses as low as 1.3 μM under conditions mimicking various filamentation-responsive stimuli in the human body, while no cardio- or hepatotoxicity was observed at doses as high as 200 μM. The treatment of C. albicans-infected zebrafish embryos with nystatin alone had low efficacy, while the combination of nystatin and selected 5-aminotetrazoles prevented fungal filamentation, successfully eliminating the infection and rescuing the infected embryos from lethal disseminated candidiasis. In addition, the most potent anti-virulence 5-aminotetrazole prevented C. albicans in developing the resistance to nystatin when applied in combination, keeping the fungus sensitive to the antifungal drug.
PB  - Elsevier
T2  - European Journal of Medicinal Chemistry
T1  - Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis
VL  - 230
SP  - 114137
DO  - 10.1016/j.ejmech.2022.114137
ER  - 
@article{
author = "Radaković, Nataša and Nikolić, Andrea and Terzić-Jovanović, Nataša and Stojković, Pavle and Stanković, Nada and Šolaja, Bogdan and Opsenica, Igor and Pavić, Aleksandar",
year = "2022",
abstract = "Candida albicans remains the main causal agent of candidiasis, the most common fungal infection with disturbingly high mortality rates worldwide. The limited diversity and efficacy of clinical antifungal drugs, exacerbated by emerging drug resistance, have resulted in the failure of current antifungal therapies. This imposes an urgent demand for the development of innovative strategies for effective eradication of candidal infections. While the existing clinical drugs display fungicidal or fungistatic activity, the strategy specifically targeting C. albicans filamentation, as the most important virulence trait, represents an attractive approach for overcoming the drawbacks related to clinical antifungals. The results acquired in this study revealed the significant potential of 5-aminotetrazoles as a new class of effective and safe anti-virulence agents. Moreover, these novel agents were active when applied both alone and in combination with clinically approved polyenes. Complete prevention of C. albicans morphogenetic yeast-to-hyphae transition was achieved at doses as low as 1.3 μM under conditions mimicking various filamentation-responsive stimuli in the human body, while no cardio- or hepatotoxicity was observed at doses as high as 200 μM. The treatment of C. albicans-infected zebrafish embryos with nystatin alone had low efficacy, while the combination of nystatin and selected 5-aminotetrazoles prevented fungal filamentation, successfully eliminating the infection and rescuing the infected embryos from lethal disseminated candidiasis. In addition, the most potent anti-virulence 5-aminotetrazole prevented C. albicans in developing the resistance to nystatin when applied in combination, keeping the fungus sensitive to the antifungal drug.",
publisher = "Elsevier",
journal = "European Journal of Medicinal Chemistry",
title = "Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis",
volume = "230",
pages = "114137",
doi = "10.1016/j.ejmech.2022.114137"
}
Radaković, N., Nikolić, A., Terzić-Jovanović, N., Stojković, P., Stanković, N., Šolaja, B., Opsenica, I.,& Pavić, A.. (2022). Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. in European Journal of Medicinal Chemistry
Elsevier., 230, 114137.
https://doi.org/10.1016/j.ejmech.2022.114137
Radaković N, Nikolić A, Terzić-Jovanović N, Stojković P, Stanković N, Šolaja B, Opsenica I, Pavić A. Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis. in European Journal of Medicinal Chemistry. 2022;230:114137.
doi:10.1016/j.ejmech.2022.114137 .
Radaković, Nataša, Nikolić, Andrea, Terzić-Jovanović, Nataša, Stojković, Pavle, Stanković, Nada, Šolaja, Bogdan, Opsenica, Igor, Pavić, Aleksandar, "Unraveling the anti-virulence potential and antifungal efficacy of 5-aminotetrazoles using the zebrafish model of disseminated candidiasis" in European Journal of Medicinal Chemistry, 230 (2022):114137,
https://doi.org/10.1016/j.ejmech.2022.114137 . .
2
4
4

Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex

Gitarić, Jelena; Stanojević, Ivana; Radanović, Dušanka; Crochet, Aurélien; Ašanin, Darko; Janković, Vukašin; Skaro-Bogojević, Sanja; Đuran, Miloš; Glišić, Biljana

(Taylor &Francis, 2022)

TY  - JOUR
AU  - Gitarić, Jelena
AU  - Stanojević, Ivana
AU  - Radanović, Dušanka
AU  - Crochet, Aurélien
AU  - Ašanin, Darko
AU  - Janković, Vukašin
AU  - Skaro-Bogojević, Sanja
AU  - Đuran, Miloš
AU  - Glišić, Biljana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5322
AB  - To investigate how modification in the structure of 1,3-propanediamine chain of 1,3-pdta (1,3-propanediamine-N,N,N′,N′-tetraacetate) ligand affects the structural and biological properties of the corresponding metal complexes, two new octahedral complexes, [Co(H2O)5Co(2,2-diMe-1,3-pdta)]·H2O (1) and [Mg(H2O)5Mg(2,2-diMe-1,3-pdta)]·1.5H2O (2) (2,2-diMe-1,3-pdta = 2,2-dimethyl-1,3-propanediamine-N,N,N′,N′-tetraacetate), were synthesized and characterized by IR spectroscopy and single-crystal X-ray diffraction analysis. Additionally, UV-Vis and NMR spectroscopic methods were applied for the characterization of 1 and 2, respectively. Crystallographic data indicate that these complexes contain 2,2-diMe-1,3-pdta coordinated to the metal ion through 2 N and 4 O atoms forming [M(H2O)5M′(2,2-diMe-1,3-pdta)] complex unit (M, M′ = Co(II), Co(II) (1) and M, M′ = Mg(II), Mg(II) (2)), which is composed of [M′(2,2-diMe-1,3-pdta)]2− and [M(H2O)5O]2+ octahedra bridged by one of the axial carboxylate groups. The antimicrobial activities of 1 and 2 were evaluated against different bacteria and Candida spp., while their cytotoxic effect was tested on the normal human lung fibroblasts (MRC-5). The ability of 1 and 2 to inhibit formation of C. glabrata biofilms was also assessed. The obtained structural parameters and biological properties of the two complexes were compared to Co(II) and Mg(II) complexes with 1,3-pdta ligand.
PB  - Taylor &Francis
T2  - Journal of Coordination Chemistry
T1  - Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex
VL  - 75
IS  - 11-14
SP  - 1899
EP  - 1914
DO  - 10.1080/00958972.2022.2101365
ER  - 
@article{
author = "Gitarić, Jelena and Stanojević, Ivana and Radanović, Dušanka and Crochet, Aurélien and Ašanin, Darko and Janković, Vukašin and Skaro-Bogojević, Sanja and Đuran, Miloš and Glišić, Biljana",
year = "2022",
abstract = "To investigate how modification in the structure of 1,3-propanediamine chain of 1,3-pdta (1,3-propanediamine-N,N,N′,N′-tetraacetate) ligand affects the structural and biological properties of the corresponding metal complexes, two new octahedral complexes, [Co(H2O)5Co(2,2-diMe-1,3-pdta)]·H2O (1) and [Mg(H2O)5Mg(2,2-diMe-1,3-pdta)]·1.5H2O (2) (2,2-diMe-1,3-pdta = 2,2-dimethyl-1,3-propanediamine-N,N,N′,N′-tetraacetate), were synthesized and characterized by IR spectroscopy and single-crystal X-ray diffraction analysis. Additionally, UV-Vis and NMR spectroscopic methods were applied for the characterization of 1 and 2, respectively. Crystallographic data indicate that these complexes contain 2,2-diMe-1,3-pdta coordinated to the metal ion through 2 N and 4 O atoms forming [M(H2O)5M′(2,2-diMe-1,3-pdta)] complex unit (M, M′ = Co(II), Co(II) (1) and M, M′ = Mg(II), Mg(II) (2)), which is composed of [M′(2,2-diMe-1,3-pdta)]2− and [M(H2O)5O]2+ octahedra bridged by one of the axial carboxylate groups. The antimicrobial activities of 1 and 2 were evaluated against different bacteria and Candida spp., while their cytotoxic effect was tested on the normal human lung fibroblasts (MRC-5). The ability of 1 and 2 to inhibit formation of C. glabrata biofilms was also assessed. The obtained structural parameters and biological properties of the two complexes were compared to Co(II) and Mg(II) complexes with 1,3-pdta ligand.",
publisher = "Taylor &Francis",
journal = "Journal of Coordination Chemistry",
title = "Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex",
volume = "75",
number = "11-14",
pages = "1899-1914",
doi = "10.1080/00958972.2022.2101365"
}
Gitarić, J., Stanojević, I., Radanović, D., Crochet, A., Ašanin, D., Janković, V., Skaro-Bogojević, S., Đuran, M.,& Glišić, B.. (2022). Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex. in Journal of Coordination Chemistry
Taylor &Francis., 75(11-14), 1899-1914.
https://doi.org/10.1080/00958972.2022.2101365
Gitarić J, Stanojević I, Radanović D, Crochet A, Ašanin D, Janković V, Skaro-Bogojević S, Đuran M, Glišić B. Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex. in Journal of Coordination Chemistry. 2022;75(11-14):1899-1914.
doi:10.1080/00958972.2022.2101365 .
Gitarić, Jelena, Stanojević, Ivana, Radanović, Dušanka, Crochet, Aurélien, Ašanin, Darko, Janković, Vukašin, Skaro-Bogojević, Sanja, Đuran, Miloš, Glišić, Biljana, "Cobalt(II) and magnesium(II) complexes with 1,3-pdta-type of ligands: influence of an alkyl substituent at 1,3-propanediamine chain on the structural and antimicrobial properties of the complex" in Journal of Coordination Chemistry, 75, no. 11-14 (2022):1899-1914,
https://doi.org/10.1080/00958972.2022.2101365 . .
1

Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.

Tomić, Katarina; Šokarda Slavić, Marinela; Kojić, Milan; Stanisavljević, Nemanja; Nikolić, Stefan; Vujčić, Zoran

(University of Belgrade - Faculty of Chemistry, 2022)

TY  - CONF
AU  - Tomić, Katarina
AU  - Šokarda Slavić, Marinela
AU  - Kojić, Milan
AU  - Stanisavljević, Nemanja
AU  - Nikolić, Stefan
AU  - Vujčić, Zoran
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5917
AB  - One of the most abundant natural polymers with multidimensional and multifaceted application is starch. Due to energy fuel sustainability concern, the world is focusing on renewable energy including energy from renewable biological materials like starch1. The importance of the enzymatic hydrolysis of granular starch below the temperature of gelatinization has been well recognized, mainly due to energy savings and the effective utilization of biomass, which reduces the overall cost of starch processing2. A new α-amylase gene (Amy35) was cloned from newly isolated thermophilic Anoxybacillus sp. ST4 and expressed in Escherichia coli. The purified recombinant α-amylase had an wide pH optimum range from 4.5 to 8.5 and optimum temperature of 75°C. The enzyme retained 95% of its activity after 3h of incubation at 50 and 60°C. Hydrolysis rates of potato, horseradish and corn starches, at 1% concentration were 20, 70 and 65%, respectively, in a period of 16 h. Analysis of the enzyme properties proved its high efficacy for the digestion of diverse raw starches below gelatinization temperature and, therefore, its potential commercial value for use as an industrial enzyme.
PB  - University of Belgrade - Faculty of Chemistry
PB  - Serbian Biochemical Society
C3  - Proceedings - XI Conference of Serbian Biochemical Society "Amazing Biochemistry", 22.09.2022. Novi Sad, Serbia
T1  - Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.
SP  - 147
UR  - https://hdl.handle.net/21.15107/rcub_cer_5917
ER  - 
@conference{
author = "Tomić, Katarina and Šokarda Slavić, Marinela and Kojić, Milan and Stanisavljević, Nemanja and Nikolić, Stefan and Vujčić, Zoran",
year = "2022",
abstract = "One of the most abundant natural polymers with multidimensional and multifaceted application is starch. Due to energy fuel sustainability concern, the world is focusing on renewable energy including energy from renewable biological materials like starch1. The importance of the enzymatic hydrolysis of granular starch below the temperature of gelatinization has been well recognized, mainly due to energy savings and the effective utilization of biomass, which reduces the overall cost of starch processing2. A new α-amylase gene (Amy35) was cloned from newly isolated thermophilic Anoxybacillus sp. ST4 and expressed in Escherichia coli. The purified recombinant α-amylase had an wide pH optimum range from 4.5 to 8.5 and optimum temperature of 75°C. The enzyme retained 95% of its activity after 3h of incubation at 50 and 60°C. Hydrolysis rates of potato, horseradish and corn starches, at 1% concentration were 20, 70 and 65%, respectively, in a period of 16 h. Analysis of the enzyme properties proved its high efficacy for the digestion of diverse raw starches below gelatinization temperature and, therefore, its potential commercial value for use as an industrial enzyme.",
publisher = "University of Belgrade - Faculty of Chemistry, Serbian Biochemical Society",
journal = "Proceedings - XI Conference of Serbian Biochemical Society "Amazing Biochemistry", 22.09.2022. Novi Sad, Serbia",
title = "Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.",
pages = "147",
url = "https://hdl.handle.net/21.15107/rcub_cer_5917"
}
Tomić, K., Šokarda Slavić, M., Kojić, M., Stanisavljević, N., Nikolić, S.,& Vujčić, Z.. (2022). Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.. in Proceedings - XI Conference of Serbian Biochemical Society "Amazing Biochemistry", 22.09.2022. Novi Sad, Serbia
University of Belgrade - Faculty of Chemistry., 147.
https://hdl.handle.net/21.15107/rcub_cer_5917
Tomić K, Šokarda Slavić M, Kojić M, Stanisavljević N, Nikolić S, Vujčić Z. Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp.. in Proceedings - XI Conference of Serbian Biochemical Society "Amazing Biochemistry", 22.09.2022. Novi Sad, Serbia. 2022;:147.
https://hdl.handle.net/21.15107/rcub_cer_5917 .
Tomić, Katarina, Šokarda Slavić, Marinela, Kojić, Milan, Stanisavljević, Nemanja, Nikolić, Stefan, Vujčić, Zoran, "Cloning and characterization of new raw starch digestion α-amylase from thermophilic Anoxybacillus sp." in Proceedings - XI Conference of Serbian Biochemical Society "Amazing Biochemistry", 22.09.2022. Novi Sad, Serbia (2022):147,
https://hdl.handle.net/21.15107/rcub_cer_5917 .

Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo

Djokic, Lidija; Stankovic, Nada; Galic, Ivana; Moric, Ivana; Radakovic, Natasa; Šegan, Sandra; Pavic, Aleksandar; Senerovic, Lidija

(Frontiers Media SA, 2022)

TY  - JOUR
AU  - Djokic, Lidija
AU  - Stankovic, Nada
AU  - Galic, Ivana
AU  - Moric, Ivana
AU  - Radakovic, Natasa
AU  - Šegan, Sandra
AU  - Pavic, Aleksandar
AU  - Senerovic, Lidija
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5579
AB  - Bacterial infections have become increasingly difficult to treat due to the occurrence of antibiotic-resistant strains. A promising strategy to increase the efficacy of therapy is to combine antibacterials with agents that decrease pathogen virulence via the modulation of the quorum sensing (QS). Lactonases inhibit acylated homoserine lactone (AHL)-mediated QS in Gram-negative bacteria, including the leading nosocomial pathogen Pseudomonas aeruginosa. Here we describe the characteristics of heterologously expressed YtnP lactonase from Bacillus paralicheniformis ZP1 (YtnP-ZP1) isolated from agricultural soil using the culture enrichment method. Purified YtnP-ZP1 hydrolyzed different AHLs with preference to substrates with long acyl residues as evaluated in assays with biosensors and HPLC. The enzyme showed good thermostability and activity in a wide temperature range. YtnP-ZP1 in 50 μg mL–1 concentration reduced the amount of P. aeruginosa-produced long-chain AHLs by 85%, while it hydrolyzed 50% of short-chain AHLs. Incubation of P. aeruginosa PAO1 with YtnP-ZP1 reduced its swarming motility and elastolytic activity without bactericidal effect. YtnP-ZP1 caused the inhibition of biofilm formation and disintegration of mature biofilms in P. aeruginosa PAO1 and multiresistant clinical strain BR5H that was visualized by crystal violet staining. The treatment with YtnP-ZP1 in concentrations higher than 25 μg mL–1 improved the survival of P. aeruginosa PAO1-infected zebrafish (Danio rerio), rescuing 80% of embryos, while in combination with tobramycin or gentamicin survival rate increased to 100%. The treatment of P. aeruginosa PAO1 biofilms on infected zebrafish tail wounds with 50 μg mL–1 YtnP-ZP1 and 2 × MIC tobramycin led to infection clearing in 2 days. The extensive toxicity studies proved YtnP-ZP1 was non-toxic to human cells and zebrafish. In conclusion, novel YtnP-ZP1 lactonase with its effective anti-virulence activity could be used to increase the efficacy of clinically approved antibiotics in clearing both systemic and biofilm-associated P. aeruginosa infections.
PB  - Frontiers Media SA
T2  - Frontiers in Microbiology
T1  - Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo
VL  - 13
SP  - 906312
DO  - 10.3389/fmicb.2022.906312
ER  - 
@article{
author = "Djokic, Lidija and Stankovic, Nada and Galic, Ivana and Moric, Ivana and Radakovic, Natasa and Šegan, Sandra and Pavic, Aleksandar and Senerovic, Lidija",
year = "2022",
abstract = "Bacterial infections have become increasingly difficult to treat due to the occurrence of antibiotic-resistant strains. A promising strategy to increase the efficacy of therapy is to combine antibacterials with agents that decrease pathogen virulence via the modulation of the quorum sensing (QS). Lactonases inhibit acylated homoserine lactone (AHL)-mediated QS in Gram-negative bacteria, including the leading nosocomial pathogen Pseudomonas aeruginosa. Here we describe the characteristics of heterologously expressed YtnP lactonase from Bacillus paralicheniformis ZP1 (YtnP-ZP1) isolated from agricultural soil using the culture enrichment method. Purified YtnP-ZP1 hydrolyzed different AHLs with preference to substrates with long acyl residues as evaluated in assays with biosensors and HPLC. The enzyme showed good thermostability and activity in a wide temperature range. YtnP-ZP1 in 50 μg mL–1 concentration reduced the amount of P. aeruginosa-produced long-chain AHLs by 85%, while it hydrolyzed 50% of short-chain AHLs. Incubation of P. aeruginosa PAO1 with YtnP-ZP1 reduced its swarming motility and elastolytic activity without bactericidal effect. YtnP-ZP1 caused the inhibition of biofilm formation and disintegration of mature biofilms in P. aeruginosa PAO1 and multiresistant clinical strain BR5H that was visualized by crystal violet staining. The treatment with YtnP-ZP1 in concentrations higher than 25 μg mL–1 improved the survival of P. aeruginosa PAO1-infected zebrafish (Danio rerio), rescuing 80% of embryos, while in combination with tobramycin or gentamicin survival rate increased to 100%. The treatment of P. aeruginosa PAO1 biofilms on infected zebrafish tail wounds with 50 μg mL–1 YtnP-ZP1 and 2 × MIC tobramycin led to infection clearing in 2 days. The extensive toxicity studies proved YtnP-ZP1 was non-toxic to human cells and zebrafish. In conclusion, novel YtnP-ZP1 lactonase with its effective anti-virulence activity could be used to increase the efficacy of clinically approved antibiotics in clearing both systemic and biofilm-associated P. aeruginosa infections.",
publisher = "Frontiers Media SA",
journal = "Frontiers in Microbiology",
title = "Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo",
volume = "13",
pages = "906312",
doi = "10.3389/fmicb.2022.906312"
}
Djokic, L., Stankovic, N., Galic, I., Moric, I., Radakovic, N., Šegan, S., Pavic, A.,& Senerovic, L.. (2022). Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo. in Frontiers in Microbiology
Frontiers Media SA., 13, 906312.
https://doi.org/10.3389/fmicb.2022.906312
Djokic L, Stankovic N, Galic I, Moric I, Radakovic N, Šegan S, Pavic A, Senerovic L. Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo. in Frontiers in Microbiology. 2022;13:906312.
doi:10.3389/fmicb.2022.906312 .
Djokic, Lidija, Stankovic, Nada, Galic, Ivana, Moric, Ivana, Radakovic, Natasa, Šegan, Sandra, Pavic, Aleksandar, Senerovic, Lidija, "Novel Quorum Quenching YtnP Lactonase From Bacillus paralicheniformis Reduces Pseudomonas aeruginosa Virulence and Increases Antibiotic Efficacy in vivo" in Frontiers in Microbiology, 13 (2022):906312,
https://doi.org/10.3389/fmicb.2022.906312 . .
3
12
6

Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion

Dorontić, Slađana; Bonasera, Aurelio; Scopelliti, Michelangelo; Mojsin, Marija; Stevanović, Milena J.; Marković, Olivera; Jovanović, Svetlana

(Elsevier, 2022)

TY  - JOUR
AU  - Dorontić, Slađana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Marković, Olivera
AU  - Jovanović, Svetlana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5388
AB  - Large amounts of hazardous and toxic substances in the environment require non-toxic, cheap, easy, rapid, and sensitive methods for their detection. Blue luminescent graphene quantum dots (GQDs) were produced by electrochemical cleavage of graphite electrodes followed by gamma irradiation in the presence of ethylenediamine (EDA). Modified dots were able to detect metal ions (Co2+, Pd2+, Fe3+) due to photoluminescence quenching. The highest sensitivity was detected for the sample irradiated at a dose of 25 kGy. The limits of detection (LODs) were 1.79, 2.55, and 0.66 μmol L−1 for Co2+, Fe3+, and Pd2+, respectively. It was observed that GQDs irradiated at 200 kGy act as an ultra-sensitive turn-on probe for Malathion detection with LOD of 94 nmol L−1. Atomic force microscopy images proved the aggregation of GQDs in the presence of the investigated metal ions. Results obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and LIVE/DEAD cytotoxicity test indicated that GQDs irradiated with EDA are not toxic towards MRC-5 cells, which makes them a promising, eco-friendly and safe material for sensing application.
PB  - Elsevier
T2  - Journal of Luminescence
T1  - Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion
VL  - 252
SP  - 119311
DO  - 10.1016/j.jlumin.2022.119311
ER  - 
@article{
author = "Dorontić, Slađana and Bonasera, Aurelio and Scopelliti, Michelangelo and Mojsin, Marija and Stevanović, Milena J. and Marković, Olivera and Jovanović, Svetlana",
year = "2022",
abstract = "Large amounts of hazardous and toxic substances in the environment require non-toxic, cheap, easy, rapid, and sensitive methods for their detection. Blue luminescent graphene quantum dots (GQDs) were produced by electrochemical cleavage of graphite electrodes followed by gamma irradiation in the presence of ethylenediamine (EDA). Modified dots were able to detect metal ions (Co2+, Pd2+, Fe3+) due to photoluminescence quenching. The highest sensitivity was detected for the sample irradiated at a dose of 25 kGy. The limits of detection (LODs) were 1.79, 2.55, and 0.66 μmol L−1 for Co2+, Fe3+, and Pd2+, respectively. It was observed that GQDs irradiated at 200 kGy act as an ultra-sensitive turn-on probe for Malathion detection with LOD of 94 nmol L−1. Atomic force microscopy images proved the aggregation of GQDs in the presence of the investigated metal ions. Results obtained by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and LIVE/DEAD cytotoxicity test indicated that GQDs irradiated with EDA are not toxic towards MRC-5 cells, which makes them a promising, eco-friendly and safe material for sensing application.",
publisher = "Elsevier",
journal = "Journal of Luminescence",
title = "Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion",
volume = "252",
pages = "119311",
doi = "10.1016/j.jlumin.2022.119311"
}
Dorontić, S., Bonasera, A., Scopelliti, M., Mojsin, M., Stevanović, M. J., Marković, O.,& Jovanović, S.. (2022). Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion. in Journal of Luminescence
Elsevier., 252, 119311.
https://doi.org/10.1016/j.jlumin.2022.119311
Dorontić S, Bonasera A, Scopelliti M, Mojsin M, Stevanović MJ, Marković O, Jovanović S. Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion. in Journal of Luminescence. 2022;252:119311.
doi:10.1016/j.jlumin.2022.119311 .
Dorontić, Slađana, Bonasera, Aurelio, Scopelliti, Michelangelo, Mojsin, Marija, Stevanović, Milena J., Marković, Olivera, Jovanović, Svetlana, "Blue luminescent amino-functionalized graphene quantum dots as a responsive material for potential detection of metal ions and malathion" in Journal of Luminescence, 252 (2022):119311,
https://doi.org/10.1016/j.jlumin.2022.119311 . .
1
1

Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio

Milenković, Ivana; Radotić, Ksenija; Despotović, Jovana; Lončarević, Branka; Lješević, Marija; Spasić, Slađana Z.; Nikolić, Aleksandra; Beškoski, Vladimir

(Elsevier, 2021)

TY  - JOUR
AU  - Milenković, Ivana
AU  - Radotić, Ksenija
AU  - Despotović, Jovana
AU  - Lončarević, Branka
AU  - Lješević, Marija
AU  - Spasić, Slađana Z.
AU  - Nikolić, Aleksandra
AU  - Beškoski, Vladimir
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4687
AB  - Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles’ accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L−1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability.
PB  - Elsevier
T2  - Aquatic Toxicology
T1  - Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio
VL  - 236
SP  - 105867
DO  - 10.1016/j.aquatox.2021.105867
ER  - 
@article{
author = "Milenković, Ivana and Radotić, Ksenija and Despotović, Jovana and Lončarević, Branka and Lješević, Marija and Spasić, Slađana Z. and Nikolić, Aleksandra and Beškoski, Vladimir",
year = "2021",
abstract = "Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles’ accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L−1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability.",
publisher = "Elsevier",
journal = "Aquatic Toxicology",
title = "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio",
volume = "236",
pages = "105867",
doi = "10.1016/j.aquatox.2021.105867"
}
Milenković, I., Radotić, K., Despotović, J., Lončarević, B., Lješević, M., Spasić, S. Z., Nikolić, A.,& Beškoski, V.. (2021). Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology
Elsevier., 236, 105867.
https://doi.org/10.1016/j.aquatox.2021.105867
Milenković I, Radotić K, Despotović J, Lončarević B, Lješević M, Spasić SZ, Nikolić A, Beškoski V. Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology. 2021;236:105867.
doi:10.1016/j.aquatox.2021.105867 .
Milenković, Ivana, Radotić, Ksenija, Despotović, Jovana, Lončarević, Branka, Lješević, Marija, Spasić, Slađana Z., Nikolić, Aleksandra, Beškoski, Vladimir, "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio" in Aquatic Toxicology, 236 (2021):105867,
https://doi.org/10.1016/j.aquatox.2021.105867 . .
1
11
2

Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio

Milenković, Ivana; Radotić, Ksenija; Despotović, Jovana; Lončarević, Branka; Lješević, Marija; Spasić, Slađana Z.; Nikolić, Aleksandra; Beškoski, Vladimir

(Elsevier, 2021)

TY  - JOUR
AU  - Milenković, Ivana
AU  - Radotić, Ksenija
AU  - Despotović, Jovana
AU  - Lončarević, Branka
AU  - Lješević, Marija
AU  - Spasić, Slađana Z.
AU  - Nikolić, Aleksandra
AU  - Beškoski, Vladimir
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4689
AB  - Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles’ accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L−1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability.
PB  - Elsevier
T2  - Aquatic Toxicology
T1  - Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio
VL  - 236
SP  - 105867
DO  - 10.1016/j.aquatox.2021.105867
ER  - 
@article{
author = "Milenković, Ivana and Radotić, Ksenija and Despotović, Jovana and Lončarević, Branka and Lješević, Marija and Spasić, Slađana Z. and Nikolić, Aleksandra and Beškoski, Vladimir",
year = "2021",
abstract = "Cerium oxide nanoparticles (nCeO2) have widespread applications, but they can be hazardous to the environment. Some reports indicate the toxic effect of nCeO2 on tested animals, but literature data are mainly contradictory. Coating of nCeO2 can improve their suspension stability and change their interaction with the environment, which can consequently decrease their toxic effects. Herein, the exopolysaccharides levan and pullulan, due to their high water solubility, biocompatibility, and ability to form film, were used to coat nCeO2. Additionally, the monosaccharide glucose was used, since it is a common material for nanoparticle coating. This is the first study investigating the impact of carbohydrate-coated nCeO2 in comparison to uncoated nCeO2 using different model organisms. The aim of this study was to test the acute toxicity of carbohydrate-coated nCeO2 on the bacterium Vibrio fischeri NRRL B-11177, the crustacean Daphnia magna, and zebrafish Danio rerio. The second aim was to investigate the effects of nCeO2 on respiration in Daphnia magna which was performed for the first time. Finally, it was important to see the relation between Ce bioaccumulation in Daphnia magna and Danio rerio and other investigated parameters. Our results revealed that the coating decreased the toxicity of nCeO2 on Vibrio fischeri. The coating of nCeO2 did not affect the nanoparticles’ accumulation/adsorption or mortality in Daphnia magna or Danio rerio. Monitoring of respiration in Daphnia magna revealed changes in CO2 production after exposure to coated nCeO2, while the crustacean's O2 consumption was not affected by any of the coated nCeO2. In summary, this study revealed that, at 200 mg L−1, uncoated and carbohydrate-coated nCeO2 are not toxic for the tested organisms, however, the CO2 production in Daphnia magna is different when they are treated with coated and uncoated nCeO2. The highest production was in glucose and levan-coated nCeO2 according to their highest suspension stability.",
publisher = "Elsevier",
journal = "Aquatic Toxicology",
title = "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio",
volume = "236",
pages = "105867",
doi = "10.1016/j.aquatox.2021.105867"
}
Milenković, I., Radotić, K., Despotović, J., Lončarević, B., Lješević, M., Spasić, S. Z., Nikolić, A.,& Beškoski, V.. (2021). Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology
Elsevier., 236, 105867.
https://doi.org/10.1016/j.aquatox.2021.105867
Milenković I, Radotić K, Despotović J, Lončarević B, Lješević M, Spasić SZ, Nikolić A, Beškoski V. Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio. in Aquatic Toxicology. 2021;236:105867.
doi:10.1016/j.aquatox.2021.105867 .
Milenković, Ivana, Radotić, Ksenija, Despotović, Jovana, Lončarević, Branka, Lješević, Marija, Spasić, Slađana Z., Nikolić, Aleksandra, Beškoski, Vladimir, "Toxicity investigation of CeO2 nanoparticles coated with glucose and exopolysaccharides levan and pullulan on the bacterium Vibrio fischeri and aquatic organisms Daphnia magna and Danio rerio" in Aquatic Toxicology, 236 (2021):105867,
https://doi.org/10.1016/j.aquatox.2021.105867 . .
1
11
2

Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity

Ivković, Ivana; Novaković, Miroslav; Veljić, Milan; Mojsin, Marija; Stevanović, Milena J.; Marin, Petar D.; Bukvički, Danka

(MDPI, 2021)

TY  - JOUR
AU  - Ivković, Ivana
AU  - Novaković, Miroslav
AU  - Veljić, Milan
AU  - Mojsin, Marija
AU  - Stevanović, Milena J.
AU  - Marin, Petar D.
AU  - Bukvički, Danka
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4696
AB  - Based on previous investigations where bis-bibenzyls isolated from liverworts showed various biological activities (cytotoxic, antimicrobial, and antiviral), we investigated their cytotoxic activity in several human cancer cell lines. From the methylene-chloride/methanol extract of the liverwort Pellia endiviifolia, three bis-bibenzyls of the perrottetin type were isolated, namely perrottetin E, 10′-hydroxyperrottetin E, and 10,10′-dihydroxyperrottetin E. The last two were found for the first time in this species. Their structures were resolved using 1D and 2D NMR, as well as by comparison with data in the literature. Cytotoxic activity of the isolated compounds was tested on three human leukemia cell lines, HL-60 (acute promyelocytic leukemia cells), U-937 (acute monocytic leukemia cells), and K-562 (human chronic myelogenous leukemia cells), as well as on human embryonal teratocarcinoma cell line (NT2/D1) and human glioblastoma cell lines A-172 and U-251, and compared to the previously isolated bis-bibenzyls (perrottetins) of similar structure. The isolated compounds exhibited modest activity against leukemia cells and significant activity against NT2/D1 and A-172. Overall, the most active cytotoxic compounds in this investigation were perrottetin E (1), isolated in this work from Pellia endiviifolia, and perrottetin F phenanthrene derivative (7), previously isolated from Lunularia cruciata and added for a comparison of their cytotoxic activity.
PB  - MDPI
T2  - Plants
T1  - Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity
VL  - 10
IS  - 6
SP  - 1063
DO  - 10.3390/plants10061063
ER  - 
@article{
author = "Ivković, Ivana and Novaković, Miroslav and Veljić, Milan and Mojsin, Marija and Stevanović, Milena J. and Marin, Petar D. and Bukvički, Danka",
year = "2021",
abstract = "Based on previous investigations where bis-bibenzyls isolated from liverworts showed various biological activities (cytotoxic, antimicrobial, and antiviral), we investigated their cytotoxic activity in several human cancer cell lines. From the methylene-chloride/methanol extract of the liverwort Pellia endiviifolia, three bis-bibenzyls of the perrottetin type were isolated, namely perrottetin E, 10′-hydroxyperrottetin E, and 10,10′-dihydroxyperrottetin E. The last two were found for the first time in this species. Their structures were resolved using 1D and 2D NMR, as well as by comparison with data in the literature. Cytotoxic activity of the isolated compounds was tested on three human leukemia cell lines, HL-60 (acute promyelocytic leukemia cells), U-937 (acute monocytic leukemia cells), and K-562 (human chronic myelogenous leukemia cells), as well as on human embryonal teratocarcinoma cell line (NT2/D1) and human glioblastoma cell lines A-172 and U-251, and compared to the previously isolated bis-bibenzyls (perrottetins) of similar structure. The isolated compounds exhibited modest activity against leukemia cells and significant activity against NT2/D1 and A-172. Overall, the most active cytotoxic compounds in this investigation were perrottetin E (1), isolated in this work from Pellia endiviifolia, and perrottetin F phenanthrene derivative (7), previously isolated from Lunularia cruciata and added for a comparison of their cytotoxic activity.",
publisher = "MDPI",
journal = "Plants",
title = "Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity",
volume = "10",
number = "6",
pages = "1063",
doi = "10.3390/plants10061063"
}
Ivković, I., Novaković, M., Veljić, M., Mojsin, M., Stevanović, M. J., Marin, P. D.,& Bukvički, D.. (2021). Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity. in Plants
MDPI., 10(6), 1063.
https://doi.org/10.3390/plants10061063
Ivković I, Novaković M, Veljić M, Mojsin M, Stevanović MJ, Marin PD, Bukvički D. Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity. in Plants. 2021;10(6):1063.
doi:10.3390/plants10061063 .
Ivković, Ivana, Novaković, Miroslav, Veljić, Milan, Mojsin, Marija, Stevanović, Milena J., Marin, Petar D., Bukvički, Danka, "Bis-Bibenzyls from the Liverwort Pellia endiviifolia and Their Biological Activity" in Plants, 10, no. 6 (2021):1063,
https://doi.org/10.3390/plants10061063 . .
13
2
9

Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites

Bukvicki, Danka; Novaković, Miroslav; Ilić - Tomić, Tatjana; Nikodinović-Runić, Jasmina; Todorović, Nina; Veljić, Milan; Asakawa, Yoshinori

(Türkiye : ACG Publications, 2021)

TY  - JOUR
AU  - Bukvicki, Danka
AU  - Novaković, Miroslav
AU  - Ilić - Tomić, Tatjana
AU  - Nikodinović-Runić, Jasmina
AU  - Todorović, Nina
AU  - Veljić, Milan
AU  - Asakawa, Yoshinori
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4630
AB  - Biotransformation of bis-bibenzyl perrottetin F (1), isolated from the liverwort Lunularia cruciata by Aspergillus niger, has been investigated. New metabolites (2-4) have been isolated using reversed phase semipreparative HPLC and their structures were established to be 8-hydroxyperrottetin F, C-7-C-8 cleaved product, and perrottetin F 6’-sulfate using 1D and 2D NMR, HR-ESI-MS, IR and UV spectroscopy. The antimicrobial and cytotoxic properties of these compounds were also evaluated. Given the suggested cytotoxic properties of the parent compound, antiproliferative activity against healthy human lung fibroblasts (MRC5) and human lung carcinoma (A549) of three metabolites were evaluated revealing their lower cytotoxic properties in comparison to the starting compound-perrottetin F. The antimicrobial properties of these compounds were also evaluated, with the inhibitory activity against the Pseudomonas aeruginosa PAO1 and Staphylococcus aureus determined between 100 µM and 450 µM. The metabolites showed remarkable ability to inhibit synthesis of bacterial quorum-sensing signal molecules such as short chain acyl homoserine lactones (AHLs). Therefore, biotransformation method represents fast and effective tool for obtaining new bioactive structures.
PB  - Türkiye : ACG Publications
T2  - Records of Natural Products
T1  - Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites
VL  - 15
IS  - 4
SP  - 281
EP  - 292
DO  - 10.25135/rnp.215.20.09.1812
ER  - 
@article{
author = "Bukvicki, Danka and Novaković, Miroslav and Ilić - Tomić, Tatjana and Nikodinović-Runić, Jasmina and Todorović, Nina and Veljić, Milan and Asakawa, Yoshinori",
year = "2021",
abstract = "Biotransformation of bis-bibenzyl perrottetin F (1), isolated from the liverwort Lunularia cruciata by Aspergillus niger, has been investigated. New metabolites (2-4) have been isolated using reversed phase semipreparative HPLC and their structures were established to be 8-hydroxyperrottetin F, C-7-C-8 cleaved product, and perrottetin F 6’-sulfate using 1D and 2D NMR, HR-ESI-MS, IR and UV spectroscopy. The antimicrobial and cytotoxic properties of these compounds were also evaluated. Given the suggested cytotoxic properties of the parent compound, antiproliferative activity against healthy human lung fibroblasts (MRC5) and human lung carcinoma (A549) of three metabolites were evaluated revealing their lower cytotoxic properties in comparison to the starting compound-perrottetin F. The antimicrobial properties of these compounds were also evaluated, with the inhibitory activity against the Pseudomonas aeruginosa PAO1 and Staphylococcus aureus determined between 100 µM and 450 µM. The metabolites showed remarkable ability to inhibit synthesis of bacterial quorum-sensing signal molecules such as short chain acyl homoserine lactones (AHLs). Therefore, biotransformation method represents fast and effective tool for obtaining new bioactive structures.",
publisher = "Türkiye : ACG Publications",
journal = "Records of Natural Products",
title = "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites",
volume = "15",
number = "4",
pages = "281-292",
doi = "10.25135/rnp.215.20.09.1812"
}
Bukvicki, D., Novaković, M., Ilić - Tomić, T., Nikodinović-Runić, J., Todorović, N., Veljić, M.,& Asakawa, Y.. (2021). Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. in Records of Natural Products
Türkiye : ACG Publications., 15(4), 281-292.
https://doi.org/10.25135/rnp.215.20.09.1812
Bukvicki D, Novaković M, Ilić - Tomić T, Nikodinović-Runić J, Todorović N, Veljić M, Asakawa Y. Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites. in Records of Natural Products. 2021;15(4):281-292.
doi:10.25135/rnp.215.20.09.1812 .
Bukvicki, Danka, Novaković, Miroslav, Ilić - Tomić, Tatjana, Nikodinović-Runić, Jasmina, Todorović, Nina, Veljić, Milan, Asakawa, Yoshinori, "Biotransformation of Perrottetin F by Aspergillus niger: New Bioactive Secondary Metabolites" in Records of Natural Products, 15, no. 4 (2021):281-292,
https://doi.org/10.25135/rnp.215.20.09.1812 . .
6
4
5

Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects

Ponjavić, Marijana; Nikolić, Marija S.; Stevanović, Sanja; Nikodinović-Runić, Jasmina; Jeremić, Sanja; Pavić, Aleksandar; Đongalić, Jasna

(SAGE Publications, 2020)

TY  - JOUR
AU  - Ponjavić, Marijana
AU  - Nikolić, Marija S.
AU  - Stevanović, Sanja
AU  - Nikodinović-Runić, Jasmina
AU  - Jeremić, Sanja
AU  - Pavić, Aleksandar
AU  - Đongalić, Jasna
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4019
AB  - Star-shaped polymers of biodegradable aliphatic polyester, poly(ε-caprolactone), PCL, with different number of arms (three, four, and six) were synthesized by ring-opening polymerization initiated by multifunctional alcohols used as cores. As potential biomaterials, synthesized star-shaped poly(ε-caprolactone)s, sPCL, were thoroughly characterized in terms of their degradation under different pH conditions and in respect to their cytotoxicity. The in vitro degradation was performed in phosphate buffer (pH 7.4) and hydrochloric acid solution (pH 1.0) over 5 weeks. Degradation of sPCL films was followed by the weight loss measurements, GPC, FTIR, and AFM analysis. While the most of the samples were stable against the abiotic hydrolysis at pH 7.4 after 5 weeks of degradation, degradation was significantly accelerated in the acidic medium. Degradation rate of polymer films was affected by the polymer architecture and molecular weight. The molecular weight profiles during the degradation revealed random chain scission of the ester bonds indicating bulk degradation mechanism of hydrolysis at pH 7.4, while acidic hydrolysis proceeded through the bulk degradation associated with surface erosion, confirmed by AFM. The in vitro toxicity tests, cytotoxicity applying normal human fibroblasts (MRC5) and embryotoxicity assessment (using zebra fish model, Danio rerio), suggested those polymeric materials as suitable for biomedical application.
PB  - SAGE Publications
T2  - Journal of Bioactive and Compatible Polymers
T1  - Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects
VL  - 35
IS  - 6
SP  - 517
EP  - 537
DO  - 10.1177/0883911520951826
ER  - 
@article{
author = "Ponjavić, Marijana and Nikolić, Marija S. and Stevanović, Sanja and Nikodinović-Runić, Jasmina and Jeremić, Sanja and Pavić, Aleksandar and Đongalić, Jasna",
year = "2020",
abstract = "Star-shaped polymers of biodegradable aliphatic polyester, poly(ε-caprolactone), PCL, with different number of arms (three, four, and six) were synthesized by ring-opening polymerization initiated by multifunctional alcohols used as cores. As potential biomaterials, synthesized star-shaped poly(ε-caprolactone)s, sPCL, were thoroughly characterized in terms of their degradation under different pH conditions and in respect to their cytotoxicity. The in vitro degradation was performed in phosphate buffer (pH 7.4) and hydrochloric acid solution (pH 1.0) over 5 weeks. Degradation of sPCL films was followed by the weight loss measurements, GPC, FTIR, and AFM analysis. While the most of the samples were stable against the abiotic hydrolysis at pH 7.4 after 5 weeks of degradation, degradation was significantly accelerated in the acidic medium. Degradation rate of polymer films was affected by the polymer architecture and molecular weight. The molecular weight profiles during the degradation revealed random chain scission of the ester bonds indicating bulk degradation mechanism of hydrolysis at pH 7.4, while acidic hydrolysis proceeded through the bulk degradation associated with surface erosion, confirmed by AFM. The in vitro toxicity tests, cytotoxicity applying normal human fibroblasts (MRC5) and embryotoxicity assessment (using zebra fish model, Danio rerio), suggested those polymeric materials as suitable for biomedical application.",
publisher = "SAGE Publications",
journal = "Journal of Bioactive and Compatible Polymers",
title = "Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects",
volume = "35",
number = "6",
pages = "517-537",
doi = "10.1177/0883911520951826"
}
Ponjavić, M., Nikolić, M. S., Stevanović, S., Nikodinović-Runić, J., Jeremić, S., Pavić, A.,& Đongalić, J.. (2020). Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects. in Journal of Bioactive and Compatible Polymers
SAGE Publications., 35(6), 517-537.
https://doi.org/10.1177/0883911520951826
Ponjavić M, Nikolić MS, Stevanović S, Nikodinović-Runić J, Jeremić S, Pavić A, Đongalić J. Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects. in Journal of Bioactive and Compatible Polymers. 2020;35(6):517-537.
doi:10.1177/0883911520951826 .
Ponjavić, Marijana, Nikolić, Marija S., Stevanović, Sanja, Nikodinović-Runić, Jasmina, Jeremić, Sanja, Pavić, Aleksandar, Đongalić, Jasna, "Hydrolytic degradation of star-shaped poly(ε-caprolactone)s with different number of arms and their cytotoxic effects" in Journal of Bioactive and Compatible Polymers, 35, no. 6 (2020):517-537,
https://doi.org/10.1177/0883911520951826 . .
6
1
5