Pešić, Ivan

Link to this page

Authority KeyName Variants
orcid::0000-0002-2124-7139
  • Pešić, Ivan (8)

Author's Bibliography

Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior

Elhmali, Houda Taher; Stajčić, Ivana; Stajčić, Aleksandar; Pešić, Ivan; Jovanović, Marija; Petrović, Miloš; Radojević, Vesna

(MDPI, 2024)

TY  - JOUR
AU  - Elhmali, Houda Taher
AU  - Stajčić, Ivana
AU  - Stajčić, Aleksandar
AU  - Pešić, Ivan
AU  - Jovanović, Marija
AU  - Petrović, Miloš
AU  - Radojević, Vesna
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7427
AB  - While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the leaching of residual monomer and volatile additives that could pose a threat to human health. It has been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2, which showed the trapping potential of volatiles. Investigations of mechanical properties have revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this study revealed the reinforcing potential of hybrid nanoparticles that could find application in other polymers as well.
PB  - MDPI
T2  - Polymers
T1  - Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior
VL  - 16
IS  - 2
SP  - 278
DO  - 10.3390/polym16020278
ER  - 
@article{
author = "Elhmali, Houda Taher and Stajčić, Ivana and Stajčić, Aleksandar and Pešić, Ivan and Jovanović, Marija and Petrović, Miloš and Radojević, Vesna",
year = "2024",
abstract = "While dental poly methyl methacrylate(PMMA) possesses distinctive qualities such as ease of fabrication, cost-effectiveness, and favorable physical and mechanical properties, these attributes alone are inadequate to impart the necessary impact strength and hardness. Consequently, pure PMMA is less suitable for dental applications. This research focused on the incorporation of Strontium titanate (SrTiO3-STO) and hybrid filler STO/Manganese oxide (MnO2) to improve impact resistance and hardness. The potential of STO in reinforcing PMMA is poorly investigated, while hybrid filler STO/MnO2 has not been presented yet. Differential scanning calorimetry is conducted in order to investigate the agglomeration influence on the PMMA glass transition temperature (Tg), as well as the leaching of residual monomer and volatile additives that could pose a threat to human health. It has been determined that agglomeration with 1 wt% loading had no influence on Tg, while the first scan revealed differences in evaporation of small molecules, in favor of composite PMMA-STO/MnO2, which showed the trapping potential of volatiles. Investigations of mechanical properties have revealed the significant influence of hybrid STO/MnO2 filler on microhardness and total absorbed impact energy, which were increased by 89.9% and 145.4%, respectively. Results presented in this study revealed the reinforcing potential of hybrid nanoparticles that could find application in other polymers as well.",
publisher = "MDPI",
journal = "Polymers",
title = "Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior",
volume = "16",
number = "2",
pages = "278",
doi = "10.3390/polym16020278"
}
Elhmali, H. T., Stajčić, I., Stajčić, A., Pešić, I., Jovanović, M., Petrović, M.,& Radojević, V.. (2024). Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. in Polymers
MDPI., 16(2), 278.
https://doi.org/10.3390/polym16020278
Elhmali HT, Stajčić I, Stajčić A, Pešić I, Jovanović M, Petrović M, Radojević V. Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior. in Polymers. 2024;16(2):278.
doi:10.3390/polym16020278 .
Elhmali, Houda Taher, Stajčić, Ivana, Stajčić, Aleksandar, Pešić, Ivan, Jovanović, Marija, Petrović, Miloš, Radojević, Vesna, "Influence of Novel SrTiO3/MnO2 Hybrid Nanoparticles on Poly(methyl methacrylate) Thermal and Mechanical Behavior" in Polymers, 16, no. 2 (2024):278,
https://doi.org/10.3390/polym16020278 . .

Optimization of reaction parameters for preparation of MXene-based polymer nanocomposites

Pešić, Ivan; Rašljić-Rafajilović, Milena; Vasiljević-Radović, Dana; Ostojić, Sanja; Petrović, Miloš; Radojević, Vesna; Pergal, Marija

(Institute of Electrical and Electronics Engineers (IEEE), 2023)

TY  - CONF
AU  - Pešić, Ivan
AU  - Rašljić-Rafajilović, Milena
AU  - Vasiljević-Radović, Dana
AU  - Ostojić, Sanja
AU  - Petrović, Miloš
AU  - Radojević, Vesna
AU  - Pergal, Marija
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6690
AB  - The present study reports on the preparation of nanocomposites consisting of polyurethane (PU) as the matrix and Ti 3 C 2 T x MXene as the nanofiller, utilizing an in-situ polymerization method. The synthesis parameters of polyurethane remained constant, while the method of adding and preparing MXene was varied. The MXene content was maintained at 1 wt.% for all prepared nanocomposites, and the soft segment content was held constant as well. For the characterization of our materials, FTIR, SEM, TGA and tensile tests were employed. Also, the properties of the prepared nanocomposites were compared to pure PU. FTIR spectra confirmed the formation of urethane bonds. SEM images demonstrated the dispersion state of MXene in the polymer matrix. TGA revealed higher thermal stability of the prepared nanocomposites compared to pure PU. Moreover, the Young’s modulus and tensile strength increased for all prepared nanocomposites.
PB  - Institute of Electrical and Electronics Engineers (IEEE)
C3  - 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), 05-08 June 2023, East Sarajevo, Bosnia and Herzegovina
T1  - Optimization of reaction parameters for preparation  of MXene-based polymer nanocomposites
SP  - 23488337
DO  - 10.1109/IcETRAN59631.2023.10192211
ER  - 
@conference{
author = "Pešić, Ivan and Rašljić-Rafajilović, Milena and Vasiljević-Radović, Dana and Ostojić, Sanja and Petrović, Miloš and Radojević, Vesna and Pergal, Marija",
year = "2023",
abstract = "The present study reports on the preparation of nanocomposites consisting of polyurethane (PU) as the matrix and Ti 3 C 2 T x MXene as the nanofiller, utilizing an in-situ polymerization method. The synthesis parameters of polyurethane remained constant, while the method of adding and preparing MXene was varied. The MXene content was maintained at 1 wt.% for all prepared nanocomposites, and the soft segment content was held constant as well. For the characterization of our materials, FTIR, SEM, TGA and tensile tests were employed. Also, the properties of the prepared nanocomposites were compared to pure PU. FTIR spectra confirmed the formation of urethane bonds. SEM images demonstrated the dispersion state of MXene in the polymer matrix. TGA revealed higher thermal stability of the prepared nanocomposites compared to pure PU. Moreover, the Young’s modulus and tensile strength increased for all prepared nanocomposites.",
publisher = "Institute of Electrical and Electronics Engineers (IEEE)",
journal = "10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), 05-08 June 2023, East Sarajevo, Bosnia and Herzegovina",
title = "Optimization of reaction parameters for preparation  of MXene-based polymer nanocomposites",
pages = "23488337",
doi = "10.1109/IcETRAN59631.2023.10192211"
}
Pešić, I., Rašljić-Rafajilović, M., Vasiljević-Radović, D., Ostojić, S., Petrović, M., Radojević, V.,& Pergal, M.. (2023). Optimization of reaction parameters for preparation  of MXene-based polymer nanocomposites. in 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), 05-08 June 2023, East Sarajevo, Bosnia and Herzegovina
Institute of Electrical and Electronics Engineers (IEEE)., 23488337.
https://doi.org/10.1109/IcETRAN59631.2023.10192211
Pešić I, Rašljić-Rafajilović M, Vasiljević-Radović D, Ostojić S, Petrović M, Radojević V, Pergal M. Optimization of reaction parameters for preparation  of MXene-based polymer nanocomposites. in 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), 05-08 June 2023, East Sarajevo, Bosnia and Herzegovina. 2023;:23488337.
doi:10.1109/IcETRAN59631.2023.10192211 .
Pešić, Ivan, Rašljić-Rafajilović, Milena, Vasiljević-Radović, Dana, Ostojić, Sanja, Petrović, Miloš, Radojević, Vesna, Pergal, Marija, "Optimization of reaction parameters for preparation  of MXene-based polymer nanocomposites" in 10th International Conference on Electrical, Electronic and Computing Engineering (IcETRAN), 05-08 June 2023, East Sarajevo, Bosnia and Herzegovina (2023):23488337,
https://doi.org/10.1109/IcETRAN59631.2023.10192211 . .

Photolithography-based Fabrication of Interdigitated Electrodes with Integrated Gold Microheater: Temperature Distribution Study

Rašljić Rafajilović, Milena; Bošković, Marko; Sarajlić, Milija; Mladenović, Ivana; Pešić, Ivan; Vasiljević-Radović, Dana; Pergal, Marija

(Society for Electronics, Telecommunications, Computers, Automatic Control and Nuclear Engineering, 2023)

TY  - CONF
AU  - Rašljić Rafajilović, Milena
AU  - Bošković, Marko
AU  - Sarajlić, Milija
AU  - Mladenović, Ivana
AU  - Pešić, Ivan
AU  - Vasiljević-Radović, Dana
AU  - Pergal, Marija
PY  - 2023
UR  - https://www.etran.rs/2023/E_PROCEEDINGS_ICETRAN_2023/IcETRAN23_RADOVI/MOI1.1.pdf
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6254
AB  - Interdigitated electrodes with integrated heaters
fabricated on a Si platform were investigated in this study. The
electrodes and heaters were made of gold, using standard
photolithography processes. The primary objective was to
analyze the maximum temperature achievable on the
microheater and characterize its temperature distribution. The
integrated heater achieved a maximum temperature of 420 °C
with an applied voltage of 16 V. The temperature distribution
was uniform across the entire surface of the heater, which was
located on the underside of the chip beneath the interdigitated
electrodes. At higher temperatures, the silver paste, utilized as
a bonding agent between the copper wires and heater,
underwent melting.
PB  - Society for Electronics, Telecommunications, Computers, Automatic Control and Nuclear Engineering
C3  - Proceedings, X International conference IcETRAN, 05 - 08.06.2023, East Sarajevo, B&H
T1  - Photolithography-based Fabrication of Interdigitated Electrodes with Integrated Gold Microheater: Temperature Distribution Study
SP  - MOI1.1-1
EP  - MOI1.1-4
UR  - https://hdl.handle.net/21.15107/rcub_cer_6254
ER  - 
@conference{
author = "Rašljić Rafajilović, Milena and Bošković, Marko and Sarajlić, Milija and Mladenović, Ivana and Pešić, Ivan and Vasiljević-Radović, Dana and Pergal, Marija",
year = "2023",
abstract = "Interdigitated electrodes with integrated heaters
fabricated on a Si platform were investigated in this study. The
electrodes and heaters were made of gold, using standard
photolithography processes. The primary objective was to
analyze the maximum temperature achievable on the
microheater and characterize its temperature distribution. The
integrated heater achieved a maximum temperature of 420 °C
with an applied voltage of 16 V. The temperature distribution
was uniform across the entire surface of the heater, which was
located on the underside of the chip beneath the interdigitated
electrodes. At higher temperatures, the silver paste, utilized as
a bonding agent between the copper wires and heater,
underwent melting.",
publisher = "Society for Electronics, Telecommunications, Computers, Automatic Control and Nuclear Engineering",
journal = "Proceedings, X International conference IcETRAN, 05 - 08.06.2023, East Sarajevo, B&H",
title = "Photolithography-based Fabrication of Interdigitated Electrodes with Integrated Gold Microheater: Temperature Distribution Study",
pages = "MOI1.1-1-MOI1.1-4",
url = "https://hdl.handle.net/21.15107/rcub_cer_6254"
}
Rašljić Rafajilović, M., Bošković, M., Sarajlić, M., Mladenović, I., Pešić, I., Vasiljević-Radović, D.,& Pergal, M.. (2023). Photolithography-based Fabrication of Interdigitated Electrodes with Integrated Gold Microheater: Temperature Distribution Study. in Proceedings, X International conference IcETRAN, 05 - 08.06.2023, East Sarajevo, B&H
Society for Electronics, Telecommunications, Computers, Automatic Control and Nuclear Engineering., MOI1.1-1-MOI1.1-4.
https://hdl.handle.net/21.15107/rcub_cer_6254
Rašljić Rafajilović M, Bošković M, Sarajlić M, Mladenović I, Pešić I, Vasiljević-Radović D, Pergal M. Photolithography-based Fabrication of Interdigitated Electrodes with Integrated Gold Microheater: Temperature Distribution Study. in Proceedings, X International conference IcETRAN, 05 - 08.06.2023, East Sarajevo, B&H. 2023;:MOI1.1-1-MOI1.1-4.
https://hdl.handle.net/21.15107/rcub_cer_6254 .
Rašljić Rafajilović, Milena, Bošković, Marko, Sarajlić, Milija, Mladenović, Ivana, Pešić, Ivan, Vasiljević-Radović, Dana, Pergal, Marija, "Photolithography-based Fabrication of Interdigitated Electrodes with Integrated Gold Microheater: Temperature Distribution Study" in Proceedings, X International conference IcETRAN, 05 - 08.06.2023, East Sarajevo, B&H (2023):MOI1.1-1-MOI1.1-4,
https://hdl.handle.net/21.15107/rcub_cer_6254 .

Impact of synthesis parameters on the properties of polymer/MXene nanocomposites

Pešić, Ivan; Ostojić, Sanja; Vasiljević-Radović, Dana; Petrović, Miloš; Radojević, Vesna; Pergal, Marija

(Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Pešić, Ivan
AU  - Ostojić, Sanja
AU  - Vasiljević-Radović, Dana
AU  - Petrović, Miloš
AU  - Radojević, Vesna
AU  - Pergal, Marija
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6943
AB  - MXenes are a relatively new class of 2D nanomaterials with promising properties. The 
functional groups on the surface of the nanosheets play a vital role in interacting with other 
materials, especially in nanocomposites. Biocompatibility, admirable mechanical properties, 
and thermal stability are the most significant properties of poly(dimethylsiloxane)-based 
polyurethanes (PU). They are highly convenient for applications in electronic devices and 
implants. In this study, the MXene content was 1 wt. % for two series and 0.5 wt. % for the 
other two series, while the soft segment content was 50 wt. % for all the series. The 
nanocomposites were obtained using an in-situ polymerization method. The timing of adding 
the MXene nanoparticles to the reaction mixture was also varied to examine the changes in 
the physico-mechanical properties of the nanocomposites. Differential scanning calorimetry 
(DSC), scanning electron microscopy (SEM), and tensile tests were conducted to analyze the 
properties of the resulting materials. The glass transition temperature is highest for the series 
in which MXenes are added in the first phase of polyaddition after the solvation of MDI, 
while the series with 0.5 wt.% MXene added later into the reaction exhibit two transitions. 
SEM images revealed uneven distribution and agglomeration of MXene nanoflakes when 
added into the siloxane prepolymer. The tensile test indicated that the series with 0.5 wt. % 
nanoflakes have significantly lower Young's modulus and tensile strength. The distribution of 
nanoparticles and surface morphology are strongly influenced by the timing of adding the 
MXene dispersion into the reaction mixture, as well as the nanoparticle content.
PB  - Serbian Ceramic Society
C3  - Program and book of abstracts - Serbian Ceramics Society Conference - Advanced Ceramics and Application XI, New Frontiers in Multifunctional Material Science and Processing,18-20 th September 2023. Belgrade, Serbia
T1  - Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites
SP  - 66
EP  - 66
UR  - https://hdl.handle.net/21.15107/rcub_cer_6943
ER  - 
@conference{
author = "Pešić, Ivan and Ostojić, Sanja and Vasiljević-Radović, Dana and Petrović, Miloš and Radojević, Vesna and Pergal, Marija",
year = "2023",
abstract = "MXenes are a relatively new class of 2D nanomaterials with promising properties. The 
functional groups on the surface of the nanosheets play a vital role in interacting with other 
materials, especially in nanocomposites. Biocompatibility, admirable mechanical properties, 
and thermal stability are the most significant properties of poly(dimethylsiloxane)-based 
polyurethanes (PU). They are highly convenient for applications in electronic devices and 
implants. In this study, the MXene content was 1 wt. % for two series and 0.5 wt. % for the 
other two series, while the soft segment content was 50 wt. % for all the series. The 
nanocomposites were obtained using an in-situ polymerization method. The timing of adding 
the MXene nanoparticles to the reaction mixture was also varied to examine the changes in 
the physico-mechanical properties of the nanocomposites. Differential scanning calorimetry 
(DSC), scanning electron microscopy (SEM), and tensile tests were conducted to analyze the 
properties of the resulting materials. The glass transition temperature is highest for the series 
in which MXenes are added in the first phase of polyaddition after the solvation of MDI, 
while the series with 0.5 wt.% MXene added later into the reaction exhibit two transitions. 
SEM images revealed uneven distribution and agglomeration of MXene nanoflakes when 
added into the siloxane prepolymer. The tensile test indicated that the series with 0.5 wt. % 
nanoflakes have significantly lower Young's modulus and tensile strength. The distribution of 
nanoparticles and surface morphology are strongly influenced by the timing of adding the 
MXene dispersion into the reaction mixture, as well as the nanoparticle content.",
publisher = "Serbian Ceramic Society",
journal = "Program and book of abstracts - Serbian Ceramics Society Conference - Advanced Ceramics and Application XI, New Frontiers in Multifunctional Material Science and Processing,18-20 th September 2023. Belgrade, Serbia",
title = "Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites",
pages = "66-66",
url = "https://hdl.handle.net/21.15107/rcub_cer_6943"
}
Pešić, I., Ostojić, S., Vasiljević-Radović, D., Petrović, M., Radojević, V.,& Pergal, M.. (2023). Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites. in Program and book of abstracts - Serbian Ceramics Society Conference - Advanced Ceramics and Application XI, New Frontiers in Multifunctional Material Science and Processing,18-20 th September 2023. Belgrade, Serbia
Serbian Ceramic Society., 66-66.
https://hdl.handle.net/21.15107/rcub_cer_6943
Pešić I, Ostojić S, Vasiljević-Radović D, Petrović M, Radojević V, Pergal M. Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites. in Program and book of abstracts - Serbian Ceramics Society Conference - Advanced Ceramics and Application XI, New Frontiers in Multifunctional Material Science and Processing,18-20 th September 2023. Belgrade, Serbia. 2023;:66-66.
https://hdl.handle.net/21.15107/rcub_cer_6943 .
Pešić, Ivan, Ostojić, Sanja, Vasiljević-Radović, Dana, Petrović, Miloš, Radojević, Vesna, Pergal, Marija, "Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites" in Program and book of abstracts - Serbian Ceramics Society Conference - Advanced Ceramics and Application XI, New Frontiers in Multifunctional Material Science and Processing,18-20 th September 2023. Belgrade, Serbia (2023):66-66,
https://hdl.handle.net/21.15107/rcub_cer_6943 .

Poster: "Impact of synthesis parameters on the properties of polymer/MXene nanocomposites"

Pešić, Ivan; Ostojić, Sanja; Vasiljević-Radović, Dana; Petrović, Miloš; Radojević, Vesna; Pergal, Marija

(2023)

TY  - CONF
AU  - Pešić, Ivan
AU  - Ostojić, Sanja
AU  - Vasiljević-Radović, Dana
AU  - Petrović, Miloš
AU  - Radojević, Vesna
AU  - Pergal, Marija
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6944
AB  - MXenes are a relatively new class of 2D nanomaterials with promising properties. The functional groups on the surface of the nanosheets play a vital role in interacting with other materials, especially in nanocomposites. Biocompatibility, admirable mechanical properties, and thermal stability are the most significant properties of poly(dimethylsiloxane)-based polyurethanes (PU). They are highly convenient for applications in electronic devices and implants. In this study, the MXene content was 1 wt. % for two series and 0.5 wt. % for the other two series, while the soft segment content was 50 wt. % for all the series. The nanocomposites were obtained using an in-situ polymerization method. The timing of adding the MXene nanoparticles to the reaction mixture was also varied to examine the changes in the physico-mechanical properties of the nanocomposites. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile tests were conducted to analyze the properties of the resulting materials. The glass transition temperature is highest for the series in which MXenes are added in the first phase of polyaddition after the solvation of MDI, while the series with 0.5 wt.% MXene added later into the reaction exhibit two transitions. SEM images revealed uneven distribution and agglomeration of MXene nanoflakes when added into the siloxane prepolymer. The tensile test indicated that the series with 0.5 wt. % nanoflakes have significantly lower Young's modulus and tensile strength. The distribution of nanoparticles and surface morphology are strongly influenced by the timing of adding the MXene dispersion into the reaction mixture, as well as the nanoparticle content.
T1  - Poster: "Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites"
UR  - https://hdl.handle.net/21.15107/rcub_cer_6944
ER  - 
@conference{
author = "Pešić, Ivan and Ostojić, Sanja and Vasiljević-Radović, Dana and Petrović, Miloš and Radojević, Vesna and Pergal, Marija",
year = "2023",
abstract = "MXenes are a relatively new class of 2D nanomaterials with promising properties. The functional groups on the surface of the nanosheets play a vital role in interacting with other materials, especially in nanocomposites. Biocompatibility, admirable mechanical properties, and thermal stability are the most significant properties of poly(dimethylsiloxane)-based polyurethanes (PU). They are highly convenient for applications in electronic devices and implants. In this study, the MXene content was 1 wt. % for two series and 0.5 wt. % for the other two series, while the soft segment content was 50 wt. % for all the series. The nanocomposites were obtained using an in-situ polymerization method. The timing of adding the MXene nanoparticles to the reaction mixture was also varied to examine the changes in the physico-mechanical properties of the nanocomposites. Differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and tensile tests were conducted to analyze the properties of the resulting materials. The glass transition temperature is highest for the series in which MXenes are added in the first phase of polyaddition after the solvation of MDI, while the series with 0.5 wt.% MXene added later into the reaction exhibit two transitions. SEM images revealed uneven distribution and agglomeration of MXene nanoflakes when added into the siloxane prepolymer. The tensile test indicated that the series with 0.5 wt. % nanoflakes have significantly lower Young's modulus and tensile strength. The distribution of nanoparticles and surface morphology are strongly influenced by the timing of adding the MXene dispersion into the reaction mixture, as well as the nanoparticle content.",
title = "Poster: "Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites"",
url = "https://hdl.handle.net/21.15107/rcub_cer_6944"
}
Pešić, I., Ostojić, S., Vasiljević-Radović, D., Petrović, M., Radojević, V.,& Pergal, M.. (2023). Poster: "Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites". .
https://hdl.handle.net/21.15107/rcub_cer_6944
Pešić I, Ostojić S, Vasiljević-Radović D, Petrović M, Radojević V, Pergal M. Poster: "Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites". 2023;.
https://hdl.handle.net/21.15107/rcub_cer_6944 .
Pešić, Ivan, Ostojić, Sanja, Vasiljević-Radović, Dana, Petrović, Miloš, Radojević, Vesna, Pergal, Marija, "Poster: "Impact of synthesis parameters on the properties of polymer/MXene  nanocomposites"" (2023),
https://hdl.handle.net/21.15107/rcub_cer_6944 .

Characterization of polyurethane/ferrite nanocomposites

Pergal, Marija; Brkljačić, Jelena; Vasiljević-Radović, Dana; Pergal, Miodrag; Pešić, Ivan; Dević, Gordana; Tovilović-Kovačević, Gordana

(Belgrade: Serbian Ceramic Society, 2023)

TY  - CONF
AU  - Pergal, Marija
AU  - Brkljačić, Jelena
AU  - Vasiljević-Radović, Dana
AU  - Pergal, Miodrag
AU  - Pešić, Ivan
AU  - Dević, Gordana
AU  - Tovilović-Kovačević, Gordana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7359
AB  - Polyurethane (PU) nanocomposite materials, offer very desirable advantages over pure PU materials,as the nanocomposites have enhanced thermal, surface, mechanical and biological properties. The main goal of this study was to develop a new kind of novel nanocomposites consisting of crosslinked PUs (based on poly(dimetylsiloxane) and hyperbranched polyester) and ferrite nanoparticles (based on copper and zinc) for possible application as coatings on biomedical devices and implants. A series of PU/ferrite nanocomposites was prepared by in situ polymerization in solution. Characterization of prepared nanocomposites nanocomposites was conducted by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Copper and zinc releases were investigated by microwave plasma atomic emission spectrometry (MP-AES). Characteristics of the prepared nanocomposites when in contact with a biological environment were examined through testing their biocompatibility, and adhesion of fibroblast cells. The presence of the nanoferrite nanoparticles influenced on surface and biological properties of PU nanocomposites. The prepared PU nanocomposites with noncytotoxic chemistry could be used as promising materials for vascular implants development.
PB  - Belgrade: Serbian Ceramic Society
C3  - Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia
T1  - Characterization of polyurethane/ferrite nanocomposites
SP  - 65
EP  - 65
UR  - https://hdl.handle.net/21.15107/rcub_cer_7359
ER  - 
@conference{
author = "Pergal, Marija and Brkljačić, Jelena and Vasiljević-Radović, Dana and Pergal, Miodrag and Pešić, Ivan and Dević, Gordana and Tovilović-Kovačević, Gordana",
year = "2023",
abstract = "Polyurethane (PU) nanocomposite materials, offer very desirable advantages over pure PU materials,as the nanocomposites have enhanced thermal, surface, mechanical and biological properties. The main goal of this study was to develop a new kind of novel nanocomposites consisting of crosslinked PUs (based on poly(dimetylsiloxane) and hyperbranched polyester) and ferrite nanoparticles (based on copper and zinc) for possible application as coatings on biomedical devices and implants. A series of PU/ferrite nanocomposites was prepared by in situ polymerization in solution. Characterization of prepared nanocomposites nanocomposites was conducted by Fourier transform infrared spectroscopy (FTIR) and atomic force microscopy (AFM). Copper and zinc releases were investigated by microwave plasma atomic emission spectrometry (MP-AES). Characteristics of the prepared nanocomposites when in contact with a biological environment were examined through testing their biocompatibility, and adhesion of fibroblast cells. The presence of the nanoferrite nanoparticles influenced on surface and biological properties of PU nanocomposites. The prepared PU nanocomposites with noncytotoxic chemistry could be used as promising materials for vascular implants development.",
publisher = "Belgrade: Serbian Ceramic Society",
journal = "Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia",
title = "Characterization of polyurethane/ferrite nanocomposites",
pages = "65-65",
url = "https://hdl.handle.net/21.15107/rcub_cer_7359"
}
Pergal, M., Brkljačić, J., Vasiljević-Radović, D., Pergal, M., Pešić, I., Dević, G.,& Tovilović-Kovačević, G.. (2023). Characterization of polyurethane/ferrite nanocomposites. in Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia
Belgrade: Serbian Ceramic Society., 65-65.
https://hdl.handle.net/21.15107/rcub_cer_7359
Pergal M, Brkljačić J, Vasiljević-Radović D, Pergal M, Pešić I, Dević G, Tovilović-Kovačević G. Characterization of polyurethane/ferrite nanocomposites. in Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia. 2023;:65-65.
https://hdl.handle.net/21.15107/rcub_cer_7359 .
Pergal, Marija, Brkljačić, Jelena, Vasiljević-Radović, Dana, Pergal, Miodrag, Pešić, Ivan, Dević, Gordana, Tovilović-Kovačević, Gordana, "Characterization of polyurethane/ferrite nanocomposites" in Program and the Book of Abstracts: Serbian Ceramic Society Conference Advanced Ceramics and Application 11: New Frontiers in Multifunctional Material Science and Processing; 2023 Sep 18-20; Belgrade, Serbia (2023):65-65,
https://hdl.handle.net/21.15107/rcub_cer_7359 .

MXene Nanostrip Plasmonic Metamaterials for Mechanical Sensing and Enhanced Optical Absorption

Obradov, Marko; Jakšić, Zoran; Mladenović, Ivana; Pešić, Ivan; Pergal, Marija

(Electron Devices Society of the IInstitute of electrical and electronics engineers, inc., 2023)

TY  - CONF
AU  - Obradov, Marko
AU  - Jakšić, Zoran
AU  - Mladenović, Ivana
AU  - Pešić, Ivan
AU  - Pergal, Marija
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6779
AB  - Nanocomposites are among the most prominent subjects of material science and enable an enormous number of applications in diverse areas. They are of immense importance for micro and nanoelectronics, sensorics and photonics. They allow one to embed, tailor and program not only the fundamental material properties (a typical example being different metamaterials with traits usually not met in nature) but also to impart multifunctionalities to them. Here we consider a plasmonic metamaterial nanocomposite built of MXene strips suspended in a dielectric host. We numerically analyzed the influence of nanostrip orientation and ordering on the metamaterial properties. We utilized finite element method (FEM) for our electromagnetic simulations. We enhanced our stochastic nanocomposite metamaterial structure by adding a conductive backplate to further increase its optical absorption. The proposed multifunctional MXene-based metametamaterials can be used as a basis for refractometric sensors of any physical quantity that can modify nanostrips orientation, including mechanical sensing. Combining traditional and novel plasmonic approach to optical absorbers structure allows for a relatively simple “bottom up” approach to broadband optical superabsorber design.
PB  - Electron Devices Society of the IInstitute of electrical and electronics engineers, inc.
C3  - Proceedings - 33rd International Conference on Microelectronics, MIEL 2023 IEEE, October 16th -18th, 2023, Niš, Serbia
T1  - MXene Nanostrip Plasmonic Metamaterials for Mechanical Sensing and Enhanced Optical Absorption
SP  - 233
EP  - 236
UR  - https://hdl.handle.net/21.15107/rcub_cer_6779
ER  - 
@conference{
author = "Obradov, Marko and Jakšić, Zoran and Mladenović, Ivana and Pešić, Ivan and Pergal, Marija",
year = "2023",
abstract = "Nanocomposites are among the most prominent subjects of material science and enable an enormous number of applications in diverse areas. They are of immense importance for micro and nanoelectronics, sensorics and photonics. They allow one to embed, tailor and program not only the fundamental material properties (a typical example being different metamaterials with traits usually not met in nature) but also to impart multifunctionalities to them. Here we consider a plasmonic metamaterial nanocomposite built of MXene strips suspended in a dielectric host. We numerically analyzed the influence of nanostrip orientation and ordering on the metamaterial properties. We utilized finite element method (FEM) for our electromagnetic simulations. We enhanced our stochastic nanocomposite metamaterial structure by adding a conductive backplate to further increase its optical absorption. The proposed multifunctional MXene-based metametamaterials can be used as a basis for refractometric sensors of any physical quantity that can modify nanostrips orientation, including mechanical sensing. Combining traditional and novel plasmonic approach to optical absorbers structure allows for a relatively simple “bottom up” approach to broadband optical superabsorber design.",
publisher = "Electron Devices Society of the IInstitute of electrical and electronics engineers, inc.",
journal = "Proceedings - 33rd International Conference on Microelectronics, MIEL 2023 IEEE, October 16th -18th, 2023, Niš, Serbia",
title = "MXene Nanostrip Plasmonic Metamaterials for Mechanical Sensing and Enhanced Optical Absorption",
pages = "233-236",
url = "https://hdl.handle.net/21.15107/rcub_cer_6779"
}
Obradov, M., Jakšić, Z., Mladenović, I., Pešić, I.,& Pergal, M.. (2023). MXene Nanostrip Plasmonic Metamaterials for Mechanical Sensing and Enhanced Optical Absorption. in Proceedings - 33rd International Conference on Microelectronics, MIEL 2023 IEEE, October 16th -18th, 2023, Niš, Serbia
Electron Devices Society of the IInstitute of electrical and electronics engineers, inc.., 233-236.
https://hdl.handle.net/21.15107/rcub_cer_6779
Obradov M, Jakšić Z, Mladenović I, Pešić I, Pergal M. MXene Nanostrip Plasmonic Metamaterials for Mechanical Sensing and Enhanced Optical Absorption. in Proceedings - 33rd International Conference on Microelectronics, MIEL 2023 IEEE, October 16th -18th, 2023, Niš, Serbia. 2023;:233-236.
https://hdl.handle.net/21.15107/rcub_cer_6779 .
Obradov, Marko, Jakšić, Zoran, Mladenović, Ivana, Pešić, Ivan, Pergal, Marija, "MXene Nanostrip Plasmonic Metamaterials for Mechanical Sensing and Enhanced Optical Absorption" in Proceedings - 33rd International Conference on Microelectronics, MIEL 2023 IEEE, October 16th -18th, 2023, Niš, Serbia (2023):233-236,
https://hdl.handle.net/21.15107/rcub_cer_6779 .

Possibility of biodegradation of cotton membrane containing TEMPO radical and citric acid

Knežević, Nataša; Jovanović, Aleksandar; Bugarčić, Mladen; Vuksanović, Marija; Milošević, Milena; Pešić, Ivan; Marinković, Aleksandar

(Belgrade : University of Belgrade, Faculty of Technology and Metallurgy, 2023)

TY  - CONF
AU  - Knežević, Nataša
AU  - Jovanović, Aleksandar
AU  - Bugarčić, Mladen
AU  - Vuksanović, Marija
AU  - Milošević, Milena
AU  - Pešić, Ivan
AU  - Marinković, Aleksandar
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7401
AB  - Cotton-based membranes, due to their exceptional biocompatibility and sustainability,have attracted considerable attention in various applications, especially in the field of bio andgreen technologies. This study investigates the biodegradation potential of cotton membranesmodified with TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) radical and citric acid (CA),with the aim of improving their properties and facilitating environmentally friendly disposal.TEMPO radicals, in conjunction with the crosslinker citric acid, are incorporated into thecellulose structure through a novel modification process. The citric acid component acted as aplasticizer, increasing the amorphous parts of the cellulose and promoting enzymatic attack.The TEMPO radical, with its nitroxyl group, contributed to the oxidation of cellulose, furtherfacilitating biodegradation.The biodegradation aspect of these modified membranes was investigated incontrolled environmental conditions (Soil Burial test), simulating natural scenarios (humidity,influence of enzymes, and bacteria). Biodegradation parameters such as weight loss,structural changes, and degradation kinetics were examined during 90 days. Characterizationof the structure was performed using FTIR and SEM methods.Our findings suggest that cellulosic membranes possess complete (100%)biodegradability after 70 days compared to unmodified membranes. Obtained result shedlight on the potential of membranes modified in this way as sustainable and biodegradablealternatives in various applications. The results emphasize their ecological nature and abilityto reduce environmental stress. Such cellulose-based materials promise a much greener futurein biotechnology, healthcare, and environmental protection.
PB  - Belgrade : University of Belgrade, Faculty of Technology and Metallurgy
C3  - International Conference: Biochemical Engineering and Biotechnology for Young Scientists, Book of abstracts
T1  - Possibility of biodegradation of cotton membrane containing TEMPO radical and citric acid
SP  - 42
EP  - 42
UR  - https://hdl.handle.net/21.15107/rcub_cer_7401
ER  - 
@conference{
author = "Knežević, Nataša and Jovanović, Aleksandar and Bugarčić, Mladen and Vuksanović, Marija and Milošević, Milena and Pešić, Ivan and Marinković, Aleksandar",
year = "2023",
abstract = "Cotton-based membranes, due to their exceptional biocompatibility and sustainability,have attracted considerable attention in various applications, especially in the field of bio andgreen technologies. This study investigates the biodegradation potential of cotton membranesmodified with TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) radical and citric acid (CA),with the aim of improving their properties and facilitating environmentally friendly disposal.TEMPO radicals, in conjunction with the crosslinker citric acid, are incorporated into thecellulose structure through a novel modification process. The citric acid component acted as aplasticizer, increasing the amorphous parts of the cellulose and promoting enzymatic attack.The TEMPO radical, with its nitroxyl group, contributed to the oxidation of cellulose, furtherfacilitating biodegradation.The biodegradation aspect of these modified membranes was investigated incontrolled environmental conditions (Soil Burial test), simulating natural scenarios (humidity,influence of enzymes, and bacteria). Biodegradation parameters such as weight loss,structural changes, and degradation kinetics were examined during 90 days. Characterizationof the structure was performed using FTIR and SEM methods.Our findings suggest that cellulosic membranes possess complete (100%)biodegradability after 70 days compared to unmodified membranes. Obtained result shedlight on the potential of membranes modified in this way as sustainable and biodegradablealternatives in various applications. The results emphasize their ecological nature and abilityto reduce environmental stress. Such cellulose-based materials promise a much greener futurein biotechnology, healthcare, and environmental protection.",
publisher = "Belgrade : University of Belgrade, Faculty of Technology and Metallurgy",
journal = "International Conference: Biochemical Engineering and Biotechnology for Young Scientists, Book of abstracts",
title = "Possibility of biodegradation of cotton membrane containing TEMPO radical and citric acid",
pages = "42-42",
url = "https://hdl.handle.net/21.15107/rcub_cer_7401"
}
Knežević, N., Jovanović, A., Bugarčić, M., Vuksanović, M., Milošević, M., Pešić, I.,& Marinković, A.. (2023). Possibility of biodegradation of cotton membrane containing TEMPO radical and citric acid. in International Conference: Biochemical Engineering and Biotechnology for Young Scientists, Book of abstracts
Belgrade : University of Belgrade, Faculty of Technology and Metallurgy., 42-42.
https://hdl.handle.net/21.15107/rcub_cer_7401
Knežević N, Jovanović A, Bugarčić M, Vuksanović M, Milošević M, Pešić I, Marinković A. Possibility of biodegradation of cotton membrane containing TEMPO radical and citric acid. in International Conference: Biochemical Engineering and Biotechnology for Young Scientists, Book of abstracts. 2023;:42-42.
https://hdl.handle.net/21.15107/rcub_cer_7401 .
Knežević, Nataša, Jovanović, Aleksandar, Bugarčić, Mladen, Vuksanović, Marija, Milošević, Milena, Pešić, Ivan, Marinković, Aleksandar, "Possibility of biodegradation of cotton membrane containing TEMPO radical and citric acid" in International Conference: Biochemical Engineering and Biotechnology for Young Scientists, Book of abstracts (2023):42-42,
https://hdl.handle.net/21.15107/rcub_cer_7401 .