Knežević-Jugović, Zorica

Link to this page

Authority KeyName Variants
orcid::0000-0003-3009-1698
  • Knežević-Jugović, Zorica (11)
  • Knežević, Zorica D. (1)
Projects
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) Electrochemical synthesis and characterization of nanostructured functional materials for application in new technologies
Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200135 (University of Belgrade, Faculty of Technology and Metallurgy) Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200175 (Institute of Technical Sciences of SASA, Belgrade)
Study of the Synthesis, Structure and Activity of Natural and Synthetic Organic Compounds Dynamics of nonlinear physicochemical and biochemical systems with modeling and predicting of their behavior under nonequilibrium conditions
Synthesis, processing and applications of nanostructured multifunctional materials with defined properties Novel encapsulation and enzyme technologies for designing of new biocatalysts and biologically active compounds targeting enhancement of food quality, safety and competitiveness
Development of integrated approach in plant protection for control harmful organisms Integrated field crop production: conservation of biodiversity and soil fertility
Research and verification of the multidisciplinary forensic methods in MultiPromis - Multifunctional leaf protein and assembled nanocarrier structures delivered by enzyme technology
Ministry of Education, Science and Technological Development of Serbia Ministry of Interior of the Republic of Serbia - 242/16-4-2014

Author's Bibliography

Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite

Kosić, Višnja; Božić, Nataša; Dojnov, Biljana; Banković, Predrag; Jović-Jovičić, Nataša; Knežević-Jugović, Zorica; Milutinović Nikolić, Aleksandra

(Elsevier, 2024)

TY  - JOUR
AU  - Kosić, Višnja
AU  - Božić, Nataša
AU  - Dojnov, Biljana
AU  - Banković, Predrag
AU  - Jović-Jovičić, Nataša
AU  - Knežević-Jugović, Zorica
AU  - Milutinović Nikolić, Aleksandra
PY  - 2024
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7525
AB  - Three glycoside hydrolases (α-amylase, xylanase and pullulanase) were immobilized on low-cost, environmentally friendly, easily modified clay rich in beidellite. Modifications included common procedures: Na-exchange, acid activation, pillaring, pillaring followed by acid activation, and organo-modifications with chitosan. Supports were characterized by chemical analysis, low temperature N2 physisorption, X-ray powder diffraction (XRPD) and Fourier-transform infrared (FT-IR) spectroscopy. The point of zero charge was also determined. Specific activity of different immobilizates of selected glycoside hydrolases was notably influenced by the type of chemical modification of supports. For each enzyme optimal support was chosen and storage stability was tested. α-Amylase immobilized on acid-activated support retained up to 95% of its initial specific activity of 105.6 ± 5.1 U g−1 after a testing period of 120 days. The most suitable support for xylanase was chitosan-modified beidellite with having specific activity of 90.0 ± 1.4 U g−1 which retained >50% its value after 120 days. Specific activity of pullulanase immobilized on pillared sample that was subsequently activated by acid was 44.5 ± 0.7 U g−1. Initial activity was preserved up to 33% for the same testing period. Comparing these results to the storage stability of the free enzymes that completely lost their activity for the longest period of 40 days, it can be concluded that appropriately modified beidellite- based clays could be used as suitable supports for stabilization of glycoside hydrolases. Nevertheless, further characterization of immobilizates (pH, thermal and operational stability) is needed in order to raise the suitability for larger scale processes in food industry.
PB  - Elsevier
T2  - Applied Clay Science
T1  - Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite
VL  - 250
SP  - 107289
DO  - 10.1016/j.clay.2024.107289
ER  - 
@article{
author = "Kosić, Višnja and Božić, Nataša and Dojnov, Biljana and Banković, Predrag and Jović-Jovičić, Nataša and Knežević-Jugović, Zorica and Milutinović Nikolić, Aleksandra",
year = "2024",
abstract = "Three glycoside hydrolases (α-amylase, xylanase and pullulanase) were immobilized on low-cost, environmentally friendly, easily modified clay rich in beidellite. Modifications included common procedures: Na-exchange, acid activation, pillaring, pillaring followed by acid activation, and organo-modifications with chitosan. Supports were characterized by chemical analysis, low temperature N2 physisorption, X-ray powder diffraction (XRPD) and Fourier-transform infrared (FT-IR) spectroscopy. The point of zero charge was also determined. Specific activity of different immobilizates of selected glycoside hydrolases was notably influenced by the type of chemical modification of supports. For each enzyme optimal support was chosen and storage stability was tested. α-Amylase immobilized on acid-activated support retained up to 95% of its initial specific activity of 105.6 ± 5.1 U g−1 after a testing period of 120 days. The most suitable support for xylanase was chitosan-modified beidellite with having specific activity of 90.0 ± 1.4 U g−1 which retained >50% its value after 120 days. Specific activity of pullulanase immobilized on pillared sample that was subsequently activated by acid was 44.5 ± 0.7 U g−1. Initial activity was preserved up to 33% for the same testing period. Comparing these results to the storage stability of the free enzymes that completely lost their activity for the longest period of 40 days, it can be concluded that appropriately modified beidellite- based clays could be used as suitable supports for stabilization of glycoside hydrolases. Nevertheless, further characterization of immobilizates (pH, thermal and operational stability) is needed in order to raise the suitability for larger scale processes in food industry.",
publisher = "Elsevier",
journal = "Applied Clay Science",
title = "Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite",
volume = "250",
pages = "107289",
doi = "10.1016/j.clay.2024.107289"
}
Kosić, V., Božić, N., Dojnov, B., Banković, P., Jović-Jovičić, N., Knežević-Jugović, Z.,& Milutinović Nikolić, A.. (2024). Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite. in Applied Clay Science
Elsevier., 250, 107289.
https://doi.org/10.1016/j.clay.2024.107289
Kosić V, Božić N, Dojnov B, Banković P, Jović-Jovičić N, Knežević-Jugović Z, Milutinović Nikolić A. Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite. in Applied Clay Science. 2024;250:107289.
doi:10.1016/j.clay.2024.107289 .
Kosić, Višnja, Božić, Nataša, Dojnov, Biljana, Banković, Predrag, Jović-Jovičić, Nataša, Knežević-Jugović, Zorica, Milutinović Nikolić, Aleksandra, "Significantly improved stabilization of glycoside hydrolases important in food industry by immobilization onto appropriately modified beidellite" in Applied Clay Science, 250 (2024):107289,
https://doi.org/10.1016/j.clay.2024.107289 . .

Stable, environmentally friendly and inexpensive biocatalysts for obtaining important ingredients applicable in the food industry

Kosić, Višnja; Božić, Nataša; Dojnov, Biljana; Stevanović, Gordana; Banković, Predrag; Milutinović Nikolić, Aleksandra; Knežević-Jugović, Zorica

(Belgrade : Serbian Chemical Society, 2023)

TY  - CONF
AU  - Kosić, Višnja
AU  - Božić, Nataša
AU  - Dojnov, Biljana
AU  - Stevanović, Gordana
AU  - Banković, Predrag
AU  - Milutinović Nikolić, Aleksandra
AU  - Knežević-Jugović, Zorica
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6846
AB  - Clays are naturally occurring, environmentally friendly, chemically inert, thermostable, inexpensive resources that are easily modified into materials with tailored properties. As such, they can be used as suitable supports for enzyme immobilization and application in the food industry. Natural polysaccharides starch, xylan, pullulan, and its derivatives obtained by the action of enzymes, have numerous potentials for food industrial applications. In this work the enzyme supports were prepared from bentonite from Coal mine "Bogovina", Serbia by acid activation (AA), pillaring (P), and pillaring followed by acid activation (PAA). The characterization of the obtained materials included chemical and phase composition, surface acidity, and textural properties. After characterization, -amylase from Bacillus paralicheniformis (BliAmy), commercial xylanase from Sigma-Aldrich (Xyl), and pullulanase from B. paralicheniformis (BliPull) were immobilized on bentonite based supports by 24 h adsorption at 25 °C. The obtained biocatalysts BliAmy-AA (106 IU/g), Xyl-P (74 IU/g), and BliPull-PAA (45 IU/g) showed very good storage stability with the activity preserved after 4 weeks of testing. Products of hydrolysis were detected by TLC and indicate a promising application in the food industry.
PB  - Belgrade : Serbian Chemical Society
C3  - Abstract Book - XXII Congress EuroFoodChem, June 14-16, 2023, Belgrade, Serbia, 2023, 210-210
T1  - Stable, environmentally friendly and inexpensive biocatalysts for obtaining important ingredients applicable in the food industry
SP  - 210
EP  - 210
UR  - https://hdl.handle.net/21.15107/rcub_cer_6846
ER  - 
@conference{
author = "Kosić, Višnja and Božić, Nataša and Dojnov, Biljana and Stevanović, Gordana and Banković, Predrag and Milutinović Nikolić, Aleksandra and Knežević-Jugović, Zorica",
year = "2023",
abstract = "Clays are naturally occurring, environmentally friendly, chemically inert, thermostable, inexpensive resources that are easily modified into materials with tailored properties. As such, they can be used as suitable supports for enzyme immobilization and application in the food industry. Natural polysaccharides starch, xylan, pullulan, and its derivatives obtained by the action of enzymes, have numerous potentials for food industrial applications. In this work the enzyme supports were prepared from bentonite from Coal mine "Bogovina", Serbia by acid activation (AA), pillaring (P), and pillaring followed by acid activation (PAA). The characterization of the obtained materials included chemical and phase composition, surface acidity, and textural properties. After characterization, -amylase from Bacillus paralicheniformis (BliAmy), commercial xylanase from Sigma-Aldrich (Xyl), and pullulanase from B. paralicheniformis (BliPull) were immobilized on bentonite based supports by 24 h adsorption at 25 °C. The obtained biocatalysts BliAmy-AA (106 IU/g), Xyl-P (74 IU/g), and BliPull-PAA (45 IU/g) showed very good storage stability with the activity preserved after 4 weeks of testing. Products of hydrolysis were detected by TLC and indicate a promising application in the food industry.",
publisher = "Belgrade : Serbian Chemical Society",
journal = "Abstract Book - XXII Congress EuroFoodChem, June 14-16, 2023, Belgrade, Serbia, 2023, 210-210",
title = "Stable, environmentally friendly and inexpensive biocatalysts for obtaining important ingredients applicable in the food industry",
pages = "210-210",
url = "https://hdl.handle.net/21.15107/rcub_cer_6846"
}
Kosić, V., Božić, N., Dojnov, B., Stevanović, G., Banković, P., Milutinović Nikolić, A.,& Knežević-Jugović, Z.. (2023). Stable, environmentally friendly and inexpensive biocatalysts for obtaining important ingredients applicable in the food industry. in Abstract Book - XXII Congress EuroFoodChem, June 14-16, 2023, Belgrade, Serbia, 2023, 210-210
Belgrade : Serbian Chemical Society., 210-210.
https://hdl.handle.net/21.15107/rcub_cer_6846
Kosić V, Božić N, Dojnov B, Stevanović G, Banković P, Milutinović Nikolić A, Knežević-Jugović Z. Stable, environmentally friendly and inexpensive biocatalysts for obtaining important ingredients applicable in the food industry. in Abstract Book - XXII Congress EuroFoodChem, June 14-16, 2023, Belgrade, Serbia, 2023, 210-210. 2023;:210-210.
https://hdl.handle.net/21.15107/rcub_cer_6846 .
Kosić, Višnja, Božić, Nataša, Dojnov, Biljana, Stevanović, Gordana, Banković, Predrag, Milutinović Nikolić, Aleksandra, Knežević-Jugović, Zorica, "Stable, environmentally friendly and inexpensive biocatalysts for obtaining important ingredients applicable in the food industry" in Abstract Book - XXII Congress EuroFoodChem, June 14-16, 2023, Belgrade, Serbia, 2023, 210-210 (2023):210-210,
https://hdl.handle.net/21.15107/rcub_cer_6846 .

The tailings from coal mine instead of waste became applicable as enzyme supports

Kosić, Višnja; Božić, Nataša; Dojnov, Biljana; Stevanović, Gordana; Milutinović Nikolić, Aleksandra; Knežević-Jugović, Zorica; Banković, Predrag

(European Federation of Biotechnology, 2023)

TY  - CONF
AU  - Kosić, Višnja
AU  - Božić, Nataša
AU  - Dojnov, Biljana
AU  - Stevanović, Gordana
AU  - Milutinović Nikolić, Aleksandra
AU  - Knežević-Jugović, Zorica
AU  - Banković, Predrag
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6030
AB  - Some coal mines suffer from problem of having huge deposits of bentonite that they regard as undesirable, since bentonite can cause problem due to its swelling property. Instead of piling stacks of bentonite and regarding it as ecological problem the bentonite can be used as enzyme support by immobilization of enzymes as the challenging new application in the field of biotechnology. The enzyme catalysts in the industrial application present lower energy costs and are more environmentally friendly in comparison to traditional chemical processes. The advantages of enzymes are even more prominent when enzymes are applied in immobilized form. In this work the enzyme supports were prepared from bentonite from Coal mine "Bogovina", Serbia where bentonite, although valuable resource, is still considered to be tailings. Bentonite was modified by common methods: acid activation (AA), pillaring (P), and pillaring followed by acid activation (PAA) and tested as enzyme support. All the obtained materials were characterized by the X-ray powder diffraction and FTIR spectroscopy. The amylase, xylanase, and pullulanase were immobilized on different bentonite based supports by 24 h adsorption at 25 °C. The experimental results revealed that under the investigated conditions AA, P, and PAA, were the most suitable for amylase (106 IU/g), xylanase (74 IU/g), and pullulanase (45 IU/g) immobilization, respectively.
PB  - European Federation of Biotechnology
C3  - Programme and abstract book - Biotechnology for a circular bioeconomy: carbon capture, waste recycling and mitigation of global warming, 28-29 March 2023, online
T1  - The tailings from coal mine instead of waste became applicable as enzyme supports
SP  - 65
EP  - 65
UR  - https://hdl.handle.net/21.15107/rcub_cer_6030
ER  - 
@conference{
author = "Kosić, Višnja and Božić, Nataša and Dojnov, Biljana and Stevanović, Gordana and Milutinović Nikolić, Aleksandra and Knežević-Jugović, Zorica and Banković, Predrag",
year = "2023",
abstract = "Some coal mines suffer from problem of having huge deposits of bentonite that they regard as undesirable, since bentonite can cause problem due to its swelling property. Instead of piling stacks of bentonite and regarding it as ecological problem the bentonite can be used as enzyme support by immobilization of enzymes as the challenging new application in the field of biotechnology. The enzyme catalysts in the industrial application present lower energy costs and are more environmentally friendly in comparison to traditional chemical processes. The advantages of enzymes are even more prominent when enzymes are applied in immobilized form. In this work the enzyme supports were prepared from bentonite from Coal mine "Bogovina", Serbia where bentonite, although valuable resource, is still considered to be tailings. Bentonite was modified by common methods: acid activation (AA), pillaring (P), and pillaring followed by acid activation (PAA) and tested as enzyme support. All the obtained materials were characterized by the X-ray powder diffraction and FTIR spectroscopy. The amylase, xylanase, and pullulanase were immobilized on different bentonite based supports by 24 h adsorption at 25 °C. The experimental results revealed that under the investigated conditions AA, P, and PAA, were the most suitable for amylase (106 IU/g), xylanase (74 IU/g), and pullulanase (45 IU/g) immobilization, respectively.",
publisher = "European Federation of Biotechnology",
journal = "Programme and abstract book - Biotechnology for a circular bioeconomy: carbon capture, waste recycling and mitigation of global warming, 28-29 March 2023, online",
title = "The tailings from coal mine instead of waste became applicable as enzyme supports",
pages = "65-65",
url = "https://hdl.handle.net/21.15107/rcub_cer_6030"
}
Kosić, V., Božić, N., Dojnov, B., Stevanović, G., Milutinović Nikolić, A., Knežević-Jugović, Z.,& Banković, P.. (2023). The tailings from coal mine instead of waste became applicable as enzyme supports. in Programme and abstract book - Biotechnology for a circular bioeconomy: carbon capture, waste recycling and mitigation of global warming, 28-29 March 2023, online
European Federation of Biotechnology., 65-65.
https://hdl.handle.net/21.15107/rcub_cer_6030
Kosić V, Božić N, Dojnov B, Stevanović G, Milutinović Nikolić A, Knežević-Jugović Z, Banković P. The tailings from coal mine instead of waste became applicable as enzyme supports. in Programme and abstract book - Biotechnology for a circular bioeconomy: carbon capture, waste recycling and mitigation of global warming, 28-29 March 2023, online. 2023;:65-65.
https://hdl.handle.net/21.15107/rcub_cer_6030 .
Kosić, Višnja, Božić, Nataša, Dojnov, Biljana, Stevanović, Gordana, Milutinović Nikolić, Aleksandra, Knežević-Jugović, Zorica, Banković, Predrag, "The tailings from coal mine instead of waste became applicable as enzyme supports" in Programme and abstract book - Biotechnology for a circular bioeconomy: carbon capture, waste recycling and mitigation of global warming, 28-29 March 2023, online (2023):65-65,
https://hdl.handle.net/21.15107/rcub_cer_6030 .

Immobilization of α-amylase from bacillus paralicheniformis on bentonites

Kosić, Višnja; Pavlović, Stefan; Božić, Nataša; Dojnov, Biljana; Stevanović, Gordana; Knežević-Jugović, Zorica; Milutinović Nikolić, Aleksandra

(The Society of Physical Chemists of Serbia, 2022)

TY  - CONF
AU  - Kosić, Višnja
AU  - Pavlović, Stefan
AU  - Božić, Nataša
AU  - Dojnov, Biljana
AU  - Stevanović, Gordana
AU  - Knežević-Jugović, Zorica
AU  - Milutinović Nikolić, Aleksandra
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5925
AB  - α-Amylase from Bacillus paralicheniformis (BliAmy) is a highly efficient raw starch digesting enzyme. Starch is an inexpensive source of many food industrial products. Naturally occurring clay are non-toxic, environmentally friendly and inexpensive. Therefore, immobilization of BliAmy by adsorption on three differently modified bentonites was studied. Modifications included common Na-exchange procedure, acid activation, and alkali activation. The modified clays were characterized by X-ray powder diffraction, mercury intrusion porosimetry and the points of zero charge were determined. The adsorption of the enzyme was significantly influenced by the type of modification of bentonite, being the highest for the acid-activated bentonite with the highest porosity. On the other hand, the highest enzyme activity for immobilized α-amylase was obtained with alkali-modified bentonite (98 U/g), suggesting it as a good candidate for immobilization of α-amylase for application in the food industry.
PB  - The Society of Physical Chemists of Serbia
C3  - Proceedings - 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Physical Chemistry 2022, September, 26-30, 2022, Belgrade, Serbia
T1  - Immobilization of α-amylase from bacillus paralicheniformis on bentonites
SP  - 161
EP  - 164
UR  - https://hdl.handle.net/21.15107/rcub_cer_5925
ER  - 
@conference{
author = "Kosić, Višnja and Pavlović, Stefan and Božić, Nataša and Dojnov, Biljana and Stevanović, Gordana and Knežević-Jugović, Zorica and Milutinović Nikolić, Aleksandra",
year = "2022",
abstract = "α-Amylase from Bacillus paralicheniformis (BliAmy) is a highly efficient raw starch digesting enzyme. Starch is an inexpensive source of many food industrial products. Naturally occurring clay are non-toxic, environmentally friendly and inexpensive. Therefore, immobilization of BliAmy by adsorption on three differently modified bentonites was studied. Modifications included common Na-exchange procedure, acid activation, and alkali activation. The modified clays were characterized by X-ray powder diffraction, mercury intrusion porosimetry and the points of zero charge were determined. The adsorption of the enzyme was significantly influenced by the type of modification of bentonite, being the highest for the acid-activated bentonite with the highest porosity. On the other hand, the highest enzyme activity for immobilized α-amylase was obtained with alkali-modified bentonite (98 U/g), suggesting it as a good candidate for immobilization of α-amylase for application in the food industry.",
publisher = "The Society of Physical Chemists of Serbia",
journal = "Proceedings - 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Physical Chemistry 2022, September, 26-30, 2022, Belgrade, Serbia",
title = "Immobilization of α-amylase from bacillus paralicheniformis on bentonites",
pages = "161-164",
url = "https://hdl.handle.net/21.15107/rcub_cer_5925"
}
Kosić, V., Pavlović, S., Božić, N., Dojnov, B., Stevanović, G., Knežević-Jugović, Z.,& Milutinović Nikolić, A.. (2022). Immobilization of α-amylase from bacillus paralicheniformis on bentonites. in Proceedings - 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Physical Chemistry 2022, September, 26-30, 2022, Belgrade, Serbia
The Society of Physical Chemists of Serbia., 161-164.
https://hdl.handle.net/21.15107/rcub_cer_5925
Kosić V, Pavlović S, Božić N, Dojnov B, Stevanović G, Knežević-Jugović Z, Milutinović Nikolić A. Immobilization of α-amylase from bacillus paralicheniformis on bentonites. in Proceedings - 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Physical Chemistry 2022, September, 26-30, 2022, Belgrade, Serbia. 2022;:161-164.
https://hdl.handle.net/21.15107/rcub_cer_5925 .
Kosić, Višnja, Pavlović, Stefan, Božić, Nataša, Dojnov, Biljana, Stevanović, Gordana, Knežević-Jugović, Zorica, Milutinović Nikolić, Aleksandra, "Immobilization of α-amylase from bacillus paralicheniformis on bentonites" in Proceedings - 16th International Conference on Fundamental and Applied Aspects of Physical Chemistry, Physical Chemistry 2022, September, 26-30, 2022, Belgrade, Serbia (2022):161-164,
https://hdl.handle.net/21.15107/rcub_cer_5925 .

Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation

Jonović, Marko; Jugović, Branimir; Žuža, Milena; Đorđević, Verica; Milašinović, Nikola; Bugarski, Branko; Knežević-Jugović, Zorica

(MDPI, 2022)

TY  - JOUR
AU  - Jonović, Marko
AU  - Jugović, Branimir
AU  - Žuža, Milena
AU  - Đorđević, Verica
AU  - Milašinović, Nikola
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5239
AB  - The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.
PB  - MDPI
T2  - Polymers
T1  - Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation
VL  - 14
IS  - 13
SP  - 2614
DO  - 10.3390/polym14132614
ER  - 
@article{
author = "Jonović, Marko and Jugović, Branimir and Žuža, Milena and Đorđević, Verica and Milašinović, Nikola and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2022",
abstract = "The aim of this study was to investigate covalent immobilization of horseradish peroxidase (HRP) on magnetic nanoparticles (Mag) encapsulated in calcium alginate beads (MABs) for color degradation, combining easy and fast removal of biocatalyst from the reaction mixture due to its magnetic properties and strong binding due to surface alginate functional groups. MABs obtained by extrusion techniques were analyzed by optical microscopy, FEG-SEM and characterized regarding mechanical properties, magnetization and HRP binding. HRP with initial concentration of 10 mg/gcarrier was successfully covalently bonded on MABs (diameter ~1 mm, magnetite/alginate ratio 1:4), with protein loading of 8.9 mg/gcarrier, immobilization yield 96.9% and activity 32.8 U/g. Immobilized HRP on MABs (HRP-MABs) was then used to catalyze degradation of two anthraquinonic dyes, Acid Blue 225 (AB225) and Acid Violet 109 (AV109), as models for wastewater pollutants. HRP-MABs decolorized 77.3% and 76.1% of AV109 and AB225, respectively after 15 min under optimal conditions (0.097 mM H2O2, 200 mg of HRP-MABs (8.9 mg/gcarrier), 0.08 and 0.1 g/mg beads/dye ratio for AV109 and AB225, respectively). Biocatalyst was used for 7 repeated cycles retaining 75% and 51% of initial activity for AB225 and AV109, respectively, showing potential for use in large scale applications for colored wastewater treatment.",
publisher = "MDPI",
journal = "Polymers",
title = "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation",
volume = "14",
number = "13",
pages = "2614",
doi = "10.3390/polym14132614"
}
Jonović, M., Jugović, B., Žuža, M., Đorđević, V., Milašinović, N., Bugarski, B.,& Knežević-Jugović, Z.. (2022). Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers
MDPI., 14(13), 2614.
https://doi.org/10.3390/polym14132614
Jonović M, Jugović B, Žuža M, Đorđević V, Milašinović N, Bugarski B, Knežević-Jugović Z. Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation. in Polymers. 2022;14(13):2614.
doi:10.3390/polym14132614 .
Jonović, Marko, Jugović, Branimir, Žuža, Milena, Đorđević, Verica, Milašinović, Nikola, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilization of Horseradish Peroxidase on Magnetite-Alginate Beads to Enable Effective Strong Binding and Enzyme Recycling during Anthraquinone Dyes’ Degradation" in Polymers, 14, no. 13 (2022):2614,
https://doi.org/10.3390/polym14132614 . .
8
6

Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins

Jonović, Marko; Žuža, Milena; Đorđević, Verica; Šekuljica, Nataša; Milivojević, Milan; Jugović, Branimir; Bugarski, Branko; Knežević-Jugović, Zorica

(MDPI, 2021)

TY  - JOUR
AU  - Jonović, Marko
AU  - Žuža, Milena
AU  - Đorđević, Verica
AU  - Šekuljica, Nataša
AU  - Milivojević, Milan
AU  - Jugović, Branimir
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4834
AB  - Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.
PB  - MDPI
T2  - Catalysts
T1  - Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins
VL  - 11
IS  - 3
SP  - 305
DO  - 10.3390/catal11030305
ER  - 
@article{
author = "Jonović, Marko and Žuža, Milena and Đorđević, Verica and Šekuljica, Nataša and Milivojević, Milan and Jugović, Branimir and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2021",
abstract = "Enzymatic hydrolysis of food proteins is convenient method to improve their functional properties and physiological activity. Herein, the successful covalent attachment of alcalase on alginate micron and submicron beads using the carbodiimide based chemistry reaction and the subsequent application of the beads for egg white and soy proteins hydrolysis were studied. In addition to the electrostatic extrusion technique (EE) previously used by others, the potential utilization of a novel ultrasonic spray atomization technique without drying (UA) and with drying (UAD) for alginate submicron beads production has been attempted. The immobilization parameters were optimized on microbeads obtained by EE technique (803 +/- 23 mu m) with respect to enzyme loading and alcalase activity. UA and UAD techniques resulted in much smaller particles (607 +/- 103 nm and 394 +/- 51 nm in diameter, respectively), enabling even higher enzyme loading of 671.6 +/- 4 mg g(-1) on the carrier and the highest immobilized alcalase activity of 2716.1 IU g(-1) in the standard reaction. The UAD biocatalyst exhibited also better performances in the real food system based on egg white or soy proteins. It has been shown that the immobilized alcalase can be reused in seven successive soy protein hydrolysis cycles with a little decrease in the activity.",
publisher = "MDPI",
journal = "Catalysts",
title = "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins",
volume = "11",
number = "3",
pages = "305",
doi = "10.3390/catal11030305"
}
Jonović, M., Žuža, M., Đorđević, V., Šekuljica, N., Milivojević, M., Jugović, B., Bugarski, B.,& Knežević-Jugović, Z.. (2021). Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in Catalysts
MDPI., 11(3), 305.
https://doi.org/10.3390/catal11030305
Jonović M, Žuža M, Đorđević V, Šekuljica N, Milivojević M, Jugović B, Bugarski B, Knežević-Jugović Z. Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins. in Catalysts. 2021;11(3):305.
doi:10.3390/catal11030305 .
Jonović, Marko, Žuža, Milena, Đorđević, Verica, Šekuljica, Nataša, Milivojević, Milan, Jugović, Branimir, Bugarski, Branko, Knežević-Jugović, Zorica, "Immobilized Alcalase on Micron- and Submicron-Sized Alginate Beads as a Potential Biocatalyst for Hydrolysis of Food Proteins" in Catalysts, 11, no. 3 (2021):305,
https://doi.org/10.3390/catal11030305 . .
5
6

Enhancement of antioxidant activity and bioactive compound contents in yellow soybean by plant-extract-based products

Đurović, Sanja; Dragičević, Vesna; Waisi, Hadi; Pagnacco, Maja; Luković, Nevena; Knežević-Jugović, Zorica; Nikolić, Bogdan

(Serbian Biological Society, 2019)

TY  - JOUR
AU  - Đurović, Sanja
AU  - Dragičević, Vesna
AU  - Waisi, Hadi
AU  - Pagnacco, Maja
AU  - Luković, Nevena
AU  - Knežević-Jugović, Zorica
AU  - Nikolić, Bogdan
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3392
AB  - Polyphenols present in different plant cell organelles increase the resistance of plants to various types of environmental stresses. We investigated the possibility of increasing the content of bioactive compounds in the seed of yellow soybean variety Laura. The soybean was treated during vegetation with five products based on plant extracts, on the assumption of enrichment of plants with various nutrients. Soybean flour extracts were screened spectrophotometrically for total phenolic content and antioxidant activity. The antioxidant activity was evaluated using three methods. The content of phenolic acids was determined by HPLC, and the raw protein content was estimated by the Kjeldahl method. Depending on the treatment, variations in the quantity of individual phenolic acids with up to 90% higher concentration as compared to the control were observed. Controlled usage of certain plant extracts can increase the concentration of the target group of bioactive compounds in the samples. The synergistic effect of proteins and phenolic compounds on the antioxidant activity of extracts was detected. The results of this study are not only important from the aspect of plant resistance to various types of stress, but also when considering soybean as a functional food.
PB  - Serbian Biological Society
T2  - Archives of Biological Sciences
T1  - Enhancement of antioxidant activity and bioactive compound contents in yellow soybean by plant-extract-based products
VL  - 71
IS  - 3
SP  - 425
EP  - 434
DO  - 10.2298/ABS190123024D
ER  - 
@article{
author = "Đurović, Sanja and Dragičević, Vesna and Waisi, Hadi and Pagnacco, Maja and Luković, Nevena and Knežević-Jugović, Zorica and Nikolić, Bogdan",
year = "2019",
abstract = "Polyphenols present in different plant cell organelles increase the resistance of plants to various types of environmental stresses. We investigated the possibility of increasing the content of bioactive compounds in the seed of yellow soybean variety Laura. The soybean was treated during vegetation with five products based on plant extracts, on the assumption of enrichment of plants with various nutrients. Soybean flour extracts were screened spectrophotometrically for total phenolic content and antioxidant activity. The antioxidant activity was evaluated using three methods. The content of phenolic acids was determined by HPLC, and the raw protein content was estimated by the Kjeldahl method. Depending on the treatment, variations in the quantity of individual phenolic acids with up to 90% higher concentration as compared to the control were observed. Controlled usage of certain plant extracts can increase the concentration of the target group of bioactive compounds in the samples. The synergistic effect of proteins and phenolic compounds on the antioxidant activity of extracts was detected. The results of this study are not only important from the aspect of plant resistance to various types of stress, but also when considering soybean as a functional food.",
publisher = "Serbian Biological Society",
journal = "Archives of Biological Sciences",
title = "Enhancement of antioxidant activity and bioactive compound contents in yellow soybean by plant-extract-based products",
volume = "71",
number = "3",
pages = "425-434",
doi = "10.2298/ABS190123024D"
}
Đurović, S., Dragičević, V., Waisi, H., Pagnacco, M., Luković, N., Knežević-Jugović, Z.,& Nikolić, B.. (2019). Enhancement of antioxidant activity and bioactive compound contents in yellow soybean by plant-extract-based products. in Archives of Biological Sciences
Serbian Biological Society., 71(3), 425-434.
https://doi.org/10.2298/ABS190123024D
Đurović S, Dragičević V, Waisi H, Pagnacco M, Luković N, Knežević-Jugović Z, Nikolić B. Enhancement of antioxidant activity and bioactive compound contents in yellow soybean by plant-extract-based products. in Archives of Biological Sciences. 2019;71(3):425-434.
doi:10.2298/ABS190123024D .
Đurović, Sanja, Dragičević, Vesna, Waisi, Hadi, Pagnacco, Maja, Luković, Nevena, Knežević-Jugović, Zorica, Nikolić, Bogdan, "Enhancement of antioxidant activity and bioactive compound contents in yellow soybean by plant-extract-based products" in Archives of Biological Sciences, 71, no. 3 (2019):425-434,
https://doi.org/10.2298/ABS190123024D . .
5
2
5

Design and characterization of alcalase-chitosan conjugates as potential biocatalysts

Zuza, Milena G.; Milasinovic, Nikola Z.; Jonović, Marko; Jovanovic, Jelena R.; Kalagasidis Krušić, Melina; Bugarski, Branko; Knežević-Jugović, Zorica

(Springer, New York, 2017)

TY  - JOUR
AU  - Zuza, Milena G.
AU  - Milasinovic, Nikola Z.
AU  - Jonović, Marko
AU  - Jovanovic, Jelena R.
AU  - Kalagasidis Krušić, Melina
AU  - Bugarski, Branko
AU  - Knežević-Jugović, Zorica
PY  - 2017
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2128
AB  - In this study, alcalase (protease from Bacillus licheniformis) immobilization by adsorption, enzyme crosslinking and covalent enzyme binding to activated chitosan microbeads were examined. The biocatalysts highest activity was obtained by covalent immobilization of alcalase onto a solid support. The alcalase covalent immobilization onto different types of chitosan beads obtained by inverse emulsion technique and electrostatic extrusion was studied. Parameters examined under different conditions were beads diameter, enzyme loading, enzyme capacity yield, and biocatalyst activity. The highest activity and enzyme loading of 23.6 IU/mg protein and 340.2 mg/g, respectively, were achieved by the enzyme immobilized onto chitosan microbeads obtained by the electrostatic extrusion technique. FT-IR analysis was used to confirm formation of alcalase-chitosan conjugates. The activity of optimally produced alcalase-chitosan microbeads was then verified in the industrially feasible reaction systems of egg white and soy protein hydrolysis. The high degree of hydrolysis of 29.85 +/- 0.967% after 180 min and five successive reuses obtained under real conditions (50 A degrees C, pH 8) verified the covalently bound alcalase to chitosan beads a promising candidate for use in industrial egg white protein hydrolysis process.
PB  - Springer, New York
T2  - Bioprocess and Biosystems Engineering
T1  - Design and characterization of alcalase-chitosan conjugates as potential biocatalysts
VL  - 40
IS  - 11
SP  - 1713
EP  - 1723
DO  - 10.1007/s00449-017-1826-7
ER  - 
@article{
author = "Zuza, Milena G. and Milasinovic, Nikola Z. and Jonović, Marko and Jovanovic, Jelena R. and Kalagasidis Krušić, Melina and Bugarski, Branko and Knežević-Jugović, Zorica",
year = "2017",
abstract = "In this study, alcalase (protease from Bacillus licheniformis) immobilization by adsorption, enzyme crosslinking and covalent enzyme binding to activated chitosan microbeads were examined. The biocatalysts highest activity was obtained by covalent immobilization of alcalase onto a solid support. The alcalase covalent immobilization onto different types of chitosan beads obtained by inverse emulsion technique and electrostatic extrusion was studied. Parameters examined under different conditions were beads diameter, enzyme loading, enzyme capacity yield, and biocatalyst activity. The highest activity and enzyme loading of 23.6 IU/mg protein and 340.2 mg/g, respectively, were achieved by the enzyme immobilized onto chitosan microbeads obtained by the electrostatic extrusion technique. FT-IR analysis was used to confirm formation of alcalase-chitosan conjugates. The activity of optimally produced alcalase-chitosan microbeads was then verified in the industrially feasible reaction systems of egg white and soy protein hydrolysis. The high degree of hydrolysis of 29.85 +/- 0.967% after 180 min and five successive reuses obtained under real conditions (50 A degrees C, pH 8) verified the covalently bound alcalase to chitosan beads a promising candidate for use in industrial egg white protein hydrolysis process.",
publisher = "Springer, New York",
journal = "Bioprocess and Biosystems Engineering",
title = "Design and characterization of alcalase-chitosan conjugates as potential biocatalysts",
volume = "40",
number = "11",
pages = "1713-1723",
doi = "10.1007/s00449-017-1826-7"
}
Zuza, M. G., Milasinovic, N. Z., Jonović, M., Jovanovic, J. R., Kalagasidis Krušić, M., Bugarski, B.,& Knežević-Jugović, Z.. (2017). Design and characterization of alcalase-chitosan conjugates as potential biocatalysts. in Bioprocess and Biosystems Engineering
Springer, New York., 40(11), 1713-1723.
https://doi.org/10.1007/s00449-017-1826-7
Zuza MG, Milasinovic NZ, Jonović M, Jovanovic JR, Kalagasidis Krušić M, Bugarski B, Knežević-Jugović Z. Design and characterization of alcalase-chitosan conjugates as potential biocatalysts. in Bioprocess and Biosystems Engineering. 2017;40(11):1713-1723.
doi:10.1007/s00449-017-1826-7 .
Zuza, Milena G., Milasinovic, Nikola Z., Jonović, Marko, Jovanovic, Jelena R., Kalagasidis Krušić, Melina, Bugarski, Branko, Knežević-Jugović, Zorica, "Design and characterization of alcalase-chitosan conjugates as potential biocatalysts" in Bioprocess and Biosystems Engineering, 40, no. 11 (2017):1713-1723,
https://doi.org/10.1007/s00449-017-1826-7 . .
3
18
14
17

Polypyrrole-based Enzyme Electrode with Immobilized Glucose Oxidase for Electrochemical Determination of Glucose

Jugović, Branimir; Grgur, Branimir N.; Antov, Mirjana; Knežević-Jugović, Zorica; Stevanović, Jasmina; Gvozdenović, Milica M.

(Esg, Belgrade, 2016)

TY  - JOUR
AU  - Jugović, Branimir
AU  - Grgur, Branimir N.
AU  - Antov, Mirjana
AU  - Knežević-Jugović, Zorica
AU  - Stevanović, Jasmina
AU  - Gvozdenović, Milica M.
PY  - 2016
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1962
AB  - Polypyrrole enzyme electrode was formed by immobilization of glucose oxidase via glutaraldehyde into electrochemically synthesized polypyrrole on glassy carbon electrode. Electrochemical synthesis was performed in 0.5 mol dm(-3) HCl and 0.2 mol dm(-3) pyrrole at constant current density of 2 mA cm(-2). Chronopotentiometric curves of polypyrrole enzyme electrode were recorded at current density of 42 nA cm(-2) for different glucose concentrations. The determined value of the apparent Michaelis-Menten constant was 0.045 mmol dm(-3) which is significantly lower than that of free enzyme indicating enhanced enzyme efficiency when it is immobilized into electroconducting polymer matrix.
PB  - Esg, Belgrade
T2  - International Journal of Electrochemical Science
T1  - Polypyrrole-based Enzyme Electrode with Immobilized Glucose Oxidase for Electrochemical Determination of Glucose
VL  - 11
IS  - 2
SP  - 1152
EP  - 1161
UR  - https://hdl.handle.net/21.15107/rcub_dais_15979
ER  - 
@article{
author = "Jugović, Branimir and Grgur, Branimir N. and Antov, Mirjana and Knežević-Jugović, Zorica and Stevanović, Jasmina and Gvozdenović, Milica M.",
year = "2016",
abstract = "Polypyrrole enzyme electrode was formed by immobilization of glucose oxidase via glutaraldehyde into electrochemically synthesized polypyrrole on glassy carbon electrode. Electrochemical synthesis was performed in 0.5 mol dm(-3) HCl and 0.2 mol dm(-3) pyrrole at constant current density of 2 mA cm(-2). Chronopotentiometric curves of polypyrrole enzyme electrode were recorded at current density of 42 nA cm(-2) for different glucose concentrations. The determined value of the apparent Michaelis-Menten constant was 0.045 mmol dm(-3) which is significantly lower than that of free enzyme indicating enhanced enzyme efficiency when it is immobilized into electroconducting polymer matrix.",
publisher = "Esg, Belgrade",
journal = "International Journal of Electrochemical Science",
title = "Polypyrrole-based Enzyme Electrode with Immobilized Glucose Oxidase for Electrochemical Determination of Glucose",
volume = "11",
number = "2",
pages = "1152-1161",
url = "https://hdl.handle.net/21.15107/rcub_dais_15979"
}
Jugović, B., Grgur, B. N., Antov, M., Knežević-Jugović, Z., Stevanović, J.,& Gvozdenović, M. M.. (2016). Polypyrrole-based Enzyme Electrode with Immobilized Glucose Oxidase for Electrochemical Determination of Glucose. in International Journal of Electrochemical Science
Esg, Belgrade., 11(2), 1152-1161.
https://hdl.handle.net/21.15107/rcub_dais_15979
Jugović B, Grgur BN, Antov M, Knežević-Jugović Z, Stevanović J, Gvozdenović MM. Polypyrrole-based Enzyme Electrode with Immobilized Glucose Oxidase for Electrochemical Determination of Glucose. in International Journal of Electrochemical Science. 2016;11(2):1152-1161.
https://hdl.handle.net/21.15107/rcub_dais_15979 .
Jugović, Branimir, Grgur, Branimir N., Antov, Mirjana, Knežević-Jugović, Zorica, Stevanović, Jasmina, Gvozdenović, Milica M., "Polypyrrole-based Enzyme Electrode with Immobilized Glucose Oxidase for Electrochemical Determination of Glucose" in International Journal of Electrochemical Science, 11, no. 2 (2016):1152-1161,
https://hdl.handle.net/21.15107/rcub_dais_15979 .
18

Electrochemical Template-Free Synthesis of Nanofibrous Polyaniline Modified Electrode for Ascorbic Acid Determination

Popović, Nataša; Jugović, Branimir; Jokić, Bojan; Knežević-Jugović, Zorica; Stevanović, Jasmina; Grgur, Branimir N.; Gvozdenović, Milica M.

(Electrochemical Science Group, 2015)

TY  - JOUR
AU  - Popović, Nataša
AU  - Jugović, Branimir
AU  - Jokić, Bojan
AU  - Knežević-Jugović, Zorica
AU  - Stevanović, Jasmina
AU  - Grgur, Branimir N.
AU  - Gvozdenović, Milica M.
PY  - 2015
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1743
AB  - Electrochemical formation of polyaniline (PANI) modified electrode was performed galvanostatically from aqueous solution of 1.0 mol dm(-3) HCl containing 0.2 mol dm(-3) aniline at current densities ranging from 0.5-3.0 mA cm(-2). The morphology of PANI electrode consisted of highly developed nanofibrous network with electrocatalytic features towards oxidation of ascorbic acid, reflected in increase of the peak current similar to 2.5 times and shift of the oxidation potential by 0.32 V to less positive values. Response of PANI modified electrode was obtained from anodic LSV curves. Current peak potentials decreased with increase of pH with slope of similar to 32 mV pH(-1), indicating two electron charge transfer process with liberation of one proton characteristic of an electrochemical reaction followed by a chemical step.
PB  - Electrochemical Science Group
T2  - International Journal of Electrochemical Science
T1  - Electrochemical Template-Free Synthesis of Nanofibrous Polyaniline Modified Electrode for Ascorbic Acid Determination
VL  - 10
IS  - 2
SP  - 1208
EP  - 1220
UR  - https://hdl.handle.net/21.15107/rcub_dais_3543
ER  - 
@article{
author = "Popović, Nataša and Jugović, Branimir and Jokić, Bojan and Knežević-Jugović, Zorica and Stevanović, Jasmina and Grgur, Branimir N. and Gvozdenović, Milica M.",
year = "2015",
abstract = "Electrochemical formation of polyaniline (PANI) modified electrode was performed galvanostatically from aqueous solution of 1.0 mol dm(-3) HCl containing 0.2 mol dm(-3) aniline at current densities ranging from 0.5-3.0 mA cm(-2). The morphology of PANI electrode consisted of highly developed nanofibrous network with electrocatalytic features towards oxidation of ascorbic acid, reflected in increase of the peak current similar to 2.5 times and shift of the oxidation potential by 0.32 V to less positive values. Response of PANI modified electrode was obtained from anodic LSV curves. Current peak potentials decreased with increase of pH with slope of similar to 32 mV pH(-1), indicating two electron charge transfer process with liberation of one proton characteristic of an electrochemical reaction followed by a chemical step.",
publisher = "Electrochemical Science Group",
journal = "International Journal of Electrochemical Science",
title = "Electrochemical Template-Free Synthesis of Nanofibrous Polyaniline Modified Electrode for Ascorbic Acid Determination",
volume = "10",
number = "2",
pages = "1208-1220",
url = "https://hdl.handle.net/21.15107/rcub_dais_3543"
}
Popović, N., Jugović, B., Jokić, B., Knežević-Jugović, Z., Stevanović, J., Grgur, B. N.,& Gvozdenović, M. M.. (2015). Electrochemical Template-Free Synthesis of Nanofibrous Polyaniline Modified Electrode for Ascorbic Acid Determination. in International Journal of Electrochemical Science
Electrochemical Science Group., 10(2), 1208-1220.
https://hdl.handle.net/21.15107/rcub_dais_3543
Popović N, Jugović B, Jokić B, Knežević-Jugović Z, Stevanović J, Grgur BN, Gvozdenović MM. Electrochemical Template-Free Synthesis of Nanofibrous Polyaniline Modified Electrode for Ascorbic Acid Determination. in International Journal of Electrochemical Science. 2015;10(2):1208-1220.
https://hdl.handle.net/21.15107/rcub_dais_3543 .
Popović, Nataša, Jugović, Branimir, Jokić, Bojan, Knežević-Jugović, Zorica, Stevanović, Jasmina, Grgur, Branimir N., Gvozdenović, Milica M., "Electrochemical Template-Free Synthesis of Nanofibrous Polyaniline Modified Electrode for Ascorbic Acid Determination" in International Journal of Electrochemical Science, 10, no. 2 (2015):1208-1220,
https://hdl.handle.net/21.15107/rcub_dais_3543 .
7
8

Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes

Prlainović, Nevena Ž.; Bezbradica, Dejan I.; Knežević-Jugović, Zorica; Stevanović, Sanja; Avramov Ivić, Milka; Uskoković, Petar S.; Mijin, Dušan

(Korean Society of Industrial Engineering Chemistry, 2013)

TY  - JOUR
AU  - Prlainović, Nevena Ž.
AU  - Bezbradica, Dejan I.
AU  - Knežević-Jugović, Zorica
AU  - Stevanović, Sanja
AU  - Avramov Ivić, Milka
AU  - Uskoković, Petar S.
AU  - Mijin, Dušan
PY  - 2013
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/1297
AB  - In this work lipase from Candida rugosa was adsorbed on unmodified surface of multi walled carbon nanotubes (raw-MWCIsIT). The effects of immobilization time, initial enzyme concentration and buffer ionic strength on enzyme loading and activity of immobilized preparations were tested. High loadings are attained. The immobilized enzyme obtained at lowest initial enzyme concentration and high ionic strength retained 85% of initial enzyme activity. It is assumed that immobilization on hydrophobic surface led to conformational changes that resulted in the adsorption of lipase in active conformation. Immobilized preparations were characterized, with FT-IR spectroscopy, AFM, and cyclic voltammetry.
PB  - Korean Society of Industrial Engineering Chemistry
T2  - Journal of Industrial and Engineering Chemistry
T1  - Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes
VL  - 19
IS  - 1
SP  - 279
EP  - 285
DO  - 10.1016/j.jiec.2012.08.012
ER  - 
@article{
author = "Prlainović, Nevena Ž. and Bezbradica, Dejan I. and Knežević-Jugović, Zorica and Stevanović, Sanja and Avramov Ivić, Milka and Uskoković, Petar S. and Mijin, Dušan",
year = "2013",
abstract = "In this work lipase from Candida rugosa was adsorbed on unmodified surface of multi walled carbon nanotubes (raw-MWCIsIT). The effects of immobilization time, initial enzyme concentration and buffer ionic strength on enzyme loading and activity of immobilized preparations were tested. High loadings are attained. The immobilized enzyme obtained at lowest initial enzyme concentration and high ionic strength retained 85% of initial enzyme activity. It is assumed that immobilization on hydrophobic surface led to conformational changes that resulted in the adsorption of lipase in active conformation. Immobilized preparations were characterized, with FT-IR spectroscopy, AFM, and cyclic voltammetry.",
publisher = "Korean Society of Industrial Engineering Chemistry",
journal = "Journal of Industrial and Engineering Chemistry",
title = "Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes",
volume = "19",
number = "1",
pages = "279-285",
doi = "10.1016/j.jiec.2012.08.012"
}
Prlainović, N. Ž., Bezbradica, D. I., Knežević-Jugović, Z., Stevanović, S., Avramov Ivić, M., Uskoković, P. S.,& Mijin, D.. (2013). Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes. in Journal of Industrial and Engineering Chemistry
Korean Society of Industrial Engineering Chemistry., 19(1), 279-285.
https://doi.org/10.1016/j.jiec.2012.08.012
Prlainović NŽ, Bezbradica DI, Knežević-Jugović Z, Stevanović S, Avramov Ivić M, Uskoković PS, Mijin D. Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes. in Journal of Industrial and Engineering Chemistry. 2013;19(1):279-285.
doi:10.1016/j.jiec.2012.08.012 .
Prlainović, Nevena Ž., Bezbradica, Dejan I., Knežević-Jugović, Zorica, Stevanović, Sanja, Avramov Ivić, Milka, Uskoković, Petar S., Mijin, Dušan, "Adsorption of lipase from Candida rugosa on multi walled carbon nanotubes" in Journal of Industrial and Engineering Chemistry, 19, no. 1 (2013):279-285,
https://doi.org/10.1016/j.jiec.2012.08.012 . .
57
50
60

Covalent immobilization of lipase from Candida rugosa on Eupergit®

Bezbradica, Dejan I.; Ćorović, Jasmina J.; Prodanović, Radivoje; Milosavić, Nenad B.; Knežević, Zorica D.

(2005)

TY  - JOUR
AU  - Bezbradica, Dejan I.
AU  - Ćorović, Jasmina J.
AU  - Prodanović, Radivoje
AU  - Milosavić, Nenad B.
AU  - Knežević, Zorica D.
PY  - 2005
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/2686
AB  - An approach is presented for the stable covalent immobilization of Upase from Candida rugosa on Eupergit® with a high retention of hydrolytic activity. It comprises covalent bonding via lipase carbohydrate moiety previously modified by periodate oxidation, allowing a reduction in the involvement of the enzyme functional groups that are probably important in the catalytic mechanism. The hydrolytic activities of the lipase immobilized on Eupergif1 by two conventional methods (via oxirane group and via glutaralde-hyde) and with periodate method were compared. Results of lipase assays suggest that periodate method is superior for lipase immobilization on Eupergit® among methods applied in this study with respect to both, yield of immobilization and hydrolytic activity of the immobilized enzyme.
AB  - U ovom radu je ispitana mogućnost primene metode za kovalentno vezivanje lipaze iz Candida rugosa za komercijalni polimerni nosač Eupergit® kojom se dobijaju stabilni i aktivni imobilisani enzimi. Vezivanje se odvija preko ugljenohidratne komponente enzima, koja je prethodno modifikovana oksidacijom pomoću perjodata, a ne preko proteinske komponente, koja je važna za katalitičku aktivnost enzima. Hidrolitička aktivnost na ovaj način imobilisane lipaze upoređena je sa aktivnostima lipaza koje su imobilisane pomoću dve konvencionalne metode (vezivanje preko epoksidnih grupa nosača i vezivanje za nosač modifikovan glutaraldehidom). Rezultati ovog istraživanja pokazuju da je perjodatna metoda pogodnija za imobilizaciju lipaze na Eupergit® sa oba ispitivana aspekta: prinosa imobilizacije i hidrolitičke aktivnosti imobilisanog enzima.
T2  - Acta periodica technologica
T1  - Covalent immobilization of lipase from Candida rugosa on Eupergit®
T1  - Kovalentna imobilizacija lipaze iz Candida rugosa za Eupergit®
IS  - 36
SP  - 179
EP  - 186
DO  - 10.2298/APT0536179B
ER  - 
@article{
author = "Bezbradica, Dejan I. and Ćorović, Jasmina J. and Prodanović, Radivoje and Milosavić, Nenad B. and Knežević, Zorica D.",
year = "2005",
abstract = "An approach is presented for the stable covalent immobilization of Upase from Candida rugosa on Eupergit® with a high retention of hydrolytic activity. It comprises covalent bonding via lipase carbohydrate moiety previously modified by periodate oxidation, allowing a reduction in the involvement of the enzyme functional groups that are probably important in the catalytic mechanism. The hydrolytic activities of the lipase immobilized on Eupergif1 by two conventional methods (via oxirane group and via glutaralde-hyde) and with periodate method were compared. Results of lipase assays suggest that periodate method is superior for lipase immobilization on Eupergit® among methods applied in this study with respect to both, yield of immobilization and hydrolytic activity of the immobilized enzyme., U ovom radu je ispitana mogućnost primene metode za kovalentno vezivanje lipaze iz Candida rugosa za komercijalni polimerni nosač Eupergit® kojom se dobijaju stabilni i aktivni imobilisani enzimi. Vezivanje se odvija preko ugljenohidratne komponente enzima, koja je prethodno modifikovana oksidacijom pomoću perjodata, a ne preko proteinske komponente, koja je važna za katalitičku aktivnost enzima. Hidrolitička aktivnost na ovaj način imobilisane lipaze upoređena je sa aktivnostima lipaza koje su imobilisane pomoću dve konvencionalne metode (vezivanje preko epoksidnih grupa nosača i vezivanje za nosač modifikovan glutaraldehidom). Rezultati ovog istraživanja pokazuju da je perjodatna metoda pogodnija za imobilizaciju lipaze na Eupergit® sa oba ispitivana aspekta: prinosa imobilizacije i hidrolitičke aktivnosti imobilisanog enzima.",
journal = "Acta periodica technologica",
title = "Covalent immobilization of lipase from Candida rugosa on Eupergit®, Kovalentna imobilizacija lipaze iz Candida rugosa za Eupergit®",
number = "36",
pages = "179-186",
doi = "10.2298/APT0536179B"
}
Bezbradica, D. I., Ćorović, J. J., Prodanović, R., Milosavić, N. B.,& Knežević, Z. D.. (2005). Covalent immobilization of lipase from Candida rugosa on Eupergit®. in Acta periodica technologica(36), 179-186.
https://doi.org/10.2298/APT0536179B
Bezbradica DI, Ćorović JJ, Prodanović R, Milosavić NB, Knežević ZD. Covalent immobilization of lipase from Candida rugosa on Eupergit®. in Acta periodica technologica. 2005;(36):179-186.
doi:10.2298/APT0536179B .
Bezbradica, Dejan I., Ćorović, Jasmina J., Prodanović, Radivoje, Milosavić, Nenad B., Knežević, Zorica D., "Covalent immobilization of lipase from Candida rugosa on Eupergit®" in Acta periodica technologica, no. 36 (2005):179-186,
https://doi.org/10.2298/APT0536179B . .
1