Iannacci, Jacopo

Link to this page

Authority KeyName Variants
f38bf053-7a9a-455e-afbc-be5f49f98e2c
  • Iannacci, Jacopo (2)
Projects

Author's Bibliography

Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity

Choudhury, Sagarika; Baishnab, Krishna Lal; Guha, Koushik; Jakšić, Zoran; Jakšić, Olga; Iannacci, Jacopo

(MDPI, 2023)

TY  - JOUR
AU  - Choudhury, Sagarika
AU  - Baishnab, Krishna Lal
AU  - Guha, Koushik
AU  - Jakšić, Zoran
AU  - Jakšić, Olga
AU  - Iannacci, Jacopo
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7205
AB  - This study discusses the use of a triple material gate (TMG) junctionless tunnel field-effect transistor (JLTFET) as a biosensor to identify different protein molecules. Among the plethora of existing types of biosensors, FET/TFET-based devices are fully compatible with conventional integrated circuits. JLTFETs are preferred over TFETs and JLFETs because of their ease of fabrication and superior biosensing performance. Biomolecules are trapped by cavities etched across the gates. An analytical mathematical model of a TMG asymmetrical hetero-dielectric JLTFET biosensor is derived here for the first time. The TCAD simulator is used to examine the performance of a dielectrically modulated label-free biosensor. The voltage and current sensitivity of the device and the effects of the cavity size, bioanalyte electric charge, fill factor, and location on the performance of the biosensor are also investigated. The relative current sensitivity of the biosensor is found to be about 1013. Besides showing an enhanced sensitivity compared with other FET- and TFET-based biosensors, the device proves itself convenient for low-power applications, thus opening up numerous directions for future research and applications.
PB  - MDPI
T2  - Chemosensors
T1  - Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity
VL  - 11
IS  - 5
SP  - 312
DO  - 10.3390/chemosensors11050312
ER  - 
@article{
author = "Choudhury, Sagarika and Baishnab, Krishna Lal and Guha, Koushik and Jakšić, Zoran and Jakšić, Olga and Iannacci, Jacopo",
year = "2023",
abstract = "This study discusses the use of a triple material gate (TMG) junctionless tunnel field-effect transistor (JLTFET) as a biosensor to identify different protein molecules. Among the plethora of existing types of biosensors, FET/TFET-based devices are fully compatible with conventional integrated circuits. JLTFETs are preferred over TFETs and JLFETs because of their ease of fabrication and superior biosensing performance. Biomolecules are trapped by cavities etched across the gates. An analytical mathematical model of a TMG asymmetrical hetero-dielectric JLTFET biosensor is derived here for the first time. The TCAD simulator is used to examine the performance of a dielectrically modulated label-free biosensor. The voltage and current sensitivity of the device and the effects of the cavity size, bioanalyte electric charge, fill factor, and location on the performance of the biosensor are also investigated. The relative current sensitivity of the biosensor is found to be about 1013. Besides showing an enhanced sensitivity compared with other FET- and TFET-based biosensors, the device proves itself convenient for low-power applications, thus opening up numerous directions for future research and applications.",
publisher = "MDPI",
journal = "Chemosensors",
title = "Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity",
volume = "11",
number = "5",
pages = "312",
doi = "10.3390/chemosensors11050312"
}
Choudhury, S., Baishnab, K. L., Guha, K., Jakšić, Z., Jakšić, O.,& Iannacci, J.. (2023). Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity. in Chemosensors
MDPI., 11(5), 312.
https://doi.org/10.3390/chemosensors11050312
Choudhury S, Baishnab KL, Guha K, Jakšić Z, Jakšić O, Iannacci J. Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity. in Chemosensors. 2023;11(5):312.
doi:10.3390/chemosensors11050312 .
Choudhury, Sagarika, Baishnab, Krishna Lal, Guha, Koushik, Jakšić, Zoran, Jakšić, Olga, Iannacci, Jacopo, "Modeling and Simulation of a TFET-Based Label-Free Biosensor with Enhanced Sensitivity" in Chemosensors, 11, no. 5 (2023):312,
https://doi.org/10.3390/chemosensors11050312 . .
4
1

Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications

Pertin, Osor; Guha, Koushik; Jakšić, Olga; Jakšić, Zoran; Iannacci, Jacopo

(MDPI AG, 2022)

TY  - JOUR
AU  - Pertin, Osor
AU  - Guha, Koushik
AU  - Jakšić, Olga
AU  - Jakšić, Zoran
AU  - Iannacci, Jacopo
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5604
AB  - This paper proposes a monostable nonlinear Piezoelectric Energy Harvester (PEH). The harvester is based on an unconventional exsect-tapered fixed-guided spring design, which introduces nonlinearity into the system due to the bending and stretching of the spring. The physical–mathematical model and finite element simulations were performed to analyze the effects of the stretching-induced nonlinearity on the performance of the energy harvester. The proposed exsect-tapered nonlinear PEH shows a bandwidth and power enhancement of 15.38 and 44.4%, respectively, compared to conventional rectangular nonlinear PEHs. It shows a bandwidth and power enhancement of 11.11 and 26.83%, respectively, compared to a simple, linearly tapered and nonlinear PEH. The exsect-tapered nonlinear PEH improves the power output and operational bandwidth for harvesting low-frequency ambient vibrations.
PB  - MDPI AG
T2  - Micromachines
T1  - Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications
VL  - 13
IS  - 9
SP  - 1399
DO  - 10.3390/mi13091399
ER  - 
@article{
author = "Pertin, Osor and Guha, Koushik and Jakšić, Olga and Jakšić, Zoran and Iannacci, Jacopo",
year = "2022",
abstract = "This paper proposes a monostable nonlinear Piezoelectric Energy Harvester (PEH). The harvester is based on an unconventional exsect-tapered fixed-guided spring design, which introduces nonlinearity into the system due to the bending and stretching of the spring. The physical–mathematical model and finite element simulations were performed to analyze the effects of the stretching-induced nonlinearity on the performance of the energy harvester. The proposed exsect-tapered nonlinear PEH shows a bandwidth and power enhancement of 15.38 and 44.4%, respectively, compared to conventional rectangular nonlinear PEHs. It shows a bandwidth and power enhancement of 11.11 and 26.83%, respectively, compared to a simple, linearly tapered and nonlinear PEH. The exsect-tapered nonlinear PEH improves the power output and operational bandwidth for harvesting low-frequency ambient vibrations.",
publisher = "MDPI AG",
journal = "Micromachines",
title = "Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications",
volume = "13",
number = "9",
pages = "1399",
doi = "10.3390/mi13091399"
}
Pertin, O., Guha, K., Jakšić, O., Jakšić, Z.,& Iannacci, J.. (2022). Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications. in Micromachines
MDPI AG., 13(9), 1399.
https://doi.org/10.3390/mi13091399
Pertin O, Guha K, Jakšić O, Jakšić Z, Iannacci J. Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications. in Micromachines. 2022;13(9):1399.
doi:10.3390/mi13091399 .
Pertin, Osor, Guha, Koushik, Jakšić, Olga, Jakšić, Zoran, Iannacci, Jacopo, "Investigation of Nonlinear Piezoelectric Energy Harvester for Low-Frequency and Wideband Applications" in Micromachines, 13, no. 9 (2022):1399,
https://doi.org/10.3390/mi13091399 . .
7
7