Andrić, Stevan

Link to this page

Authority KeyName Variants
orcid::0000-0002-9122-9104
  • Andrić, Stevan (12)

Author's Bibliography

Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements

Lazić, Žarko; Smiljanić, Milče; Tanasković, Dragan; Rašljić Rafajilović, Milena; Cvetanović, Katarina; Milinković, Evgenija; Bošković, Marko V.; Andrić, Stevan; Poljak, Predrag; Frantlović, Miloš

(MDPI, 2023)

TY  - CONF
AU  - Lazić, Žarko
AU  - Smiljanić, Milče
AU  - Tanasković, Dragan
AU  - Rašljić Rafajilović, Milena
AU  - Cvetanović, Katarina
AU  - Milinković, Evgenija
AU  - Bošković, Marko V.
AU  - Andrić, Stevan
AU  - Poljak, Predrag
AU  - Frantlović, Miloš
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7419
AB  - The existing instruments for aerodynamic pressure measurements are usually built around
an array of discrete pressure sensors, placed in the same housing together with a few discrete
temperature sensors. However, this approach is limiting, especially regarding miniaturization, sensor matching, and thermal coupling. In this work, we intend to overcome these limitations by proposing a novel MEMS multisensor chip, which has a monolithically integrated matrix of four piezoresistive MEMS pressure-sensing elements and two resistive temperature-sensing elements. After finishing the preliminary chip design, we performed computer simulations in order to assess its mechanical behavior when measured pressure is applied. Subsequently, the final chip design was completed, and the first batch was fabricated. The used technological processes included photolithography, thermal oxidation, diffusion, sputtering, micromachining (wet chemical etching), anodic bonding, and wafer dicing.
PB  - MDPI
C3  - Engineering proceedings
T1  - Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements
VL  - 58
IS  - 1
SP  - 52
DO  - 10.3390/ecsa-10-16071
ER  - 
@conference{
author = "Lazić, Žarko and Smiljanić, Milče and Tanasković, Dragan and Rašljić Rafajilović, Milena and Cvetanović, Katarina and Milinković, Evgenija and Bošković, Marko V. and Andrić, Stevan and Poljak, Predrag and Frantlović, Miloš",
year = "2023",
abstract = "The existing instruments for aerodynamic pressure measurements are usually built around
an array of discrete pressure sensors, placed in the same housing together with a few discrete
temperature sensors. However, this approach is limiting, especially regarding miniaturization, sensor matching, and thermal coupling. In this work, we intend to overcome these limitations by proposing a novel MEMS multisensor chip, which has a monolithically integrated matrix of four piezoresistive MEMS pressure-sensing elements and two resistive temperature-sensing elements. After finishing the preliminary chip design, we performed computer simulations in order to assess its mechanical behavior when measured pressure is applied. Subsequently, the final chip design was completed, and the first batch was fabricated. The used technological processes included photolithography, thermal oxidation, diffusion, sputtering, micromachining (wet chemical etching), anodic bonding, and wafer dicing.",
publisher = "MDPI",
journal = "Engineering proceedings",
title = "Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements",
volume = "58",
number = "1",
pages = "52",
doi = "10.3390/ecsa-10-16071"
}
Lazić, Ž., Smiljanić, M., Tanasković, D., Rašljić Rafajilović, M., Cvetanović, K., Milinković, E., Bošković, M. V., Andrić, S., Poljak, P.,& Frantlović, M.. (2023). Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements. in Engineering proceedings
MDPI., 58(1), 52.
https://doi.org/10.3390/ecsa-10-16071
Lazić Ž, Smiljanić M, Tanasković D, Rašljić Rafajilović M, Cvetanović K, Milinković E, Bošković MV, Andrić S, Poljak P, Frantlović M. Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements. in Engineering proceedings. 2023;58(1):52.
doi:10.3390/ecsa-10-16071 .
Lazić, Žarko, Smiljanić, Milče, Tanasković, Dragan, Rašljić Rafajilović, Milena, Cvetanović, Katarina, Milinković, Evgenija, Bošković, Marko V., Andrić, Stevan, Poljak, Predrag, Frantlović, Miloš, "Development of a MEMS Multisensor Chip for Aerodynamic Pressure Measurements" in Engineering proceedings, 58, no. 1 (2023):52,
https://doi.org/10.3390/ecsa-10-16071 . .

Effect of carbon support on the activity of monodisperse Co45Pt55 nanoparticles for oxygen evolution in alkaline media

Andrić, Stevan; Milikić, Jadranka; Sevim, Melike; Santos, Diogo M. F.; Šljukić, Biljana

(Frontiers Media SA, 2023)

TY  - JOUR
AU  - Andrić, Stevan
AU  - Milikić, Jadranka
AU  - Sevim, Melike
AU  - Santos, Diogo M. F.
AU  - Šljukić, Biljana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/6676
AB  - Oxygen evolution reaction (OER) represents the efficiency-limiting reaction in water electrolyzers, metal-air batteries, and unitized regenerative fuel cells. To achieve high-efficiency OER in alkaline media, we fabricated three novel electrocatalysts by the assembly of as-prepared Co45Pt55 alloy nanoparticles (NPs) on three different carbon-based support materials: reduced graphene oxide (CoPt/rGO), mesoporous graphitic carbon nitride (CoPt/mpg-CN), and commercial Ketjenblack carbon (CoPt/KB). Voltammetry studies revealed that CoPt/rGO electrocatalyst provided lower OER overpotentials accompanied by higher currents and specific current density values than the other two studied materials. Moreover, CoPt/rGO outperformed commercial CoPt/C electrocatalysts in terms of notably higher specific current densities. Additionally, it was found that CoPt/rGO electrocatalyst activity increases with increasing temperature up to 85°C, as suggested by the increase in the exchange current density. Electrochemical impedance spectroscopy studies of three electrocatalysts in OER revealed similar charge transfer resistance, although CoPt/rGO provided a higher current density. The main issue observed during long-term chronoamperometry and chronopotentiometry studies is the materials’ instability under OER polarization conditions, which is still to be tackled in future work.
PB  - Frontiers Media SA
T2  - Frontiers in Chemistry
T1  - Effect of carbon support on the activity of monodisperse Co45Pt55 nanoparticles for oxygen evolution in alkaline media
VL  - 11
SP  - 1244148
DO  - 10.3389/fchem.2023.1244148
ER  - 
@article{
author = "Andrić, Stevan and Milikić, Jadranka and Sevim, Melike and Santos, Diogo M. F. and Šljukić, Biljana",
year = "2023",
abstract = "Oxygen evolution reaction (OER) represents the efficiency-limiting reaction in water electrolyzers, metal-air batteries, and unitized regenerative fuel cells. To achieve high-efficiency OER in alkaline media, we fabricated three novel electrocatalysts by the assembly of as-prepared Co45Pt55 alloy nanoparticles (NPs) on three different carbon-based support materials: reduced graphene oxide (CoPt/rGO), mesoporous graphitic carbon nitride (CoPt/mpg-CN), and commercial Ketjenblack carbon (CoPt/KB). Voltammetry studies revealed that CoPt/rGO electrocatalyst provided lower OER overpotentials accompanied by higher currents and specific current density values than the other two studied materials. Moreover, CoPt/rGO outperformed commercial CoPt/C electrocatalysts in terms of notably higher specific current densities. Additionally, it was found that CoPt/rGO electrocatalyst activity increases with increasing temperature up to 85°C, as suggested by the increase in the exchange current density. Electrochemical impedance spectroscopy studies of three electrocatalysts in OER revealed similar charge transfer resistance, although CoPt/rGO provided a higher current density. The main issue observed during long-term chronoamperometry and chronopotentiometry studies is the materials’ instability under OER polarization conditions, which is still to be tackled in future work.",
publisher = "Frontiers Media SA",
journal = "Frontiers in Chemistry",
title = "Effect of carbon support on the activity of monodisperse Co45Pt55 nanoparticles for oxygen evolution in alkaline media",
volume = "11",
pages = "1244148",
doi = "10.3389/fchem.2023.1244148"
}
Andrić, S., Milikić, J., Sevim, M., Santos, D. M. F.,& Šljukić, B.. (2023). Effect of carbon support on the activity of monodisperse Co45Pt55 nanoparticles for oxygen evolution in alkaline media. in Frontiers in Chemistry
Frontiers Media SA., 11, 1244148.
https://doi.org/10.3389/fchem.2023.1244148
Andrić S, Milikić J, Sevim M, Santos DMF, Šljukić B. Effect of carbon support on the activity of monodisperse Co45Pt55 nanoparticles for oxygen evolution in alkaline media. in Frontiers in Chemistry. 2023;11:1244148.
doi:10.3389/fchem.2023.1244148 .
Andrić, Stevan, Milikić, Jadranka, Sevim, Melike, Santos, Diogo M. F., Šljukić, Biljana, "Effect of carbon support on the activity of monodisperse Co45Pt55 nanoparticles for oxygen evolution in alkaline media" in Frontiers in Chemistry, 11 (2023):1244148,
https://doi.org/10.3389/fchem.2023.1244148 . .
1
1

Three Types of Films from Liquid-phase-exfoliated Graphene for Use as Humidity Sensors and Respiration Monitors

Andrić, Stevan; Tomašević-Ilić, Tijana; Rakočević, Lazar; Vasiljević-Radović, Dana; Spasenović, Marko

(MYU K.K., 2022)

TY  - JOUR
AU  - Andrić, Stevan
AU  - Tomašević-Ilić, Tijana
AU  - Rakočević, Lazar
AU  - Vasiljević-Radović, Dana
AU  - Spasenović, Marko
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5611
AB  - Measuring relative humidity is important for a myriad of industries, including production, agriculture, environmental monitoring, and medicine. Thin-film, fast-response sensors are particularly interesting for wearable applications, such as monitoring breathing. We report on humidity sensors made from graphene deposited as a thin film by the Langmuir–Blodgett (LB) method from three types of graphene in solution. We demonstrate humidity sensing and respiration monitoring from graphene made by bath sonication, probe sonication, and electrochemical exfoliation. We characterize the morphology and chemical composition of the three film types and compare their performance as sensors. We conclude that although all three types can be used for sensing, they each have their particular advantages and drawbacks.
PB  - MYU K.K.
T2  - Sensors and Materials
T1  - Three Types of Films from Liquid-phase-exfoliated Graphene for Use as Humidity Sensors and Respiration Monitors
VL  - 34
IS  - 11
SP  - 3933
DO  - 10.18494/SAM4092
ER  - 
@article{
author = "Andrić, Stevan and Tomašević-Ilić, Tijana and Rakočević, Lazar and Vasiljević-Radović, Dana and Spasenović, Marko",
year = "2022",
abstract = "Measuring relative humidity is important for a myriad of industries, including production, agriculture, environmental monitoring, and medicine. Thin-film, fast-response sensors are particularly interesting for wearable applications, such as monitoring breathing. We report on humidity sensors made from graphene deposited as a thin film by the Langmuir–Blodgett (LB) method from three types of graphene in solution. We demonstrate humidity sensing and respiration monitoring from graphene made by bath sonication, probe sonication, and electrochemical exfoliation. We characterize the morphology and chemical composition of the three film types and compare their performance as sensors. We conclude that although all three types can be used for sensing, they each have their particular advantages and drawbacks.",
publisher = "MYU K.K.",
journal = "Sensors and Materials",
title = "Three Types of Films from Liquid-phase-exfoliated Graphene for Use as Humidity Sensors and Respiration Monitors",
volume = "34",
number = "11",
pages = "3933",
doi = "10.18494/SAM4092"
}
Andrić, S., Tomašević-Ilić, T., Rakočević, L., Vasiljević-Radović, D.,& Spasenović, M.. (2022). Three Types of Films from Liquid-phase-exfoliated Graphene for Use as Humidity Sensors and Respiration Monitors. in Sensors and Materials
MYU K.K.., 34(11), 3933.
https://doi.org/10.18494/SAM4092
Andrić S, Tomašević-Ilić T, Rakočević L, Vasiljević-Radović D, Spasenović M. Three Types of Films from Liquid-phase-exfoliated Graphene for Use as Humidity Sensors and Respiration Monitors. in Sensors and Materials. 2022;34(11):3933.
doi:10.18494/SAM4092 .
Andrić, Stevan, Tomašević-Ilić, Tijana, Rakočević, Lazar, Vasiljević-Radović, Dana, Spasenović, Marko, "Three Types of Films from Liquid-phase-exfoliated Graphene for Use as Humidity Sensors and Respiration Monitors" in Sensors and Materials, 34, no. 11 (2022):3933,
https://doi.org/10.18494/SAM4092 . .
1
1

Characterization of heterogeneous sensing layers in graphene-based gas sensors

Andrić, Stevan; Jokić, Ivana; Frantlović, Miloš; Radulović, Katarina; Spasenović, Marko

(Belgrade : The Military Technical Institute, 2022)

TY  - CONF
AU  - Andrić, Stevan
AU  - Jokić, Ivana
AU  - Frantlović, Miloš
AU  - Radulović, Katarina
AU  - Spasenović, Marko
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5825
AB  - Graphene-based sensors have a great potential for applications in public and personal health protection, including defense and security fields. However, sensitivity and selectivity of such sensors are inherently dependent on adsorption properties of the graphene sensing layer, which is typically of heterogeneous morphology and/or of heterogeneous chemical composition due to intentionally introduced functionalizing elements or spontaneously adsorbed molecules during sensor fabrication or operation. Therefore, characterization and optimization of sensing layers is extremely important for achieving high sensing performance. In this work, we present a method for characterization of the heterogeneous sensing layer by using the frequency domain analysis of the sensor output signal. The method is based on the mathematical model we devised. Here, the model is presented in detail for the case of a surface with three types of adsorption sites, and then the method is applied for extraction of parameters that characterize adsorption properties of a graphene sensing layer.
PB  - Belgrade : The Military Technical Institute
C3  - Proceedings - 10th International Scientific Conference on Defensive Technologies, OTEH 2022, 13-14 October 2022, Belgrade, Serbia
T1  - Characterization of heterogeneous sensing layers in graphene-based gas sensors
UR  - https://hdl.handle.net/21.15107/rcub_cer_5825
ER  - 
@conference{
author = "Andrić, Stevan and Jokić, Ivana and Frantlović, Miloš and Radulović, Katarina and Spasenović, Marko",
year = "2022",
abstract = "Graphene-based sensors have a great potential for applications in public and personal health protection, including defense and security fields. However, sensitivity and selectivity of such sensors are inherently dependent on adsorption properties of the graphene sensing layer, which is typically of heterogeneous morphology and/or of heterogeneous chemical composition due to intentionally introduced functionalizing elements or spontaneously adsorbed molecules during sensor fabrication or operation. Therefore, characterization and optimization of sensing layers is extremely important for achieving high sensing performance. In this work, we present a method for characterization of the heterogeneous sensing layer by using the frequency domain analysis of the sensor output signal. The method is based on the mathematical model we devised. Here, the model is presented in detail for the case of a surface with three types of adsorption sites, and then the method is applied for extraction of parameters that characterize adsorption properties of a graphene sensing layer.",
publisher = "Belgrade : The Military Technical Institute",
journal = "Proceedings - 10th International Scientific Conference on Defensive Technologies, OTEH 2022, 13-14 October 2022, Belgrade, Serbia",
title = "Characterization of heterogeneous sensing layers in graphene-based gas sensors",
url = "https://hdl.handle.net/21.15107/rcub_cer_5825"
}
Andrić, S., Jokić, I., Frantlović, M., Radulović, K.,& Spasenović, M.. (2022). Characterization of heterogeneous sensing layers in graphene-based gas sensors. in Proceedings - 10th International Scientific Conference on Defensive Technologies, OTEH 2022, 13-14 October 2022, Belgrade, Serbia
Belgrade : The Military Technical Institute..
https://hdl.handle.net/21.15107/rcub_cer_5825
Andrić S, Jokić I, Frantlović M, Radulović K, Spasenović M. Characterization of heterogeneous sensing layers in graphene-based gas sensors. in Proceedings - 10th International Scientific Conference on Defensive Technologies, OTEH 2022, 13-14 October 2022, Belgrade, Serbia. 2022;.
https://hdl.handle.net/21.15107/rcub_cer_5825 .
Andrić, Stevan, Jokić, Ivana, Frantlović, Miloš, Radulović, Katarina, Spasenović, Marko, "Characterization of heterogeneous sensing layers in graphene-based gas sensors" in Proceedings - 10th International Scientific Conference on Defensive Technologies, OTEH 2022, 13-14 October 2022, Belgrade, Serbia (2022),
https://hdl.handle.net/21.15107/rcub_cer_5825 .

Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene

Andrić, Stevan; Jokić, Ivana; Stevanović, Jelena; Spasenović, Marko; Frantlović, Miloš

(MDPI AG, 2022)

TY  - JOUR
AU  - Andrić, Stevan
AU  - Jokić, Ivana
AU  - Stevanović, Jelena
AU  - Spasenović, Marko
AU  - Frantlović, Miloš
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5583
AB  - Surfaces of adsorption-based gas sensors are often heterogeneous, with adsorption sites that differ in their affinities for gas particle binding. Knowing adsorption/desorption energies, surface densities and the relative abundance of sites of different types is important, because these parameters impact sensor sensitivity and selectivity, and are relevant for revealing the response-generating mechanisms. We show that the analysis of the noise of adsorption-based sensors can be used to study gas adsorption on heterogeneous sensing surfaces, which is applicable to industrially important liquid-phase exfoliated (LPE) graphene. Our results for CO2 adsorption on an LPE graphene surface, with different types of adsorption sites on graphene flake edges and basal planes, show that the noise spectrum data can be used to characterize such surfaces in terms of parameters that determine the sensing properties of the adsorbing material. Notably, the spectrum characteristic frequencies are an unambiguous indicator of the relative abundance of different types of adsorption sites on the sensing surface and their surface densities. We also demonstrate that spectrum features indicate the fraction of the binding sites that are already occupied by another gas species. The presented study can be applied to the design and production of graphene and other sensing surfaces with an optimal sensing performance.
PB  - MDPI AG
T2  - Chemosensors
T1  - Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene
VL  - 10
IS  - 6
SP  - 224
DO  - 10.3390/chemosensors10060224
ER  - 
@article{
author = "Andrić, Stevan and Jokić, Ivana and Stevanović, Jelena and Spasenović, Marko and Frantlović, Miloš",
year = "2022",
abstract = "Surfaces of adsorption-based gas sensors are often heterogeneous, with adsorption sites that differ in their affinities for gas particle binding. Knowing adsorption/desorption energies, surface densities and the relative abundance of sites of different types is important, because these parameters impact sensor sensitivity and selectivity, and are relevant for revealing the response-generating mechanisms. We show that the analysis of the noise of adsorption-based sensors can be used to study gas adsorption on heterogeneous sensing surfaces, which is applicable to industrially important liquid-phase exfoliated (LPE) graphene. Our results for CO2 adsorption on an LPE graphene surface, with different types of adsorption sites on graphene flake edges and basal planes, show that the noise spectrum data can be used to characterize such surfaces in terms of parameters that determine the sensing properties of the adsorbing material. Notably, the spectrum characteristic frequencies are an unambiguous indicator of the relative abundance of different types of adsorption sites on the sensing surface and their surface densities. We also demonstrate that spectrum features indicate the fraction of the binding sites that are already occupied by another gas species. The presented study can be applied to the design and production of graphene and other sensing surfaces with an optimal sensing performance.",
publisher = "MDPI AG",
journal = "Chemosensors",
title = "Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene",
volume = "10",
number = "6",
pages = "224",
doi = "10.3390/chemosensors10060224"
}
Andrić, S., Jokić, I., Stevanović, J., Spasenović, M.,& Frantlović, M.. (2022). Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene. in Chemosensors
MDPI AG., 10(6), 224.
https://doi.org/10.3390/chemosensors10060224
Andrić S, Jokić I, Stevanović J, Spasenović M, Frantlović M. Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene. in Chemosensors. 2022;10(6):224.
doi:10.3390/chemosensors10060224 .
Andrić, Stevan, Jokić, Ivana, Stevanović, Jelena, Spasenović, Marko, Frantlović, Miloš, "Noise Spectrum as a Source of Information in Gas Sensors Based on Liquid-Phase Exfoliated Graphene" in Chemosensors, 10, no. 6 (2022):224,
https://doi.org/10.3390/chemosensors10060224 . .
1
1

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

Vićentić, Teodora; Andrić, Stevan; Rajić, Vladimir; Spasenović, Marko

(Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, 2022)

TY  - JOUR
AU  - Vićentić, Teodora
AU  - Andrić, Stevan
AU  - Rajić, Vladimir
AU  - Spasenović, Marko
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5473
AB  - Electrochemical exfoliation is an efficient and scalable method to obtain liquid-phase graphene. Graphene in solution, obtained through electrochemical exfoliation or other methods, is typically polydisperse, containing particles of various sizes, which is not optimal for applications. We employed cascade centrifugation to select specific particle sizes in solution and prepared thin films from those graphene particles using the Langmuir–Blodgett assembly. Employing centrifugation speeds of 3, 4, and 5 krpm, further diluting the solutions in different volumes of solvent, we reliably and consistently obtained films of tunable thickness. We show that there is a limit to how thin these films can be, which is imposed by the percolation threshold. The percolation threshold is quantitatively compared to results found in literature that are obtained using other, more complex graphene film fabrication methods, and is found to occur with a percolation exponent and percolative figure of merit that are of the same order as results in literature. A maximum optical transparency of 82.4% at a wavelength of 660 nm is obtained for these films, which is in agreement with earlier works on Langmuir–Blodgett assembled ultrasonic-assisted liquid-phase exfoliated graphene. Our work demonstrates that films that are in all respects on par with films of graphene obtained through other solution-based processes can be produced from inexpensive and widely available centrifugal post-processing of existing commercially available solutions of electrochemically exfoliated graphene. The demonstrated methodology will lower the entry barriers for new research and industrial uses, since it allows researchers with no exfoliation experience to make use of widely available graphene materials.
PB  - Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften
T2  - Beilstein Journal of Nanotechnology
T1  - Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene
VL  - 13
SP  - 666
EP  - 674
DO  - 10.3762/bjnano.13.58
ER  - 
@article{
author = "Vićentić, Teodora and Andrić, Stevan and Rajić, Vladimir and Spasenović, Marko",
year = "2022",
abstract = "Electrochemical exfoliation is an efficient and scalable method to obtain liquid-phase graphene. Graphene in solution, obtained through electrochemical exfoliation or other methods, is typically polydisperse, containing particles of various sizes, which is not optimal for applications. We employed cascade centrifugation to select specific particle sizes in solution and prepared thin films from those graphene particles using the Langmuir–Blodgett assembly. Employing centrifugation speeds of 3, 4, and 5 krpm, further diluting the solutions in different volumes of solvent, we reliably and consistently obtained films of tunable thickness. We show that there is a limit to how thin these films can be, which is imposed by the percolation threshold. The percolation threshold is quantitatively compared to results found in literature that are obtained using other, more complex graphene film fabrication methods, and is found to occur with a percolation exponent and percolative figure of merit that are of the same order as results in literature. A maximum optical transparency of 82.4% at a wavelength of 660 nm is obtained for these films, which is in agreement with earlier works on Langmuir–Blodgett assembled ultrasonic-assisted liquid-phase exfoliated graphene. Our work demonstrates that films that are in all respects on par with films of graphene obtained through other solution-based processes can be produced from inexpensive and widely available centrifugal post-processing of existing commercially available solutions of electrochemically exfoliated graphene. The demonstrated methodology will lower the entry barriers for new research and industrial uses, since it allows researchers with no exfoliation experience to make use of widely available graphene materials.",
publisher = "Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften",
journal = "Beilstein Journal of Nanotechnology",
title = "Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene",
volume = "13",
pages = "666-674",
doi = "10.3762/bjnano.13.58"
}
Vićentić, T., Andrić, S., Rajić, V.,& Spasenović, M.. (2022). Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene. in Beilstein Journal of Nanotechnology
Germany : Beilstein-Institut Zur Forderung der Chemischen Wissenschaften., 13, 666-674.
https://doi.org/10.3762/bjnano.13.58
Vićentić T, Andrić S, Rajić V, Spasenović M. Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene. in Beilstein Journal of Nanotechnology. 2022;13:666-674.
doi:10.3762/bjnano.13.58 .
Vićentić, Teodora, Andrić, Stevan, Rajić, Vladimir, Spasenović, Marko, "Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene" in Beilstein Journal of Nanotechnology, 13 (2022):666-674,
https://doi.org/10.3762/bjnano.13.58 . .
3

Synthesis and characterization of thin copper coatings obtained by sonoelectrodeposition method

Mladenović, Ivana; Lamovec, Jelena; Andrić, Stevan; Vorkapić, Miloš; Obradov, Marko; Vasiljević-Radović, Dana; Radojević, Vesna; Nikolić, Nebojša D.

(Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering, 2021)

TY  - CONF
AU  - Mladenović, Ivana
AU  - Lamovec, Jelena
AU  - Andrić, Stevan
AU  - Vorkapić, Miloš
AU  - Obradov, Marko
AU  - Vasiljević-Radović, Dana
AU  - Radojević, Vesna
AU  - Nikolić, Nebojša D.
PY  - 2021
UR  - https://www.etran.rs/2021/en/proceedings/
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4922
AB  - Influence of an intensity of ultrasonic mixing of electrolyte in a temperature range of 27–37 °C and ultrasonic power intensity in the range of 3.77–18.84 W/cm2 (10–50 %) on a synthesis of fine-grained copper deposits was examined. Copper coatings were electrodeposited on a brass substrate in direct current (DC) regime with an applied current density of 50 mA·cm-2. The laboratory-made copper sulfate electrolyte was used without or with addition of additives. The variation of temperature under sonoelectrodeposition process and variation mixing intensity of electrolyte were ensured by using an ultrasonic probe. The produced Cu coatings were examined by optical microscope (OM) in order to observe the microstructural modification with variation ultrasonic parameters and for measuring imprints of Vickers indenter. The micro hardness properties of composite systems were characterized using Vickers micro indentation test. The composite hardness models Chicot-Lesage and Chen-Gao were used for the determination the coatings hardness and adhesion evaluation. Application of Atomic Force Microscopy (AFM) technique also confirmed the strong influence of ultrasonic mixing conditions of electrolyte onto change of the microstructure of copper deposits and surface roughness of the coatings. The maximum hardness, good adhesion properties and minimum micro surface roughness was obtained for the fine-grained Cu coating produced with amplitude of 50 % ultrasonic mixing of electrolyte without additives and 30 % for electrolyte with additives.
PB  - Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering
C3  - Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
T1  - Synthesis and characterization of thin copper coatings obtained by sonoelectrodeposition method
SP  - MOI 1.1
UR  - https://hdl.handle.net/21.15107/rcub_cer_4922
ER  - 
@conference{
author = "Mladenović, Ivana and Lamovec, Jelena and Andrić, Stevan and Vorkapić, Miloš and Obradov, Marko and Vasiljević-Radović, Dana and Radojević, Vesna and Nikolić, Nebojša D.",
year = "2021",
abstract = "Influence of an intensity of ultrasonic mixing of electrolyte in a temperature range of 27–37 °C and ultrasonic power intensity in the range of 3.77–18.84 W/cm2 (10–50 %) on a synthesis of fine-grained copper deposits was examined. Copper coatings were electrodeposited on a brass substrate in direct current (DC) regime with an applied current density of 50 mA·cm-2. The laboratory-made copper sulfate electrolyte was used without or with addition of additives. The variation of temperature under sonoelectrodeposition process and variation mixing intensity of electrolyte were ensured by using an ultrasonic probe. The produced Cu coatings were examined by optical microscope (OM) in order to observe the microstructural modification with variation ultrasonic parameters and for measuring imprints of Vickers indenter. The micro hardness properties of composite systems were characterized using Vickers micro indentation test. The composite hardness models Chicot-Lesage and Chen-Gao were used for the determination the coatings hardness and adhesion evaluation. Application of Atomic Force Microscopy (AFM) technique also confirmed the strong influence of ultrasonic mixing conditions of electrolyte onto change of the microstructure of copper deposits and surface roughness of the coatings. The maximum hardness, good adhesion properties and minimum micro surface roughness was obtained for the fine-grained Cu coating produced with amplitude of 50 % ultrasonic mixing of electrolyte without additives and 30 % for electrolyte with additives.",
publisher = "Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering",
journal = "Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020",
title = "Synthesis and characterization of thin copper coatings obtained by sonoelectrodeposition method",
pages = "MOI 1.1",
url = "https://hdl.handle.net/21.15107/rcub_cer_4922"
}
Mladenović, I., Lamovec, J., Andrić, S., Vorkapić, M., Obradov, M., Vasiljević-Radović, D., Radojević, V.,& Nikolić, N. D.. (2021). Synthesis and characterization of thin copper coatings obtained by sonoelectrodeposition method. in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering., MOI 1.1.
https://hdl.handle.net/21.15107/rcub_cer_4922
Mladenović I, Lamovec J, Andrić S, Vorkapić M, Obradov M, Vasiljević-Radović D, Radojević V, Nikolić ND. Synthesis and characterization of thin copper coatings obtained by sonoelectrodeposition method. in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020. 2021;:MOI 1.1.
https://hdl.handle.net/21.15107/rcub_cer_4922 .
Mladenović, Ivana, Lamovec, Jelena, Andrić, Stevan, Vorkapić, Miloš, Obradov, Marko, Vasiljević-Radović, Dana, Radojević, Vesna, Nikolić, Nebojša D., "Synthesis and characterization of thin copper coatings obtained by sonoelectrodeposition method" in Proceedings - 8th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2021 and 65th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020 (2021):MOI 1.1,
https://hdl.handle.net/21.15107/rcub_cer_4922 .

Influence of UV radiation on the time response of a resistive gas sensor based on liquid-phase exfoliated graphene

Bošković, Marko; Andrić, Stevan; Frantlović, Miloš; Jokić, Ivana; Sarajlić, Milija; Vićentić, Teodora; Spasenović, Marko

(Serbian Academy of Sciences and Arts, 2021)

TY  - CONF
AU  - Bošković, Marko
AU  - Andrić, Stevan
AU  - Frantlović, Miloš
AU  - Jokić, Ivana
AU  - Sarajlić, Milija
AU  - Vićentić, Teodora
AU  - Spasenović, Marko
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7134
AB  - Herein we investigate the influence of UV irradiation on the time response of a resistive gas sensor with a liquid-phase exfoliated graphene as the active material. The effect of exposure to UV light on the baseline electrical resistance (in inert atmosphere) will be compared with the effect of the annealing process. The influence of various intensities of UV radiation on the response and recovery time, repeatability and detection limit of graphene will be discussed.
PB  - Serbian Academy of Sciences and Arts
C3  - Book of abstracts - PHOTONICA2021, VIII International School and Conference on Photonics & HEMMAGINERO workshop, 23 - 27 August 2021, Belgrade, Serbia
T1  - Influence of UV radiation on the time response of a resistive gas sensor based on liquid-phase exfoliated graphene
SP  - 180
EP  - 180
UR  - https://hdl.handle.net/21.15107/rcub_cer_7134
ER  - 
@conference{
author = "Bošković, Marko and Andrić, Stevan and Frantlović, Miloš and Jokić, Ivana and Sarajlić, Milija and Vićentić, Teodora and Spasenović, Marko",
year = "2021",
abstract = "Herein we investigate the influence of UV irradiation on the time response of a resistive gas sensor with a liquid-phase exfoliated graphene as the active material. The effect of exposure to UV light on the baseline electrical resistance (in inert atmosphere) will be compared with the effect of the annealing process. The influence of various intensities of UV radiation on the response and recovery time, repeatability and detection limit of graphene will be discussed.",
publisher = "Serbian Academy of Sciences and Arts",
journal = "Book of abstracts - PHOTONICA2021, VIII International School and Conference on Photonics & HEMMAGINERO workshop, 23 - 27 August 2021, Belgrade, Serbia",
title = "Influence of UV radiation on the time response of a resistive gas sensor based on liquid-phase exfoliated graphene",
pages = "180-180",
url = "https://hdl.handle.net/21.15107/rcub_cer_7134"
}
Bošković, M., Andrić, S., Frantlović, M., Jokić, I., Sarajlić, M., Vićentić, T.,& Spasenović, M.. (2021). Influence of UV radiation on the time response of a resistive gas sensor based on liquid-phase exfoliated graphene. in Book of abstracts - PHOTONICA2021, VIII International School and Conference on Photonics & HEMMAGINERO workshop, 23 - 27 August 2021, Belgrade, Serbia
Serbian Academy of Sciences and Arts., 180-180.
https://hdl.handle.net/21.15107/rcub_cer_7134
Bošković M, Andrić S, Frantlović M, Jokić I, Sarajlić M, Vićentić T, Spasenović M. Influence of UV radiation on the time response of a resistive gas sensor based on liquid-phase exfoliated graphene. in Book of abstracts - PHOTONICA2021, VIII International School and Conference on Photonics & HEMMAGINERO workshop, 23 - 27 August 2021, Belgrade, Serbia. 2021;:180-180.
https://hdl.handle.net/21.15107/rcub_cer_7134 .
Bošković, Marko, Andrić, Stevan, Frantlović, Miloš, Jokić, Ivana, Sarajlić, Milija, Vićentić, Teodora, Spasenović, Marko, "Influence of UV radiation on the time response of a resistive gas sensor based on liquid-phase exfoliated graphene" in Book of abstracts - PHOTONICA2021, VIII International School and Conference on Photonics & HEMMAGINERO workshop, 23 - 27 August 2021, Belgrade, Serbia (2021):180-180,
https://hdl.handle.net/21.15107/rcub_cer_7134 .

Graphene-based Chemiresistive Gas Sensors

Spasenović, Marko; Andrić, Stevan; Tomašević-Ilić, Tijana

(Institute of Electrical and Electronics Engineers Inc, 2021)

TY  - CONF
AU  - Spasenović, Marko
AU  - Andrić, Stevan
AU  - Tomašević-Ilić, Tijana
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4846
AB  - Gas sensors are an indispensable ingredient of the modern society, finding their use across a range of industries that include manufacturing, environmental protection and control, automotive and others. Novel applications have been arising, requiring new materials. Here we outline the principles of gas sensing with a focus on chemiresistive-type devices. We follow up with a summary of the advantages and use of graphene as a gas sensing material, discussing the properties of different graphene production methods. Finally, we showcase some recent results that point to novel applications of graphene-based gas sensors, including respiration monitoring and finger proximity detection.
PB  - Institute of Electrical and Electronics Engineers Inc
C3  - Proceedings - International Conference on Microelectronics, ICM32nd IEEE International Conference on Microelectronics, MIEL 2021
T1  - Graphene-based Chemiresistive Gas Sensors
SP  - 25
EP  - 28
DO  - 10.1109/MIEL52794.2021.9569192
ER  - 
@conference{
author = "Spasenović, Marko and Andrić, Stevan and Tomašević-Ilić, Tijana",
year = "2021",
abstract = "Gas sensors are an indispensable ingredient of the modern society, finding their use across a range of industries that include manufacturing, environmental protection and control, automotive and others. Novel applications have been arising, requiring new materials. Here we outline the principles of gas sensing with a focus on chemiresistive-type devices. We follow up with a summary of the advantages and use of graphene as a gas sensing material, discussing the properties of different graphene production methods. Finally, we showcase some recent results that point to novel applications of graphene-based gas sensors, including respiration monitoring and finger proximity detection.",
publisher = "Institute of Electrical and Electronics Engineers Inc",
journal = "Proceedings - International Conference on Microelectronics, ICM32nd IEEE International Conference on Microelectronics, MIEL 2021",
title = "Graphene-based Chemiresistive Gas Sensors",
pages = "25-28",
doi = "10.1109/MIEL52794.2021.9569192"
}
Spasenović, M., Andrić, S.,& Tomašević-Ilić, T.. (2021). Graphene-based Chemiresistive Gas Sensors. in Proceedings - International Conference on Microelectronics, ICM32nd IEEE International Conference on Microelectronics, MIEL 2021
Institute of Electrical and Electronics Engineers Inc., 25-28.
https://doi.org/10.1109/MIEL52794.2021.9569192
Spasenović M, Andrić S, Tomašević-Ilić T. Graphene-based Chemiresistive Gas Sensors. in Proceedings - International Conference on Microelectronics, ICM32nd IEEE International Conference on Microelectronics, MIEL 2021. 2021;:25-28.
doi:10.1109/MIEL52794.2021.9569192 .
Spasenović, Marko, Andrić, Stevan, Tomašević-Ilić, Tijana, "Graphene-based Chemiresistive Gas Sensors" in Proceedings - International Conference on Microelectronics, ICM32nd IEEE International Conference on Microelectronics, MIEL 2021 (2021):25-28,
https://doi.org/10.1109/MIEL52794.2021.9569192 . .
1
2

Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Roughness of Cu coatings

Mladenović, Ivana; Lamovec, Jelena; Nikolić, Nebojša D.; Andrić, Stevan; Obradov, Marko; Radojević, Vesna; Vasiljević-Radović, Dana

(Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering, 2020)

TY  - CONF
AU  - Mladenović, Ivana
AU  - Lamovec, Jelena
AU  - Nikolić, Nebojša D.
AU  - Andrić, Stevan
AU  - Obradov, Marko
AU  - Radojević, Vesna
AU  - Vasiljević-Radović, Dana
PY  - 2020
UR  - https://www.etran.rs/2020/ZBORNIK_RADOVA/SADRZAJ_SEKCIJE_RADOVI.html
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3726
AB  - Copper coatings are produced on silicon wafer by electrodeposition (ED) in pulsating current (PC) regime. Electrodeposition was performed at various current density amplitudes in the range of 80−140 mA cm-2, frequency in the range of 30−100 Hz and coating thickness in the range of 10−60 μm. The resulting composite systems consist of monolayered copper films electrodeposited from sulfate bath on Si wafers with sputtered layers of Cr/Au. Roughness measurements were performed to evaluate properties of the copper coating surface. The coating roughness (R) was measured using Atomic Force Microscope in contact mode. The software Gwyddion was used for determination an average roughness parameter (Ra). After that (Artificial Neural Network-ANN) model was used to study the relationship between the parameters of electrodeposition process and roughness of copper coatings. The influence of experimental values: amplitude current density, frequency and thickness of coating on the surface roughness will be highlighted. Response surface methodology (RSM) was utilized to improve the correction between Ra and input parameters. Finally, the results of the average roughness (experimental and predicted) were used to estimate the new value of (Ra) of copper for each variation of the input parameters and compared capability of ANN and regression analysis for surface roughness generated under different electrochemical conditions. The coefficient of determination was found 92% for ANN and 93% for regression analysis.
PB  - Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering
C3  - Proceedings - 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
T1  - Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Roughness of Cu coatings
UR  - https://hdl.handle.net/21.15107/rcub_cer_3726
ER  - 
@conference{
author = "Mladenović, Ivana and Lamovec, Jelena and Nikolić, Nebojša D. and Andrić, Stevan and Obradov, Marko and Radojević, Vesna and Vasiljević-Radović, Dana",
year = "2020",
abstract = "Copper coatings are produced on silicon wafer by electrodeposition (ED) in pulsating current (PC) regime. Electrodeposition was performed at various current density amplitudes in the range of 80−140 mA cm-2, frequency in the range of 30−100 Hz and coating thickness in the range of 10−60 μm. The resulting composite systems consist of monolayered copper films electrodeposited from sulfate bath on Si wafers with sputtered layers of Cr/Au. Roughness measurements were performed to evaluate properties of the copper coating surface. The coating roughness (R) was measured using Atomic Force Microscope in contact mode. The software Gwyddion was used for determination an average roughness parameter (Ra). After that (Artificial Neural Network-ANN) model was used to study the relationship between the parameters of electrodeposition process and roughness of copper coatings. The influence of experimental values: amplitude current density, frequency and thickness of coating on the surface roughness will be highlighted. Response surface methodology (RSM) was utilized to improve the correction between Ra and input parameters. Finally, the results of the average roughness (experimental and predicted) were used to estimate the new value of (Ra) of copper for each variation of the input parameters and compared capability of ANN and regression analysis for surface roughness generated under different electrochemical conditions. The coefficient of determination was found 92% for ANN and 93% for regression analysis.",
publisher = "Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering",
journal = "Proceedings - 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020",
title = "Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Roughness of Cu coatings",
url = "https://hdl.handle.net/21.15107/rcub_cer_3726"
}
Mladenović, I., Lamovec, J., Nikolić, N. D., Andrić, S., Obradov, M., Radojević, V.,& Vasiljević-Radović, D.. (2020). Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Roughness of Cu coatings. in Proceedings - 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020
Belgrade: ETRAN – Society for electronics, telecommunication, computing, automatics and nuclear angineering..
https://hdl.handle.net/21.15107/rcub_cer_3726
Mladenović I, Lamovec J, Nikolić ND, Andrić S, Obradov M, Radojević V, Vasiljević-Radović D. Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Roughness of Cu coatings. in Proceedings - 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020. 2020;.
https://hdl.handle.net/21.15107/rcub_cer_3726 .
Mladenović, Ivana, Lamovec, Jelena, Nikolić, Nebojša D., Andrić, Stevan, Obradov, Marko, Radojević, Vesna, Vasiljević-Radović, Dana, "Response Surface Methodology and Artificial Neural Network-Based Models for Predicting Roughness of Cu coatings" in Proceedings - 7th International Conference on Electrical, Electronic and Computing Engineering IcETRAN 2020 and 64th National Conference on Electrоnics, Telecommunication, Computing, Automatic Control and Nuclear Engineering ETRAN 2020 (2020),
https://hdl.handle.net/21.15107/rcub_cer_3726 .

Ultrafast humidity sensor based on liquid phase exfoliated graphene

Andrić, Stevan; Tomašević-Ilić, Tijana; Bošković, Marko V.; Sarajlić, Milija; Vasiljević-Radović, Dana; Smiljanić, Milče M.; Spasenović, Marko

(IOP Publishing, 2020)

TY  - JOUR
AU  - Andrić, Stevan
AU  - Tomašević-Ilić, Tijana
AU  - Bošković, Marko V.
AU  - Sarajlić, Milija
AU  - Vasiljević-Radović, Dana
AU  - Smiljanić, Milče M.
AU  - Spasenović, Marko
PY  - 2020
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/3993
AB  - Humidity sensing is important to a variety of technologies and industries, ranging from environmental and industrial monitoring to medical applications. Although humidity sensors abound, few available solutions are thin, transparent, compatible with large-area sensor production and flexible, and almost none are fast enough to perform human respiration monitoring through breath detection or real-time finger proximity monitoring via skin humidity sensing. This work describes chemiresistive graphene-based humidity sensors produced in few steps with facile liquid phase exfoliation followed by Langmuir–Blodgett assembly that enables active areas of practically any size. The graphene sensors provide a unique mix of performance parameters, exhibiting resistance changes up to 10% with varying humidity, linear performance over relative humidity (RH) levels between 8% and 95%, weak response to other constituents of air, flexibility, transparency of nearly 80%, and response times of 30 ms. The fast response to humidity is shown to be useful for respiration monitoring and real-time finger proximity detection, with potential applications in flexible touchless interactive panels.
PB  - IOP Publishing
T2  - Nanotechnology
T1  - Ultrafast humidity sensor based on liquid phase exfoliated graphene
VL  - 32
IS  - 2
SP  - 025505
DO  - 10.1088/1361-6528/abb973
ER  - 
@article{
author = "Andrić, Stevan and Tomašević-Ilić, Tijana and Bošković, Marko V. and Sarajlić, Milija and Vasiljević-Radović, Dana and Smiljanić, Milče M. and Spasenović, Marko",
year = "2020",
abstract = "Humidity sensing is important to a variety of technologies and industries, ranging from environmental and industrial monitoring to medical applications. Although humidity sensors abound, few available solutions are thin, transparent, compatible with large-area sensor production and flexible, and almost none are fast enough to perform human respiration monitoring through breath detection or real-time finger proximity monitoring via skin humidity sensing. This work describes chemiresistive graphene-based humidity sensors produced in few steps with facile liquid phase exfoliation followed by Langmuir–Blodgett assembly that enables active areas of practically any size. The graphene sensors provide a unique mix of performance parameters, exhibiting resistance changes up to 10% with varying humidity, linear performance over relative humidity (RH) levels between 8% and 95%, weak response to other constituents of air, flexibility, transparency of nearly 80%, and response times of 30 ms. The fast response to humidity is shown to be useful for respiration monitoring and real-time finger proximity detection, with potential applications in flexible touchless interactive panels.",
publisher = "IOP Publishing",
journal = "Nanotechnology",
title = "Ultrafast humidity sensor based on liquid phase exfoliated graphene",
volume = "32",
number = "2",
pages = "025505",
doi = "10.1088/1361-6528/abb973"
}
Andrić, S., Tomašević-Ilić, T., Bošković, M. V., Sarajlić, M., Vasiljević-Radović, D., Smiljanić, M. M.,& Spasenović, M.. (2020). Ultrafast humidity sensor based on liquid phase exfoliated graphene. in Nanotechnology
IOP Publishing., 32(2), 025505.
https://doi.org/10.1088/1361-6528/abb973
Andrić S, Tomašević-Ilić T, Bošković MV, Sarajlić M, Vasiljević-Radović D, Smiljanić MM, Spasenović M. Ultrafast humidity sensor based on liquid phase exfoliated graphene. in Nanotechnology. 2020;32(2):025505.
doi:10.1088/1361-6528/abb973 .
Andrić, Stevan, Tomašević-Ilić, Tijana, Bošković, Marko V., Sarajlić, Milija, Vasiljević-Radović, Dana, Smiljanić, Milče M., Spasenović, Marko, "Ultrafast humidity sensor based on liquid phase exfoliated graphene" in Nanotechnology, 32, no. 2 (2020):025505,
https://doi.org/10.1088/1361-6528/abb973 . .
2
15
2
11

Humidity sensing with Langmuir-Blodgett assembled graphene films from liquid phase

Andrić, Stevan; Tomašević-Ilić, Tijana; Sarajlić, Milija; Lazić, Žarko; Cvetanović-Zobenica, Katarina; Rašljić, Milena; Smiljanić, Milče; Spasenović, Marko

(Spain : Phantoms Foundation, 2019)

TY  - CONF
AU  - Andrić, Stevan
AU  - Tomašević-Ilić, Tijana
AU  - Sarajlić, Milija
AU  - Lazić, Žarko
AU  - Cvetanović-Zobenica, Katarina
AU  - Rašljić, Milena
AU  - Smiljanić, Milče
AU  - Spasenović, Marko
PY  - 2019
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/7421
AB  - Chemical sensors are an enabling tool across many industries, including the largest ones such as  energy, transport, and construction. Low-cost, high performance sensors, especially ones compatible  with flexible substrates, are becoming increasingly important with the development of mobile  gadgets and wearable devices. Here we show humidity sensors produced from thin films of graphene  exfoliated in the liquid phase and deposited with Langmuir-Blodgett assembly. The films are formed  from connected nanoflakes that are ~120nm in diameter and ~10 layers thick. We show that such  films have an abundancy of reactive edges that act as binding sites for gas detection, enabling high  sensitivity to gas presence [1]. The method that we demonstrate uses low-cost processes, is highly  scalable and consistently yields films of high quality that can be deposited on any substrate, including flexible and transparent ones. We produce our thin films on top of a Si/SiO2 wafer with four contacts for measuring sheet resistance in real time as gas is introduced. The sensors that we make are more sensitive to humidity than ones demonstrated with CVD graphene [2], with up to 30% change in sheet resistance upon exposure to water vapor. Although we demonstrate detection of humidity, the same sensors can be used to detect other, both toxic and non-toxic gases.
PB  - Spain : Phantoms Foundation
PB  - France : Université de Strasbrourg / CNRS
PB  - Germany : TU Dresden / cfaed
C3  - European conference on chemistry of two-dimensional materials, Chem2Dmat - 2019, September 03-06, Dresden, Germany
T1  - Humidity sensing with Langmuir-Blodgett assembled  graphene films from liquid phase
SP  - 116
EP  - 116
UR  - https://hdl.handle.net/21.15107/rcub_cer_7421
ER  - 
@conference{
author = "Andrić, Stevan and Tomašević-Ilić, Tijana and Sarajlić, Milija and Lazić, Žarko and Cvetanović-Zobenica, Katarina and Rašljić, Milena and Smiljanić, Milče and Spasenović, Marko",
year = "2019",
abstract = "Chemical sensors are an enabling tool across many industries, including the largest ones such as  energy, transport, and construction. Low-cost, high performance sensors, especially ones compatible  with flexible substrates, are becoming increasingly important with the development of mobile  gadgets and wearable devices. Here we show humidity sensors produced from thin films of graphene  exfoliated in the liquid phase and deposited with Langmuir-Blodgett assembly. The films are formed  from connected nanoflakes that are ~120nm in diameter and ~10 layers thick. We show that such  films have an abundancy of reactive edges that act as binding sites for gas detection, enabling high  sensitivity to gas presence [1]. The method that we demonstrate uses low-cost processes, is highly  scalable and consistently yields films of high quality that can be deposited on any substrate, including flexible and transparent ones. We produce our thin films on top of a Si/SiO2 wafer with four contacts for measuring sheet resistance in real time as gas is introduced. The sensors that we make are more sensitive to humidity than ones demonstrated with CVD graphene [2], with up to 30% change in sheet resistance upon exposure to water vapor. Although we demonstrate detection of humidity, the same sensors can be used to detect other, both toxic and non-toxic gases.",
publisher = "Spain : Phantoms Foundation, France : Université de Strasbrourg / CNRS, Germany : TU Dresden / cfaed",
journal = "European conference on chemistry of two-dimensional materials, Chem2Dmat - 2019, September 03-06, Dresden, Germany",
title = "Humidity sensing with Langmuir-Blodgett assembled  graphene films from liquid phase",
pages = "116-116",
url = "https://hdl.handle.net/21.15107/rcub_cer_7421"
}
Andrić, S., Tomašević-Ilić, T., Sarajlić, M., Lazić, Ž., Cvetanović-Zobenica, K., Rašljić, M., Smiljanić, M.,& Spasenović, M.. (2019). Humidity sensing with Langmuir-Blodgett assembled  graphene films from liquid phase. in European conference on chemistry of two-dimensional materials, Chem2Dmat - 2019, September 03-06, Dresden, Germany
Spain : Phantoms Foundation., 116-116.
https://hdl.handle.net/21.15107/rcub_cer_7421
Andrić S, Tomašević-Ilić T, Sarajlić M, Lazić Ž, Cvetanović-Zobenica K, Rašljić M, Smiljanić M, Spasenović M. Humidity sensing with Langmuir-Blodgett assembled  graphene films from liquid phase. in European conference on chemistry of two-dimensional materials, Chem2Dmat - 2019, September 03-06, Dresden, Germany. 2019;:116-116.
https://hdl.handle.net/21.15107/rcub_cer_7421 .
Andrić, Stevan, Tomašević-Ilić, Tijana, Sarajlić, Milija, Lazić, Žarko, Cvetanović-Zobenica, Katarina, Rašljić, Milena, Smiljanić, Milče, Spasenović, Marko, "Humidity sensing with Langmuir-Blodgett assembled  graphene films from liquid phase" in European conference on chemistry of two-dimensional materials, Chem2Dmat - 2019, September 03-06, Dresden, Germany (2019):116-116,
https://hdl.handle.net/21.15107/rcub_cer_7421 .