Ahrenkiel, Scott Phillip

Link to this page

Authority KeyName Variants
orcid::0000-0002-7179-7673
  • Ahrenkiel, Scott Phillip (16)
Projects

Author's Bibliography

Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles

Barbieriková, Zuzana; Lončarević, Davor; Papan, Jelena; Vukoje, Ivana; Stoiljković, Milovan; Ahrenkiel, Scott Phillip; Nedeljković, Jovan M.

(Elsevier B.V. and The Society of Powder Technology Japan, 2020)

TY  - JOUR
AU  - Barbieriková, Zuzana
AU  - Lončarević, Davor
AU  - Papan, Jelena
AU  - Vukoje, Ivana
AU  - Stoiljković, Milovan
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3795
AB  - The efficiency of titanate-nanotubes-based photocatalysts towards hydrogen production was studied in the presence of the sacrificial agent, 2-propanol. The highest hydrogen production rate (~120 lmol h 1 g 1 ) was observed over surface-modified titanate nanotubes by 5-amino salicylic acid decorated with nanometer-sized silver nanoparticles. The X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption–desorption isotherms, and diffuse reflection spectroscopy were applied to characterize the prepared photocatalytic materials. The better photocatalytic performance of inorganic–organic hybrid materials in comparison to the pristine titanate nanotubes is a consequence of their improved light-harvesting ability due to the formation of interfacial charge transfer (ICT) complex, as well as the presence of metallic silver nanoparticles that suppress the recombination of photo-generated charge carriers. The spin trapping EPR experiments under irradiation of prepared photocatalysts with either UV or visible light were used to monitor the appearance of hydroxyl radicals and superoxide radical anions. The generation of superoxide radical anions under visible light irradiation was detected for hybrid materials, but not for the pristine titanate nanotubes. These results are a consequence of enhanced promotion ofelectrons to the conduction band due to extended absorption in visible spectral range in hybrids and support the higher efficiency of hydrogen generation observed for surface-modified titanate nanotubes by 5-amino salicylic acid decorated with silver nanoparticles.
PB  - Elsevier B.V. and The Society of Powder Technology Japan
T2  - Advanced Powder Technology
T1  - Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles
VL  - 31
IS  - 12
SP  - 4683
EP  - 4690
DO  - 10.1016/j.apt.2020.11.001
ER  - 
@article{
author = "Barbieriková, Zuzana and Lončarević, Davor and Papan, Jelena and Vukoje, Ivana and Stoiljković, Milovan and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2020",
abstract = "The efficiency of titanate-nanotubes-based photocatalysts towards hydrogen production was studied in the presence of the sacrificial agent, 2-propanol. The highest hydrogen production rate (~120 lmol h 1 g 1 ) was observed over surface-modified titanate nanotubes by 5-amino salicylic acid decorated with nanometer-sized silver nanoparticles. The X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption–desorption isotherms, and diffuse reflection spectroscopy were applied to characterize the prepared photocatalytic materials. The better photocatalytic performance of inorganic–organic hybrid materials in comparison to the pristine titanate nanotubes is a consequence of their improved light-harvesting ability due to the formation of interfacial charge transfer (ICT) complex, as well as the presence of metallic silver nanoparticles that suppress the recombination of photo-generated charge carriers. The spin trapping EPR experiments under irradiation of prepared photocatalysts with either UV or visible light were used to monitor the appearance of hydroxyl radicals and superoxide radical anions. The generation of superoxide radical anions under visible light irradiation was detected for hybrid materials, but not for the pristine titanate nanotubes. These results are a consequence of enhanced promotion ofelectrons to the conduction band due to extended absorption in visible spectral range in hybrids and support the higher efficiency of hydrogen generation observed for surface-modified titanate nanotubes by 5-amino salicylic acid decorated with silver nanoparticles.",
publisher = "Elsevier B.V. and The Society of Powder Technology Japan",
journal = "Advanced Powder Technology",
title = "Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles",
volume = "31",
number = "12",
pages = "4683-4690",
doi = "10.1016/j.apt.2020.11.001"
}
Barbieriková, Z., Lončarević, D., Papan, J., Vukoje, I., Stoiljković, M., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2020). Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles. in Advanced Powder Technology
Elsevier B.V. and The Society of Powder Technology Japan., 31(12), 4683-4690.
https://doi.org/10.1016/j.apt.2020.11.001
Barbieriková Z, Lončarević D, Papan J, Vukoje I, Stoiljković M, Ahrenkiel SP, Nedeljković JM. Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles. in Advanced Powder Technology. 2020;31(12):4683-4690.
doi:10.1016/j.apt.2020.11.001 .
Barbieriková, Zuzana, Lončarević, Davor, Papan, Jelena, Vukoje, Ivana, Stoiljković, Milovan, Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "Photocatalytic hydrogen evolution over surface-modified titanate nanotubes by 5-aminosalicylic acid decorated with silver nanoparticles" in Advanced Powder Technology, 31, no. 12 (2020):4683-4690,
https://doi.org/10.1016/j.apt.2020.11.001 . .
7
1

Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study

Ðorđević, V.; Sredojević, Dušan; Dostanić, Jasmina; Lončarević, Davor; Ahrenkiel, Scott Phillip; Švrakić, N.; Brothers, E.; Belić, Milivoj; Nedeljković, Jovan M.

(Elsevier, 2019)

TY  - JOUR
AU  - Ðorđević, V.
AU  - Sredojević, Dušan
AU  - Dostanić, Jasmina
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Švrakić, N.
AU  - Brothers, E.
AU  - Belić, Milivoj
AU  - Nedeljković, Jovan M.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2505
AB  - Surface modification of Al2O3 powders, prepared using reproducible sol-gel synthetic route with small colorless organic molecules, induces charge transfer complex formation and the appearance of absorption in the visible spectral region. Comprehensive microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis, and nitrogen adsorption–desorption isotherms, revealed that γ-crystalline alumina powders consist of mesoporous particles in the size range from 0.1 to 0.3 μm, with specific surface area of 54.8 m2/g, and pore radius between 3 and 4 nm. The attachment of catecholate-type of ligands (catechol, caffeic acid, gallic acid, dopamine and 2,3-dihydroxy naphthalene), salicylate-type of ligands (salicylic acid and 5-amino salicylic acid), and ascorbic acid, to the surface such γ-Al2O3 particles leads to the formation of colored powders and activates their absorption in visible-light spectral region. To the best of our knowledge, similar transformation of an insulator (Al2O3), with the band gap energy of 8.7 eV, into a semiconductor-like hybrid material with tunable optical properties has not been reported in the literature before. The density functional theory (DFT) calculations with periodic boundary conditions were performed in order to estimate the energy gaps of various inorganic/organic hybrids. The calculated values compare well with the experimental data. The good agreement between the calculated and experimentally determined band gaps was found, thus demonstrating predictive ability of the theory when proper model is used.
PB  - Elsevier
T2  - Microporous and Mesoporous Materials
T1  - Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study
VL  - 273
SP  - 41
EP  - 49
DO  - 10.1016/j.micromeso.2018.06.053
ER  - 
@article{
author = "Ðorđević, V. and Sredojević, Dušan and Dostanić, Jasmina and Lončarević, Davor and Ahrenkiel, Scott Phillip and Švrakić, N. and Brothers, E. and Belić, Milivoj and Nedeljković, Jovan M.",
year = "2019",
abstract = "Surface modification of Al2O3 powders, prepared using reproducible sol-gel synthetic route with small colorless organic molecules, induces charge transfer complex formation and the appearance of absorption in the visible spectral region. Comprehensive microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis, and nitrogen adsorption–desorption isotherms, revealed that γ-crystalline alumina powders consist of mesoporous particles in the size range from 0.1 to 0.3 μm, with specific surface area of 54.8 m2/g, and pore radius between 3 and 4 nm. The attachment of catecholate-type of ligands (catechol, caffeic acid, gallic acid, dopamine and 2,3-dihydroxy naphthalene), salicylate-type of ligands (salicylic acid and 5-amino salicylic acid), and ascorbic acid, to the surface such γ-Al2O3 particles leads to the formation of colored powders and activates their absorption in visible-light spectral region. To the best of our knowledge, similar transformation of an insulator (Al2O3), with the band gap energy of 8.7 eV, into a semiconductor-like hybrid material with tunable optical properties has not been reported in the literature before. The density functional theory (DFT) calculations with periodic boundary conditions were performed in order to estimate the energy gaps of various inorganic/organic hybrids. The calculated values compare well with the experimental data. The good agreement between the calculated and experimentally determined band gaps was found, thus demonstrating predictive ability of the theory when proper model is used.",
publisher = "Elsevier",
journal = "Microporous and Mesoporous Materials",
title = "Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study",
volume = "273",
pages = "41-49",
doi = "10.1016/j.micromeso.2018.06.053"
}
Ðorđević, V., Sredojević, D., Dostanić, J., Lončarević, D., Ahrenkiel, S. P., Švrakić, N., Brothers, E., Belić, M.,& Nedeljković, J. M.. (2019). Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. in Microporous and Mesoporous Materials
Elsevier., 273, 41-49.
https://doi.org/10.1016/j.micromeso.2018.06.053
Ðorđević V, Sredojević D, Dostanić J, Lončarević D, Ahrenkiel SP, Švrakić N, Brothers E, Belić M, Nedeljković JM. Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. in Microporous and Mesoporous Materials. 2019;273:41-49.
doi:10.1016/j.micromeso.2018.06.053 .
Ðorđević, V., Sredojević, Dušan, Dostanić, Jasmina, Lončarević, Davor, Ahrenkiel, Scott Phillip, Švrakić, N., Brothers, E., Belić, Milivoj, Nedeljković, Jovan M., "Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study" in Microporous and Mesoporous Materials, 273 (2019):41-49,
https://doi.org/10.1016/j.micromeso.2018.06.053 . .
15
9
16

Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study

Ðorđević, V.; Sredojević, Dušan; Dostanić, Jasmina; Lončarević, Davor; Ahrenkiel, Scott Phillip; Švrakić, N.; Brothers, E.; Belić, Milivoj; Nedeljković, Jovan M.

(Elsevier, 2019)

TY  - JOUR
AU  - Ðorđević, V.
AU  - Sredojević, Dušan
AU  - Dostanić, Jasmina
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Švrakić, N.
AU  - Brothers, E.
AU  - Belić, Milivoj
AU  - Nedeljković, Jovan M.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2908
AB  - Surface modification of Al2O3 powders, prepared using reproducible sol-gel synthetic route with small colorless organic molecules, induces charge transfer complex formation and the appearance of absorption in the visible spectral region. Comprehensive microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis, and nitrogen adsorption–desorption isotherms, revealed that γ-crystalline alumina powders consist of mesoporous particles in the size range from 0.1 to 0.3 μm, with specific surface area of 54.8 m2/g, and pore radius between 3 and 4 nm. The attachment of catecholate-type of ligands (catechol, caffeic acid, gallic acid, dopamine and 2,3-dihydroxy naphthalene), salicylate-type of ligands (salicylic acid and 5-amino salicylic acid), and ascorbic acid, to the surface such γ-Al2O3 particles leads to the formation of colored powders and activates their absorption in visible-light spectral region. To the best of our knowledge, similar transformation of an insulator (Al2O3), with the band gap energy of 8.7 eV, into a semiconductor-like hybrid material with tunable optical properties has not been reported in the literature before. The density functional theory (DFT) calculations with periodic boundary conditions were performed in order to estimate the energy gaps of various inorganic/organic hybrids. The calculated values compare well with the experimental data. The good agreement between the calculated and experimentally determined band gaps was found, thus demonstrating predictive ability of the theory when proper model is used.
PB  - Elsevier
T2  - Microporous and Mesoporous Materials
T1  - Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study
VL  - 273
SP  - 41
EP  - 49
DO  - 10.1016/j.micromeso.2018.06.053
ER  - 
@article{
author = "Ðorđević, V. and Sredojević, Dušan and Dostanić, Jasmina and Lončarević, Davor and Ahrenkiel, Scott Phillip and Švrakić, N. and Brothers, E. and Belić, Milivoj and Nedeljković, Jovan M.",
year = "2019",
abstract = "Surface modification of Al2O3 powders, prepared using reproducible sol-gel synthetic route with small colorless organic molecules, induces charge transfer complex formation and the appearance of absorption in the visible spectral region. Comprehensive microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis, and nitrogen adsorption–desorption isotherms, revealed that γ-crystalline alumina powders consist of mesoporous particles in the size range from 0.1 to 0.3 μm, with specific surface area of 54.8 m2/g, and pore radius between 3 and 4 nm. The attachment of catecholate-type of ligands (catechol, caffeic acid, gallic acid, dopamine and 2,3-dihydroxy naphthalene), salicylate-type of ligands (salicylic acid and 5-amino salicylic acid), and ascorbic acid, to the surface such γ-Al2O3 particles leads to the formation of colored powders and activates their absorption in visible-light spectral region. To the best of our knowledge, similar transformation of an insulator (Al2O3), with the band gap energy of 8.7 eV, into a semiconductor-like hybrid material with tunable optical properties has not been reported in the literature before. The density functional theory (DFT) calculations with periodic boundary conditions were performed in order to estimate the energy gaps of various inorganic/organic hybrids. The calculated values compare well with the experimental data. The good agreement between the calculated and experimentally determined band gaps was found, thus demonstrating predictive ability of the theory when proper model is used.",
publisher = "Elsevier",
journal = "Microporous and Mesoporous Materials",
title = "Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study",
volume = "273",
pages = "41-49",
doi = "10.1016/j.micromeso.2018.06.053"
}
Ðorđević, V., Sredojević, D., Dostanić, J., Lončarević, D., Ahrenkiel, S. P., Švrakić, N., Brothers, E., Belić, M.,& Nedeljković, J. M.. (2019). Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. in Microporous and Mesoporous Materials
Elsevier., 273, 41-49.
https://doi.org/10.1016/j.micromeso.2018.06.053
Ðorđević V, Sredojević D, Dostanić J, Lončarević D, Ahrenkiel SP, Švrakić N, Brothers E, Belić M, Nedeljković JM. Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study. in Microporous and Mesoporous Materials. 2019;273:41-49.
doi:10.1016/j.micromeso.2018.06.053 .
Ðorđević, V., Sredojević, Dušan, Dostanić, Jasmina, Lončarević, Davor, Ahrenkiel, Scott Phillip, Švrakić, N., Brothers, E., Belić, Milivoj, Nedeljković, Jovan M., "Visible light absorption of surface-modified Al2O3 powders: A comparative DFT and experimental study" in Microporous and Mesoporous Materials, 273 (2019):41-49,
https://doi.org/10.1016/j.micromeso.2018.06.053 . .
15
9
16

Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study

Prekajski Đorđević, Marija; Vukoje, Ivana; Lazić, Vesna; Đorđević, Vesna; Sredojević, Dušan; Dostanić, Jasmina; Lončarević, Davor; Ahrenkiel, Scott Phillip; Belić, Milivoj; Nedeljković, Jovan M.

(England : Elsevier, 2019)

TY  - JOUR
AU  - Prekajski Đorđević, Marija
AU  - Vukoje, Ivana
AU  - Lazić, Vesna
AU  - Đorđević, Vesna
AU  - Sredojević, Dušan
AU  - Dostanić, Jasmina
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Belić, Milivoj
AU  - Nedeljković, Jovan M.
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3320
AB  - Surface modification of CeO2 nano-powder, synthesized by a self-propagating room temperature method with
salicylate-type ligands (salicylic acid and 5-aminosalicylic acid) as well as catecholate-type ligands (catechol,
3,4-dihydroxybenzoic acid, caffeic acid and 2,3-dihydroxy naphthalene), induces the appearance of absorption in
the visible spectral region due to the interfacial charge transfer (ICT) complex formation. Thorough characterization
involving transmission electron microscopy, XRD analysis, and nitrogen adsorption-desorption isotherms,
revealed that loosely agglomerated CeO2 particles of the size ranging from 2 to 4 nm have cubic fluorite structure
and specific surface area of 140 m2/g. The attachment of salicylate- and catecholate-type of ligands to the surface
of CeO2 powders leads to the formation of colored powders with tunable absorption in the visible spectral region.
The density functional theory calculations with properly design model systems were performed to estimate the
alignment of energy levels of various inorganic/organic hybrids. A reasonably good agreement between calculated
values and experimental data was found.
PB  - England : Elsevier
T2  - Materials Chemistry and Physics
T1  - Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study
VL  - 236
SP  - 121816
DO  - 10.1016/j.matchemphys.2019.121816
ER  - 
@article{
author = "Prekajski Đorđević, Marija and Vukoje, Ivana and Lazić, Vesna and Đorđević, Vesna and Sredojević, Dušan and Dostanić, Jasmina and Lončarević, Davor and Ahrenkiel, Scott Phillip and Belić, Milivoj and Nedeljković, Jovan M.",
year = "2019",
abstract = "Surface modification of CeO2 nano-powder, synthesized by a self-propagating room temperature method with
salicylate-type ligands (salicylic acid and 5-aminosalicylic acid) as well as catecholate-type ligands (catechol,
3,4-dihydroxybenzoic acid, caffeic acid and 2,3-dihydroxy naphthalene), induces the appearance of absorption in
the visible spectral region due to the interfacial charge transfer (ICT) complex formation. Thorough characterization
involving transmission electron microscopy, XRD analysis, and nitrogen adsorption-desorption isotherms,
revealed that loosely agglomerated CeO2 particles of the size ranging from 2 to 4 nm have cubic fluorite structure
and specific surface area of 140 m2/g. The attachment of salicylate- and catecholate-type of ligands to the surface
of CeO2 powders leads to the formation of colored powders with tunable absorption in the visible spectral region.
The density functional theory calculations with properly design model systems were performed to estimate the
alignment of energy levels of various inorganic/organic hybrids. A reasonably good agreement between calculated
values and experimental data was found.",
publisher = "England : Elsevier",
journal = "Materials Chemistry and Physics",
title = "Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study",
volume = "236",
pages = "121816",
doi = "10.1016/j.matchemphys.2019.121816"
}
Prekajski Đorđević, M., Vukoje, I., Lazić, V., Đorđević, V., Sredojević, D., Dostanić, J., Lončarević, D., Ahrenkiel, S. P., Belić, M.,& Nedeljković, J. M.. (2019). Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study. in Materials Chemistry and Physics
England : Elsevier., 236, 121816.
https://doi.org/10.1016/j.matchemphys.2019.121816
Prekajski Đorđević M, Vukoje I, Lazić V, Đorđević V, Sredojević D, Dostanić J, Lončarević D, Ahrenkiel SP, Belić M, Nedeljković JM. Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study. in Materials Chemistry and Physics. 2019;236:121816.
doi:10.1016/j.matchemphys.2019.121816 .
Prekajski Đorđević, Marija, Vukoje, Ivana, Lazić, Vesna, Đorđević, Vesna, Sredojević, Dušan, Dostanić, Jasmina, Lončarević, Davor, Ahrenkiel, Scott Phillip, Belić, Milivoj, Nedeljković, Jovan M., "Electronic structure of surface complexes between CeO2 and benzene derivatives: A comparative experimental and DFT study" in Materials Chemistry and Physics, 236 (2019):121816,
https://doi.org/10.1016/j.matchemphys.2019.121816 . .
6
2
6

Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid

Lazić, Vesna; Smiciklas, Ivana; Markovic, Jelena; Lončarević, Davor; Dostanić, Jasmina; Ahrenkiel, Scott Phillip; Nedeljković, Jovan M.

(Oxford : Pergamon-Elsevier Science Ltd, 2018)

TY  - JOUR
AU  - Lazić, Vesna
AU  - Smiciklas, Ivana
AU  - Markovic, Jelena
AU  - Lončarević, Davor
AU  - Dostanić, Jasmina
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2018
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2455
AB  - Antimicrobial performance of silver nanoparticles supported by functionalized hydroxyapatite with 5-aminosalycile acid was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. Thorough characterization of materials (electron microscopy, nitrogen adsorption desorption isotherms, diffuse reflectance spectroscopy) followed each step during the course of nanocomposite preparation. Synthesized powder consists of rod-like hydroxyapatite particles (40-60 x 10-20 nm, length x diameter) decorated with nano-sized spherical silver particles whose content in nanocomposite was found to be 1.9 wt.-%. Concentration- and time-dependent bacterial reduction data indicated that use of silver nanoparticles even at concentration as low as 1 mu g mL(-1) lead to complete reduction of both bacteria (E. coli and S. aureus). On the other hand, non-toxic behavior of nanocomposite in broad concentration range (0.05-2.0 mg mL(-1)) was found towards C albicans. Successful inactivation of E. coli and S. aureus in five repeated cycles proved that synthesized nanocomposite can perform under long-run working conditions.
PB  - Oxford : Pergamon-Elsevier Science Ltd
T2  - Vacuum
T1  - Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid
VL  - 148
SP  - 62
EP  - 68
DO  - 10.1016/j.vacuum.2017.10.039
ER  - 
@article{
author = "Lazić, Vesna and Smiciklas, Ivana and Markovic, Jelena and Lončarević, Davor and Dostanić, Jasmina and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2018",
abstract = "Antimicrobial performance of silver nanoparticles supported by functionalized hydroxyapatite with 5-aminosalycile acid was tested against Gram-negative bacteria E. coli, Gram-positive bacteria S. aureus and yeast C. albicans. Thorough characterization of materials (electron microscopy, nitrogen adsorption desorption isotherms, diffuse reflectance spectroscopy) followed each step during the course of nanocomposite preparation. Synthesized powder consists of rod-like hydroxyapatite particles (40-60 x 10-20 nm, length x diameter) decorated with nano-sized spherical silver particles whose content in nanocomposite was found to be 1.9 wt.-%. Concentration- and time-dependent bacterial reduction data indicated that use of silver nanoparticles even at concentration as low as 1 mu g mL(-1) lead to complete reduction of both bacteria (E. coli and S. aureus). On the other hand, non-toxic behavior of nanocomposite in broad concentration range (0.05-2.0 mg mL(-1)) was found towards C albicans. Successful inactivation of E. coli and S. aureus in five repeated cycles proved that synthesized nanocomposite can perform under long-run working conditions.",
publisher = "Oxford : Pergamon-Elsevier Science Ltd",
journal = "Vacuum",
title = "Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid",
volume = "148",
pages = "62-68",
doi = "10.1016/j.vacuum.2017.10.039"
}
Lazić, V., Smiciklas, I., Markovic, J., Lončarević, D., Dostanić, J., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2018). Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. in Vacuum
Oxford : Pergamon-Elsevier Science Ltd., 148, 62-68.
https://doi.org/10.1016/j.vacuum.2017.10.039
Lazić V, Smiciklas I, Markovic J, Lončarević D, Dostanić J, Ahrenkiel SP, Nedeljković JM. Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid. in Vacuum. 2018;148:62-68.
doi:10.1016/j.vacuum.2017.10.039 .
Lazić, Vesna, Smiciklas, Ivana, Markovic, Jelena, Lončarević, Davor, Dostanić, Jasmina, Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "Antibacterial ability of supported silver nanoparticles by functionalized hydroxyapatite with 5-aminosalicylic acid" in Vacuum, 148 (2018):62-68,
https://doi.org/10.1016/j.vacuum.2017.10.039 . .
29
17
28

Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites

Radoicic, Marija; Ciric-Marjanovic, Gordana; Spasojevic, Vuk; Ahrenkiel, Scott Phillip; Mitrić, Miodrag; Novaković, Tatjana; Šaponjić, Zoran

(Elsevier, 2017)

TY  - JOUR
AU  - Radoicic, Marija
AU  - Ciric-Marjanovic, Gordana
AU  - Spasojevic, Vuk
AU  - Ahrenkiel, Scott Phillip
AU  - Mitrić, Miodrag
AU  - Novaković, Tatjana
AU  - Šaponjić, Zoran
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2238
AB  - A simple bottom-up method for the preparation of novel and very efficient photocatalytic nanocomposite system based on carbonized form of polyaniline (PANI) and colloidal TiO2 nanocrystals has been developed. The carbonized PANI/TiO2 nanocomposites were synthesized in a two-step procedure. Firstly, non-carbonized PANI/TiO2 nanocomposites were synthesized by the chemical oxidative polymerization of aniline (ANI) with ammonium peroxydisulfate, in the presence of colloidal TiO2 nanoparticles (TiO2 NPs) (d 4.5 nm). Initial [TiO2 NANI] mole ratios were 20, 50, and 80. In the second step, following the polymerization process, the carbonization of PANI/TiO2 nanocomposites was performed by thermal treatment in an inert atmosphere at 650 degrees C. The morphological and structural properties of the carbonized nanocomposites were studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman spectroscopy. The accomplishment of complete carbonization of PANI in PANI/TiO2 nanocomposites was confirmed by Raman spectroscopy. The appearance of anatase and rutile crystal forms in TiO2 NPs upon carbonization, with mass ratio depending on the initial molar ratio of ANI and TiO2 NPs was revealed by XRD measurements, TEM, SEM and Raman spectroscopy. The photocatalytic activities of carbonized PANI/TiO2 nanocomposites were evaluated following the photocatalytic degradation processes of Rhodamine B and Methylene blue. Carbonized PANI/TiO2 nanocomposites showed higher photocatalytic efficacy compared to bare TiO2 NPs and non-carbonized PANI/TiO2 nanocomposites. The porosity and surface structure of carbonized PANI/TiO2 nanocomposites, as well as crystalline structure of TiO2, affect photocatalytic activity of nanocomposites.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites
VL  - 213
SP  - 155
EP  - 166
DO  - 10.1016/j.apcatb.2017.05.023
ER  - 
@article{
author = "Radoicic, Marija and Ciric-Marjanovic, Gordana and Spasojevic, Vuk and Ahrenkiel, Scott Phillip and Mitrić, Miodrag and Novaković, Tatjana and Šaponjić, Zoran",
year = "2017",
abstract = "A simple bottom-up method for the preparation of novel and very efficient photocatalytic nanocomposite system based on carbonized form of polyaniline (PANI) and colloidal TiO2 nanocrystals has been developed. The carbonized PANI/TiO2 nanocomposites were synthesized in a two-step procedure. Firstly, non-carbonized PANI/TiO2 nanocomposites were synthesized by the chemical oxidative polymerization of aniline (ANI) with ammonium peroxydisulfate, in the presence of colloidal TiO2 nanoparticles (TiO2 NPs) (d 4.5 nm). Initial [TiO2 NANI] mole ratios were 20, 50, and 80. In the second step, following the polymerization process, the carbonization of PANI/TiO2 nanocomposites was performed by thermal treatment in an inert atmosphere at 650 degrees C. The morphological and structural properties of the carbonized nanocomposites were studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman spectroscopy. The accomplishment of complete carbonization of PANI in PANI/TiO2 nanocomposites was confirmed by Raman spectroscopy. The appearance of anatase and rutile crystal forms in TiO2 NPs upon carbonization, with mass ratio depending on the initial molar ratio of ANI and TiO2 NPs was revealed by XRD measurements, TEM, SEM and Raman spectroscopy. The photocatalytic activities of carbonized PANI/TiO2 nanocomposites were evaluated following the photocatalytic degradation processes of Rhodamine B and Methylene blue. Carbonized PANI/TiO2 nanocomposites showed higher photocatalytic efficacy compared to bare TiO2 NPs and non-carbonized PANI/TiO2 nanocomposites. The porosity and surface structure of carbonized PANI/TiO2 nanocomposites, as well as crystalline structure of TiO2, affect photocatalytic activity of nanocomposites.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites",
volume = "213",
pages = "155-166",
doi = "10.1016/j.apcatb.2017.05.023"
}
Radoicic, M., Ciric-Marjanovic, G., Spasojevic, V., Ahrenkiel, S. P., Mitrić, M., Novaković, T.,& Šaponjić, Z.. (2017). Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. in Applied Catalysis B-Environmental
Elsevier., 213, 155-166.
https://doi.org/10.1016/j.apcatb.2017.05.023
Radoicic M, Ciric-Marjanovic G, Spasojevic V, Ahrenkiel SP, Mitrić M, Novaković T, Šaponjić Z. Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. in Applied Catalysis B-Environmental. 2017;213:155-166.
doi:10.1016/j.apcatb.2017.05.023 .
Radoicic, Marija, Ciric-Marjanovic, Gordana, Spasojevic, Vuk, Ahrenkiel, Scott Phillip, Mitrić, Miodrag, Novaković, Tatjana, Šaponjić, Zoran, "Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites" in Applied Catalysis B-Environmental, 213 (2017):155-166,
https://doi.org/10.1016/j.apcatb.2017.05.023 . .
64
35
61

Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites

Radoicic, Marija; Ciric-Marjanovic, Gordana; Spasojevic, Vuk; Ahrenkiel, Scott Phillip; Mitrić, Miodrag; Novaković, Tatjana; Šaponjić, Zoran

(Elsevier, 2017)

TY  - JOUR
AU  - Radoicic, Marija
AU  - Ciric-Marjanovic, Gordana
AU  - Spasojevic, Vuk
AU  - Ahrenkiel, Scott Phillip
AU  - Mitrić, Miodrag
AU  - Novaković, Tatjana
AU  - Šaponjić, Zoran
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3018
AB  - A simple bottom-up method for the preparation of novel and very efficient photocatalytic nanocomposite system based on carbonized form of polyaniline (PANI) and colloidal TiO2 nanocrystals has been developed. The carbonized PANI/TiO2 nanocomposites were synthesized in a two-step procedure. Firstly, non-carbonized PANI/TiO2 nanocomposites were synthesized by the chemical oxidative polymerization of aniline (ANI) with ammonium peroxydisulfate, in the presence of colloidal TiO2 nanoparticles (TiO2 NPs) (d 4.5 nm). Initial [TiO2 NANI] mole ratios were 20, 50, and 80. In the second step, following the polymerization process, the carbonization of PANI/TiO2 nanocomposites was performed by thermal treatment in an inert atmosphere at 650 degrees C. The morphological and structural properties of the carbonized nanocomposites were studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman spectroscopy. The accomplishment of complete carbonization of PANI in PANI/TiO2 nanocomposites was confirmed by Raman spectroscopy. The appearance of anatase and rutile crystal forms in TiO2 NPs upon carbonization, with mass ratio depending on the initial molar ratio of ANI and TiO2 NPs was revealed by XRD measurements, TEM, SEM and Raman spectroscopy. The photocatalytic activities of carbonized PANI/TiO2 nanocomposites were evaluated following the photocatalytic degradation processes of Rhodamine B and Methylene blue. Carbonized PANI/TiO2 nanocomposites showed higher photocatalytic efficacy compared to bare TiO2 NPs and non-carbonized PANI/TiO2 nanocomposites. The porosity and surface structure of carbonized PANI/TiO2 nanocomposites, as well as crystalline structure of TiO2, affect photocatalytic activity of nanocomposites.
PB  - Elsevier
T2  - Applied Catalysis B-Environmental
T1  - Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites
VL  - 213
SP  - 155
EP  - 166
DO  - 10.1016/j.apcatb.2017.05.023
ER  - 
@article{
author = "Radoicic, Marija and Ciric-Marjanovic, Gordana and Spasojevic, Vuk and Ahrenkiel, Scott Phillip and Mitrić, Miodrag and Novaković, Tatjana and Šaponjić, Zoran",
year = "2017",
abstract = "A simple bottom-up method for the preparation of novel and very efficient photocatalytic nanocomposite system based on carbonized form of polyaniline (PANI) and colloidal TiO2 nanocrystals has been developed. The carbonized PANI/TiO2 nanocomposites were synthesized in a two-step procedure. Firstly, non-carbonized PANI/TiO2 nanocomposites were synthesized by the chemical oxidative polymerization of aniline (ANI) with ammonium peroxydisulfate, in the presence of colloidal TiO2 nanoparticles (TiO2 NPs) (d 4.5 nm). Initial [TiO2 NANI] mole ratios were 20, 50, and 80. In the second step, following the polymerization process, the carbonization of PANI/TiO2 nanocomposites was performed by thermal treatment in an inert atmosphere at 650 degrees C. The morphological and structural properties of the carbonized nanocomposites were studied using transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray powder diffraction (XRD) and Raman spectroscopy. The accomplishment of complete carbonization of PANI in PANI/TiO2 nanocomposites was confirmed by Raman spectroscopy. The appearance of anatase and rutile crystal forms in TiO2 NPs upon carbonization, with mass ratio depending on the initial molar ratio of ANI and TiO2 NPs was revealed by XRD measurements, TEM, SEM and Raman spectroscopy. The photocatalytic activities of carbonized PANI/TiO2 nanocomposites were evaluated following the photocatalytic degradation processes of Rhodamine B and Methylene blue. Carbonized PANI/TiO2 nanocomposites showed higher photocatalytic efficacy compared to bare TiO2 NPs and non-carbonized PANI/TiO2 nanocomposites. The porosity and surface structure of carbonized PANI/TiO2 nanocomposites, as well as crystalline structure of TiO2, affect photocatalytic activity of nanocomposites.",
publisher = "Elsevier",
journal = "Applied Catalysis B-Environmental",
title = "Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites",
volume = "213",
pages = "155-166",
doi = "10.1016/j.apcatb.2017.05.023"
}
Radoicic, M., Ciric-Marjanovic, G., Spasojevic, V., Ahrenkiel, S. P., Mitrić, M., Novaković, T.,& Šaponjić, Z.. (2017). Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. in Applied Catalysis B-Environmental
Elsevier., 213, 155-166.
https://doi.org/10.1016/j.apcatb.2017.05.023
Radoicic M, Ciric-Marjanovic G, Spasojevic V, Ahrenkiel SP, Mitrić M, Novaković T, Šaponjić Z. Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites. in Applied Catalysis B-Environmental. 2017;213:155-166.
doi:10.1016/j.apcatb.2017.05.023 .
Radoicic, Marija, Ciric-Marjanovic, Gordana, Spasojevic, Vuk, Ahrenkiel, Scott Phillip, Mitrić, Miodrag, Novaković, Tatjana, Šaponjić, Zoran, "Superior photocatalytic properties of carbonized PANI/TiO2 nanocomposites" in Applied Catalysis B-Environmental, 213 (2017):155-166,
https://doi.org/10.1016/j.apcatb.2017.05.023 . .
64
35
62

Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study

Milicevic, Bojana; Đorđević, Vesna; Lončarević, Davor; Dostanić, Jasmina; Ahrenkiel, Scott Phillip; Dramićanin, Miroslav; Sredojević, Dušan; Svrakic, Nenad M.; Nedeljković, Jovan M.

(Elsevier, 2017)

TY  - JOUR
AU  - Milicevic, Bojana
AU  - Đorđević, Vesna
AU  - Lončarević, Davor
AU  - Dostanić, Jasmina
AU  - Ahrenkiel, Scott Phillip
AU  - Dramićanin, Miroslav
AU  - Sredojević, Dušan
AU  - Svrakic, Nenad M.
AU  - Nedeljković, Jovan M.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2088
AB  - Under normal conditions, titanium dioxide does not absorb visible light photons due to large band gap. Nevertheless, when titanium dioxide nanoparticles (TiO2 NPs) are surface-modified with thiosalicylic acid (TSA), their optical properties are altered owing to the formation of charge transfer complex that initiates absorption in the visible spectral range. Colloidal and sol-gel techniques were used to synthesize uniform TiO2 NPs of different sizes (average diameters in the range 4-15 nm), and effects of their subsequent modification by TSA molecules were compared with effect of modification of commercial Degussa TiO2 powder. Thorough microstructural characterization of TiO2 nanoparticulates was performed including transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis, as well as nitrogen adsorption-desorption isotherms. Optical measurements revealed that all surface-modified TiO2 samples with TSA have similar spectral features independent of their morphological differences, and, more importantly, absorption onset of modified TiO2 samples was found to be red-shifted by 1.0 eV compared to the unmodified ones. The mode of binding between TSA and surface Ti atoms was analyzed by infrared spectroscopy. Finally, the quantum chemical calculations, based on density functional theory, were performed to support optical characterization of surface-modified TiO2 with TSA.
PB  - Elsevier
T2  - Optical Materials
T1  - Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study
VL  - 73
SP  - 163
EP  - 171
DO  - 10.1016/j.optmat.2017.08.011
ER  - 
@article{
author = "Milicevic, Bojana and Đorđević, Vesna and Lončarević, Davor and Dostanić, Jasmina and Ahrenkiel, Scott Phillip and Dramićanin, Miroslav and Sredojević, Dušan and Svrakic, Nenad M. and Nedeljković, Jovan M.",
year = "2017",
abstract = "Under normal conditions, titanium dioxide does not absorb visible light photons due to large band gap. Nevertheless, when titanium dioxide nanoparticles (TiO2 NPs) are surface-modified with thiosalicylic acid (TSA), their optical properties are altered owing to the formation of charge transfer complex that initiates absorption in the visible spectral range. Colloidal and sol-gel techniques were used to synthesize uniform TiO2 NPs of different sizes (average diameters in the range 4-15 nm), and effects of their subsequent modification by TSA molecules were compared with effect of modification of commercial Degussa TiO2 powder. Thorough microstructural characterization of TiO2 nanoparticulates was performed including transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis, as well as nitrogen adsorption-desorption isotherms. Optical measurements revealed that all surface-modified TiO2 samples with TSA have similar spectral features independent of their morphological differences, and, more importantly, absorption onset of modified TiO2 samples was found to be red-shifted by 1.0 eV compared to the unmodified ones. The mode of binding between TSA and surface Ti atoms was analyzed by infrared spectroscopy. Finally, the quantum chemical calculations, based on density functional theory, were performed to support optical characterization of surface-modified TiO2 with TSA.",
publisher = "Elsevier",
journal = "Optical Materials",
title = "Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study",
volume = "73",
pages = "163-171",
doi = "10.1016/j.optmat.2017.08.011"
}
Milicevic, B., Đorđević, V., Lončarević, D., Dostanić, J., Ahrenkiel, S. P., Dramićanin, M., Sredojević, D., Svrakic, N. M.,& Nedeljković, J. M.. (2017). Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study. in Optical Materials
Elsevier., 73, 163-171.
https://doi.org/10.1016/j.optmat.2017.08.011
Milicevic B, Đorđević V, Lončarević D, Dostanić J, Ahrenkiel SP, Dramićanin M, Sredojević D, Svrakic NM, Nedeljković JM. Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study. in Optical Materials. 2017;73:163-171.
doi:10.1016/j.optmat.2017.08.011 .
Milicevic, Bojana, Đorđević, Vesna, Lončarević, Davor, Dostanić, Jasmina, Ahrenkiel, Scott Phillip, Dramićanin, Miroslav, Sredojević, Dušan, Svrakic, Nenad M., Nedeljković, Jovan M., "Charge-transfer complex formation between TiO2 nanoparticles and thiosalicylic acid: A comprehensive experimental and DFT study" in Optical Materials, 73 (2017):163-171,
https://doi.org/10.1016/j.optmat.2017.08.011 . .
12
10
13

Hybrid visible-light responsive Al2O3 particles

Đorđević, Vesna; Dostanić, Jasmina; Lončarević, Davor; Ahrenkiel, Scott Phillip; Sredojević, Dušan; Svrakic, Nenad; Belić, Milivoj; Nedeljković, Jovan M.

(Elsevier, 2017)

TY  - JOUR
AU  - Đorđević, Vesna
AU  - Dostanić, Jasmina
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Sredojević, Dušan
AU  - Svrakic, Nenad
AU  - Belić, Milivoj
AU  - Nedeljković, Jovan M.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2160
AB  - Detailed study of Al2O3, an insulator with the band gap of about 8.7 eV, and its different organic/inorganic charge transfer complexes with visible-light photo activity is presented. In particular, prepared Al2O3 particles of the size 0.1-0.3 mu m are coated with several organic complexes - the specific details for catecholate- and salicylate-type of ligands are described below - and the light absorption properties and photocatalytic activity of such hybrids are scrutinized and compared with those of other organic/inorganic hybrid materials previously studied. In addition, the obtained experimental results are supported with quantum chemical calculations based on density functional theory.
PB  - Elsevier
T2  - Chemical Physics Letters
T1  - Hybrid visible-light responsive Al2O3 particles
VL  - 685
SP  - 416
EP  - 421
DO  - 10.1016/j.cplett.2017.08.012
ER  - 
@article{
author = "Đorđević, Vesna and Dostanić, Jasmina and Lončarević, Davor and Ahrenkiel, Scott Phillip and Sredojević, Dušan and Svrakic, Nenad and Belić, Milivoj and Nedeljković, Jovan M.",
year = "2017",
abstract = "Detailed study of Al2O3, an insulator with the band gap of about 8.7 eV, and its different organic/inorganic charge transfer complexes with visible-light photo activity is presented. In particular, prepared Al2O3 particles of the size 0.1-0.3 mu m are coated with several organic complexes - the specific details for catecholate- and salicylate-type of ligands are described below - and the light absorption properties and photocatalytic activity of such hybrids are scrutinized and compared with those of other organic/inorganic hybrid materials previously studied. In addition, the obtained experimental results are supported with quantum chemical calculations based on density functional theory.",
publisher = "Elsevier",
journal = "Chemical Physics Letters",
title = "Hybrid visible-light responsive Al2O3 particles",
volume = "685",
pages = "416-421",
doi = "10.1016/j.cplett.2017.08.012"
}
Đorđević, V., Dostanić, J., Lončarević, D., Ahrenkiel, S. P., Sredojević, D., Svrakic, N., Belić, M.,& Nedeljković, J. M.. (2017). Hybrid visible-light responsive Al2O3 particles. in Chemical Physics Letters
Elsevier., 685, 416-421.
https://doi.org/10.1016/j.cplett.2017.08.012
Đorđević V, Dostanić J, Lončarević D, Ahrenkiel SP, Sredojević D, Svrakic N, Belić M, Nedeljković JM. Hybrid visible-light responsive Al2O3 particles. in Chemical Physics Letters. 2017;685:416-421.
doi:10.1016/j.cplett.2017.08.012 .
Đorđević, Vesna, Dostanić, Jasmina, Lončarević, Davor, Ahrenkiel, Scott Phillip, Sredojević, Dušan, Svrakic, Nenad, Belić, Milivoj, Nedeljković, Jovan M., "Hybrid visible-light responsive Al2O3 particles" in Chemical Physics Letters, 685 (2017):416-421,
https://doi.org/10.1016/j.cplett.2017.08.012 . .
14
9
13

Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions

Smičiklas, I.; Papan, J.; Lazić, Vesna; Lončarević, Davor; Ahrenkiel, Scott Phillip; Nedeljković, Jovan M.

(Elsevier, 2017)

TY  - JOUR
AU  - Smičiklas, I.
AU  - Papan, J.
AU  - Lazić, Vesna
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2207
AB  - The biogenic hydroxyapatite (BHAP), obtained by proper treatment of bovine bones, was functionalized with 5-aminosalicylic acid (5-ASA). The coordination of 5-ASA to the surface of BHAP leads to the charge transfer (CT) complex formation accompanied with absorption in visible spectral range. The sorption ability of surface-modified BHAP with 5-ASA (5-ASA/BHAP) for removal of Pb2+ and Cu2+ ions from single- and bi-component solutions was compared with unmodified BHAP. The thorough characterization of both sorbents, BHAP and 5-ASA/BHAP, was performed including X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, as well as diffuse reflection spectroscopy. Sorption kinetics and equilibriums for both ions (Pb2+ and Cu2+) by as-prepared BHAP and 5-ASA/BHAP are quite different. Functionalized sorbent demonstrated faster sorption kinetic and higher maximum sorption capacity for Pb2+ ions from bi-component solutions. From equimolar Pb2+ and Cu2+ mixture with a total concentration of 10-2 mol/L, 66% of Pb2+ was recovered using BHAP, while 97% using 5-ASA/BHAP. These preliminary data indicate potential applicability of properly functionalized hydroxyapatite for selective removal of heavy metal ions from contaminated water.
PB  - Elsevier
T2  - Journal of Environmental Chemical Engineering
T1  - Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions
VL  - 5
IS  - 4
SP  - 3759
EP  - 3765
DO  - 10.1016/j.jece.2017.07.027
ER  - 
@article{
author = "Smičiklas, I. and Papan, J. and Lazić, Vesna and Lončarević, Davor and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2017",
abstract = "The biogenic hydroxyapatite (BHAP), obtained by proper treatment of bovine bones, was functionalized with 5-aminosalicylic acid (5-ASA). The coordination of 5-ASA to the surface of BHAP leads to the charge transfer (CT) complex formation accompanied with absorption in visible spectral range. The sorption ability of surface-modified BHAP with 5-ASA (5-ASA/BHAP) for removal of Pb2+ and Cu2+ ions from single- and bi-component solutions was compared with unmodified BHAP. The thorough characterization of both sorbents, BHAP and 5-ASA/BHAP, was performed including X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, as well as diffuse reflection spectroscopy. Sorption kinetics and equilibriums for both ions (Pb2+ and Cu2+) by as-prepared BHAP and 5-ASA/BHAP are quite different. Functionalized sorbent demonstrated faster sorption kinetic and higher maximum sorption capacity for Pb2+ ions from bi-component solutions. From equimolar Pb2+ and Cu2+ mixture with a total concentration of 10-2 mol/L, 66% of Pb2+ was recovered using BHAP, while 97% using 5-ASA/BHAP. These preliminary data indicate potential applicability of properly functionalized hydroxyapatite for selective removal of heavy metal ions from contaminated water.",
publisher = "Elsevier",
journal = "Journal of Environmental Chemical Engineering",
title = "Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions",
volume = "5",
number = "4",
pages = "3759-3765",
doi = "10.1016/j.jece.2017.07.027"
}
Smičiklas, I., Papan, J., Lazić, V., Lončarević, D., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2017). Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions. in Journal of Environmental Chemical Engineering
Elsevier., 5(4), 3759-3765.
https://doi.org/10.1016/j.jece.2017.07.027
Smičiklas I, Papan J, Lazić V, Lončarević D, Ahrenkiel SP, Nedeljković JM. Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions. in Journal of Environmental Chemical Engineering. 2017;5(4):3759-3765.
doi:10.1016/j.jece.2017.07.027 .
Smičiklas, I., Papan, J., Lazić, Vesna, Lončarević, Davor, Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions" in Journal of Environmental Chemical Engineering, 5, no. 4 (2017):3759-3765,
https://doi.org/10.1016/j.jece.2017.07.027 . .
14
9
13

Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support

Vukoje, Ivana D.; Džunuzović, Enis S.; Lončarević, Davor; Dimitrijević, Suzana I.; Ahrenkiel, Scott Phillip; Nedeljković, Jovan M.

(Wiley, Hoboken, 2017)

TY  - JOUR
AU  - Vukoje, Ivana D.
AU  - Džunuzović, Enis S.
AU  - Lončarević, Davor
AU  - Dimitrijević, Suzana I.
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2240
AB  - Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA) macroporous copolymer decorated with silver nanoparticles was prepared by a modification of poly(GMA-co-EGDMA) in the reaction with arginine, and consequent reduction of silver ions with amino groups. The mercury intrusion porosimetry, transmission electron microscopy, X-ray diffraction, UV-vis reflection spectroscopy, and inductively coupled plasma atomic emission measurements were used to characterize obtained composite. The coordination of silver nanoparticles to the poly(GMA-co-EGDMA) copolymer was studied using infrared spectroscopy. Time dependence and concentration dependence of the antimicrobial efficiency of composite were tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and fungus Candida albicans. The composite ensured maximum reduction of both bacteria, while the fungi reduction reached satisfactory 96.8%. Preliminary antimicrobial efficiency measurements using laboratory flow setup indicated potential applicability of composite for wastewater treatment.
PB  - Wiley, Hoboken
T2  - Polymer Composites
T1  - Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support
VL  - 38
IS  - 6
SP  - 1206
EP  - 1214
DO  - 10.1002/pc.23684
ER  - 
@article{
author = "Vukoje, Ivana D. and Džunuzović, Enis S. and Lončarević, Davor and Dimitrijević, Suzana I. and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2017",
abstract = "Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) (poly(GMA-co-EGDMA) macroporous copolymer decorated with silver nanoparticles was prepared by a modification of poly(GMA-co-EGDMA) in the reaction with arginine, and consequent reduction of silver ions with amino groups. The mercury intrusion porosimetry, transmission electron microscopy, X-ray diffraction, UV-vis reflection spectroscopy, and inductively coupled plasma atomic emission measurements were used to characterize obtained composite. The coordination of silver nanoparticles to the poly(GMA-co-EGDMA) copolymer was studied using infrared spectroscopy. Time dependence and concentration dependence of the antimicrobial efficiency of composite were tested against Gram-negative bacteria Escherichia coli, Gram-positive bacteria Staphylococcus aureus, and fungus Candida albicans. The composite ensured maximum reduction of both bacteria, while the fungi reduction reached satisfactory 96.8%. Preliminary antimicrobial efficiency measurements using laboratory flow setup indicated potential applicability of composite for wastewater treatment.",
publisher = "Wiley, Hoboken",
journal = "Polymer Composites",
title = "Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support",
volume = "38",
number = "6",
pages = "1206-1214",
doi = "10.1002/pc.23684"
}
Vukoje, I. D., Džunuzović, E. S., Lončarević, D., Dimitrijević, S. I., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2017). Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support. in Polymer Composites
Wiley, Hoboken., 38(6), 1206-1214.
https://doi.org/10.1002/pc.23684
Vukoje ID, Džunuzović ES, Lončarević D, Dimitrijević SI, Ahrenkiel SP, Nedeljković JM. Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support. in Polymer Composites. 2017;38(6):1206-1214.
doi:10.1002/pc.23684 .
Vukoje, Ivana D., Džunuzović, Enis S., Lončarević, Davor, Dimitrijević, Suzana I., Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "Synthesis, Characterization, and Antimicrobial Activity of Silver Nanoparticles on Poly(GMA-co-EGDMA) Polymer Support" in Polymer Composites, 38, no. 6 (2017):1206-1214,
https://doi.org/10.1002/pc.23684 . .
17
13
17

The photocatalytic performance of silver halides - Silver carbonate heterostructures

Dostanić, Jasmina; Lončarević, Davor; Đorđević, Vesna; Ahrenkiel, Scott Phillip; Nedeljković, Jovan M.

(Elsevier Science Sa, Lausanne, 2017)

TY  - JOUR
AU  - Dostanić, Jasmina
AU  - Lončarević, Davor
AU  - Đorđević, Vesna
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2242
AB  - The synthesized rod-like Ag2CO3 particles (2-4 x 0.3-0.6 mu m, length x diameter) served as a precursor for preparation of the AgX/Ag2CO3 (X = CI, I) composites by ion exchange method. The various microstructural (X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption desorption isotherms) and optical (diffuse reflection spectroscopy) techniques were used for thorough characterization of obtained heterostructures. The enhanced photocatalytic performance of AgX/Ag2CO3 heterostructures in comparison to Ag2CO3 nanorods (NRs) was evidenced using degradation of organic dye methylene blue as a test reaction. Also, the formation of composites improved their stability under long run illumination conditions. The effect of AgX content on photocatalytic activity of the composites were also investigated. The possible photocatalytic mechanism that facilitates efficient separation of photo-formed charge carriers in heterostructures was discussed in terms of the relative energetic of valence and conduction bands.
PB  - Elsevier Science Sa, Lausanne
T2  - Journal of Photochemistry and Photobiology A-Chemistry
T1  - The photocatalytic performance of silver halides - Silver carbonate heterostructures
VL  - 336
SP  - 1
EP  - 7
DO  - 10.1016/j.jphotochem.2016.12.019
ER  - 
@article{
author = "Dostanić, Jasmina and Lončarević, Davor and Đorđević, Vesna and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2017",
abstract = "The synthesized rod-like Ag2CO3 particles (2-4 x 0.3-0.6 mu m, length x diameter) served as a precursor for preparation of the AgX/Ag2CO3 (X = CI, I) composites by ion exchange method. The various microstructural (X-ray diffraction analysis, transmission electron microscopy, nitrogen adsorption desorption isotherms) and optical (diffuse reflection spectroscopy) techniques were used for thorough characterization of obtained heterostructures. The enhanced photocatalytic performance of AgX/Ag2CO3 heterostructures in comparison to Ag2CO3 nanorods (NRs) was evidenced using degradation of organic dye methylene blue as a test reaction. Also, the formation of composites improved their stability under long run illumination conditions. The effect of AgX content on photocatalytic activity of the composites were also investigated. The possible photocatalytic mechanism that facilitates efficient separation of photo-formed charge carriers in heterostructures was discussed in terms of the relative energetic of valence and conduction bands.",
publisher = "Elsevier Science Sa, Lausanne",
journal = "Journal of Photochemistry and Photobiology A-Chemistry",
title = "The photocatalytic performance of silver halides - Silver carbonate heterostructures",
volume = "336",
pages = "1-7",
doi = "10.1016/j.jphotochem.2016.12.019"
}
Dostanić, J., Lončarević, D., Đorđević, V., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2017). The photocatalytic performance of silver halides - Silver carbonate heterostructures. in Journal of Photochemistry and Photobiology A-Chemistry
Elsevier Science Sa, Lausanne., 336, 1-7.
https://doi.org/10.1016/j.jphotochem.2016.12.019
Dostanić J, Lončarević D, Đorđević V, Ahrenkiel SP, Nedeljković JM. The photocatalytic performance of silver halides - Silver carbonate heterostructures. in Journal of Photochemistry and Photobiology A-Chemistry. 2017;336:1-7.
doi:10.1016/j.jphotochem.2016.12.019 .
Dostanić, Jasmina, Lončarević, Davor, Đorđević, Vesna, Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "The photocatalytic performance of silver halides - Silver carbonate heterostructures" in Journal of Photochemistry and Photobiology A-Chemistry, 336 (2017):1-7,
https://doi.org/10.1016/j.jphotochem.2016.12.019 . .
4
9
6
8

Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions

Smičiklas, I.; Papan, J.; Lazić, Vesna; Lončarević, Davor; Ahrenkiel, Scott Phillip; Nedeljković, Jovan M.

(Elsevier, 2017)

TY  - JOUR
AU  - Smičiklas, I.
AU  - Papan, J.
AU  - Lazić, Vesna
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3015
AB  - The biogenic hydroxyapatite (BHAP), obtained by proper treatment of bovine bones, was functionalized with 5-aminosalicylic acid (5-ASA). The coordination of 5-ASA to the surface of BHAP leads to the charge transfer (CT) complex formation accompanied with absorption in visible spectral range. The sorption ability of surface-modified BHAP with 5-ASA (5-ASA/BHAP) for removal of Pb2+ and Cu2+ ions from single- and bi-component solutions was compared with unmodified BHAP. The thorough characterization of both sorbents, BHAP and 5-ASA/BHAP, was performed including X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, as well as diffuse reflection spectroscopy. Sorption kinetics and equilibriums for both ions (Pb2+ and Cu2+) by as-prepared BHAP and 5-ASA/BHAP are quite different. Functionalized sorbent demonstrated faster sorption kinetic and higher maximum sorption capacity for Pb2+ ions from bi-component solutions. From equimolar Pb2+ and Cu2+ mixture with a total concentration of 10-2 mol/L, 66% of Pb2+ was recovered using BHAP, while 97% using 5-ASA/BHAP. These preliminary data indicate potential applicability of properly functionalized hydroxyapatite for selective removal of heavy metal ions from contaminated water.
PB  - Elsevier
T2  - Journal of Environmental Chemical Engineering
T1  - Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions
VL  - 5
IS  - 4
SP  - 3759
EP  - 3765
DO  - 10.1016/j.jece.2017.07.027
ER  - 
@article{
author = "Smičiklas, I. and Papan, J. and Lazić, Vesna and Lončarević, Davor and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2017",
abstract = "The biogenic hydroxyapatite (BHAP), obtained by proper treatment of bovine bones, was functionalized with 5-aminosalicylic acid (5-ASA). The coordination of 5-ASA to the surface of BHAP leads to the charge transfer (CT) complex formation accompanied with absorption in visible spectral range. The sorption ability of surface-modified BHAP with 5-ASA (5-ASA/BHAP) for removal of Pb2+ and Cu2+ ions from single- and bi-component solutions was compared with unmodified BHAP. The thorough characterization of both sorbents, BHAP and 5-ASA/BHAP, was performed including X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), nitrogen adsorption-desorption isotherms, as well as diffuse reflection spectroscopy. Sorption kinetics and equilibriums for both ions (Pb2+ and Cu2+) by as-prepared BHAP and 5-ASA/BHAP are quite different. Functionalized sorbent demonstrated faster sorption kinetic and higher maximum sorption capacity for Pb2+ ions from bi-component solutions. From equimolar Pb2+ and Cu2+ mixture with a total concentration of 10-2 mol/L, 66% of Pb2+ was recovered using BHAP, while 97% using 5-ASA/BHAP. These preliminary data indicate potential applicability of properly functionalized hydroxyapatite for selective removal of heavy metal ions from contaminated water.",
publisher = "Elsevier",
journal = "Journal of Environmental Chemical Engineering",
title = "Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions",
volume = "5",
number = "4",
pages = "3759-3765",
doi = "10.1016/j.jece.2017.07.027"
}
Smičiklas, I., Papan, J., Lazić, V., Lončarević, D., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2017). Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions. in Journal of Environmental Chemical Engineering
Elsevier., 5(4), 3759-3765.
https://doi.org/10.1016/j.jece.2017.07.027
Smičiklas I, Papan J, Lazić V, Lončarević D, Ahrenkiel SP, Nedeljković JM. Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions. in Journal of Environmental Chemical Engineering. 2017;5(4):3759-3765.
doi:10.1016/j.jece.2017.07.027 .
Smičiklas, I., Papan, J., Lazić, Vesna, Lončarević, Davor, Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "Functionalized biogenic hydroxyapatite with 5-aminosalicylic acid - Sorbent for efficient separation of Pb2+ and Cu2+ ions" in Journal of Environmental Chemical Engineering, 5, no. 4 (2017):3759-3765,
https://doi.org/10.1016/j.jece.2017.07.027 . .
14
9
14

Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles

Vukoje, Ivana; Kovac, Tijana; Džunuzović, Jasna; Džunuzović, Enis S.; Lončarević, Davor; Ahrenkiel, Scott Phillip; Nedeljković, Jovan M.

(American Chemical Society (ACS), 2016)

TY  - JOUR
AU  - Vukoje, Ivana
AU  - Kovac, Tijana
AU  - Džunuzović, Jasna
AU  - Džunuzović, Enis S.
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Nedeljković, Jovan M.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1845
AB  - The synthetic procedures for preparation of free-standing and attached to polymer support surface modified TiO2 nanoparticles (NPs) with absorption extended into the visible spectral region due to charge transfer complex formation were developed. The one-step synthesis of colloids consisting of surface-modified TiO2 NPs is based on the reaction between titanium(IV) isopropoxide (TTIP) and lauryl galatte in nonprotic organic solvents (tetrahydrofuran, xylol, chloroform). The poly(GMA-co-EGDMA) copolymer decorated with surface-modified TiO2 NPs was obtained in two steps. First, copolymer was functionalized with dopamine and then treated with TTIP in organic solvent at slightly elevated temperature. Thorough microstructural and optical characterization of free-standing and attached to polymer support surface-modified TiO2 NPs was performed involving transmission electron microscopy as well as absorption and reflection spectroscopy. Infrared spectroscopy was used to understand coordination of ligands to surface Ti atoms. Photoredox chemistry of surface-modified TiO2 NPs attached to the polymer support was tested. Enhanced photooxidative ability of composite was demonstrated by degradation of organic dye crystal violet under visible light illumination, i.e., using photons with energy smaller than 2.75 eV. On the other hand, photocatalytic hydrogen production was used to demonstrate photoreduction ability of surface modified TiO2 NPs attached to the polymer support.
PB  - American Chemical Society (ACS)
T2  - Journal of Physical Chemistry C
T1  - Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles
VL  - 120
IS  - 33
SP  - 18560
EP  - 18569
DO  - 10.1021/acs.jpcc.6b04293
ER  - 
@article{
author = "Vukoje, Ivana and Kovac, Tijana and Džunuzović, Jasna and Džunuzović, Enis S. and Lončarević, Davor and Ahrenkiel, Scott Phillip and Nedeljković, Jovan M.",
year = "2016",
abstract = "The synthetic procedures for preparation of free-standing and attached to polymer support surface modified TiO2 nanoparticles (NPs) with absorption extended into the visible spectral region due to charge transfer complex formation were developed. The one-step synthesis of colloids consisting of surface-modified TiO2 NPs is based on the reaction between titanium(IV) isopropoxide (TTIP) and lauryl galatte in nonprotic organic solvents (tetrahydrofuran, xylol, chloroform). The poly(GMA-co-EGDMA) copolymer decorated with surface-modified TiO2 NPs was obtained in two steps. First, copolymer was functionalized with dopamine and then treated with TTIP in organic solvent at slightly elevated temperature. Thorough microstructural and optical characterization of free-standing and attached to polymer support surface-modified TiO2 NPs was performed involving transmission electron microscopy as well as absorption and reflection spectroscopy. Infrared spectroscopy was used to understand coordination of ligands to surface Ti atoms. Photoredox chemistry of surface-modified TiO2 NPs attached to the polymer support was tested. Enhanced photooxidative ability of composite was demonstrated by degradation of organic dye crystal violet under visible light illumination, i.e., using photons with energy smaller than 2.75 eV. On the other hand, photocatalytic hydrogen production was used to demonstrate photoreduction ability of surface modified TiO2 NPs attached to the polymer support.",
publisher = "American Chemical Society (ACS)",
journal = "Journal of Physical Chemistry C",
title = "Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles",
volume = "120",
number = "33",
pages = "18560-18569",
doi = "10.1021/acs.jpcc.6b04293"
}
Vukoje, I., Kovac, T., Džunuzović, J., Džunuzović, E. S., Lončarević, D., Ahrenkiel, S. P.,& Nedeljković, J. M.. (2016). Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles. in Journal of Physical Chemistry C
American Chemical Society (ACS)., 120(33), 18560-18569.
https://doi.org/10.1021/acs.jpcc.6b04293
Vukoje I, Kovac T, Džunuzović J, Džunuzović ES, Lončarević D, Ahrenkiel SP, Nedeljković JM. Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles. in Journal of Physical Chemistry C. 2016;120(33):18560-18569.
doi:10.1021/acs.jpcc.6b04293 .
Vukoje, Ivana, Kovac, Tijana, Džunuzović, Jasna, Džunuzović, Enis S., Lončarević, Davor, Ahrenkiel, Scott Phillip, Nedeljković, Jovan M., "Photocatalytic Ability of Visible-Light-Responsive TiO2 Nanoparticles" in Journal of Physical Chemistry C, 120, no. 33 (2016):18560-18569,
https://doi.org/10.1021/acs.jpcc.6b04293 . .
40
29
38

Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives

Milicevic, B; Đorđević, Vesna; Lončarević, Davor; Ahrenkiel, Scott Phillip; Dramićanin, Miroslav; Nedeljković, Jovan M.

(Elsevier, 2015)

TY  - JOUR
AU  - Milicevic, B
AU  - Đorđević, Vesna
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Dramićanin, Miroslav
AU  - Nedeljković, Jovan M.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1721
AB  - TiO2 powders with different specific surface area were prepared using reproducible, sol gel synthetic route and their ability to form hybrids with catechol and 5-amino salicylic acid was compared with the commercially available Degussa P25 TiO2 powder. Microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis and nitrogen adsorption-desorption isotherms indicated that TiO2 samples cover reasonably wide size and/or specific surface area range (50-115 m(2)/g). The surface modification of TiO2 powders with catechol and 5-amino salicylic acid induced significant shift of absorption to the visible spectral region due to charge transfer complex formation. It should be emphasized that tunable optical properties of TiO2 in powder form have never been reported in the literature. The largest red shift of the absorption onset was observed for sample with the largest specific surface area upon surface modification with both ligands. The binding of the modifier molecules to the surface Ti atoms was studied using Fourier transform infrared spectroscopy.
PB  - Elsevier
T2  - Microporous and Mesoporous Materials
T1  - Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives
VL  - 217
SP  - 184
EP  - 189
DO  - 10.1016/j.micromeso.2015.06.028
ER  - 
@article{
author = "Milicevic, B and Đorđević, Vesna and Lončarević, Davor and Ahrenkiel, Scott Phillip and Dramićanin, Miroslav and Nedeljković, Jovan M.",
year = "2015",
abstract = "TiO2 powders with different specific surface area were prepared using reproducible, sol gel synthetic route and their ability to form hybrids with catechol and 5-amino salicylic acid was compared with the commercially available Degussa P25 TiO2 powder. Microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis and nitrogen adsorption-desorption isotherms indicated that TiO2 samples cover reasonably wide size and/or specific surface area range (50-115 m(2)/g). The surface modification of TiO2 powders with catechol and 5-amino salicylic acid induced significant shift of absorption to the visible spectral region due to charge transfer complex formation. It should be emphasized that tunable optical properties of TiO2 in powder form have never been reported in the literature. The largest red shift of the absorption onset was observed for sample with the largest specific surface area upon surface modification with both ligands. The binding of the modifier molecules to the surface Ti atoms was studied using Fourier transform infrared spectroscopy.",
publisher = "Elsevier",
journal = "Microporous and Mesoporous Materials",
title = "Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives",
volume = "217",
pages = "184-189",
doi = "10.1016/j.micromeso.2015.06.028"
}
Milicevic, B., Đorđević, V., Lončarević, D., Ahrenkiel, S. P., Dramićanin, M.,& Nedeljković, J. M.. (2015). Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives. in Microporous and Mesoporous Materials
Elsevier., 217, 184-189.
https://doi.org/10.1016/j.micromeso.2015.06.028
Milicevic B, Đorđević V, Lončarević D, Ahrenkiel SP, Dramićanin M, Nedeljković JM. Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives. in Microporous and Mesoporous Materials. 2015;217:184-189.
doi:10.1016/j.micromeso.2015.06.028 .
Milicevic, B, Đorđević, Vesna, Lončarević, Davor, Ahrenkiel, Scott Phillip, Dramićanin, Miroslav, Nedeljković, Jovan M., "Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives" in Microporous and Mesoporous Materials, 217 (2015):184-189,
https://doi.org/10.1016/j.micromeso.2015.06.028 . .
3
44
30
43

Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives

Milicevic, B; Dordevic, V; Lončarević, Davor; Ahrenkiel, Scott Phillip; Dramićanin, Miroslav; Nedeljković, Jovan M.

(Elsevier, 2015)

TY  - JOUR
AU  - Milicevic, B
AU  - Dordevic, V
AU  - Lončarević, Davor
AU  - Ahrenkiel, Scott Phillip
AU  - Dramićanin, Miroslav
AU  - Nedeljković, Jovan M.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3203
AB  - TiO2 powders with different specific surface area were prepared using reproducible, sol gel synthetic route and their ability to form hybrids with catechol and 5-amino salicylic acid was compared with the commercially available Degussa P25 TiO2 powder. Microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis and nitrogen adsorption-desorption isotherms indicated that TiO2 samples cover reasonably wide size and/or specific surface area range (50-115 m(2)/g). The surface modification of TiO2 powders with catechol and 5-amino salicylic acid induced significant shift of absorption to the visible spectral region due to charge transfer complex formation. It should be emphasized that tunable optical properties of TiO2 in powder form have never been reported in the literature. The largest red shift of the absorption onset was observed for sample with the largest specific surface area upon surface modification with both ligands. The binding of the modifier molecules to the surface Ti atoms was studied using Fourier transform infrared spectroscopy.
PB  - Elsevier
T2  - Microporous and Mesoporous Materials
T1  - Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives
VL  - 217
SP  - 184
EP  - 189
DO  - 10.1016/j.micromeso.2015.06.028
ER  - 
@article{
author = "Milicevic, B and Dordevic, V and Lončarević, Davor and Ahrenkiel, Scott Phillip and Dramićanin, Miroslav and Nedeljković, Jovan M.",
year = "2015",
abstract = "TiO2 powders with different specific surface area were prepared using reproducible, sol gel synthetic route and their ability to form hybrids with catechol and 5-amino salicylic acid was compared with the commercially available Degussa P25 TiO2 powder. Microstructural characterization involving transmission electron microscopy, X-ray diffraction analysis and nitrogen adsorption-desorption isotherms indicated that TiO2 samples cover reasonably wide size and/or specific surface area range (50-115 m(2)/g). The surface modification of TiO2 powders with catechol and 5-amino salicylic acid induced significant shift of absorption to the visible spectral region due to charge transfer complex formation. It should be emphasized that tunable optical properties of TiO2 in powder form have never been reported in the literature. The largest red shift of the absorption onset was observed for sample with the largest specific surface area upon surface modification with both ligands. The binding of the modifier molecules to the surface Ti atoms was studied using Fourier transform infrared spectroscopy.",
publisher = "Elsevier",
journal = "Microporous and Mesoporous Materials",
title = "Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives",
volume = "217",
pages = "184-189",
doi = "10.1016/j.micromeso.2015.06.028"
}
Milicevic, B., Dordevic, V., Lončarević, D., Ahrenkiel, S. P., Dramićanin, M.,& Nedeljković, J. M.. (2015). Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives. in Microporous and Mesoporous Materials
Elsevier., 217, 184-189.
https://doi.org/10.1016/j.micromeso.2015.06.028
Milicevic B, Dordevic V, Lončarević D, Ahrenkiel SP, Dramićanin M, Nedeljković JM. Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives. in Microporous and Mesoporous Materials. 2015;217:184-189.
doi:10.1016/j.micromeso.2015.06.028 .
Milicevic, B, Dordevic, V, Lončarević, Davor, Ahrenkiel, Scott Phillip, Dramićanin, Miroslav, Nedeljković, Jovan M., "Visible light absorption of surface modified TiO2 powders with bidentate benzene derivatives" in Microporous and Mesoporous Materials, 217 (2015):184-189,
https://doi.org/10.1016/j.micromeso.2015.06.028 . .
3
44
30
43