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Abstract 

We report here the development of a simple and low-cost intelligent vacuum sensor based on multipurpose 
thermopile MEMS chips. Our devices have a p+Si heater and two thermopiles with 30 p+Si/Al thermocouples each. 
Thermal and electrical isolation is provided by a sandwich membrane (residual n-Si and sputtered oxide). The sensor 
utilizes for its intelligent mode of operation a modified version of an existing processing module we developed for 
our piezoresistive sensors. 
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1. Introduction 

Sensors intended for measurements of pressures below atmospheric (vacuum sensors) are well-known 
and mature devices which find many important applications [1]. One especially important class among 
them is thermopile-based MEMS vacuum sensors [2], whose advantage is a very wide pressure range. The 
thermopile devices based on Seebeck effect are also utilized as e.g. gas flow sensors, vacuum detectors, 
thermal converters, etc. [1-3] finding a broad range of commercial applications [4,5]. Our multipurpose 
sensors have been successfuly demonstrated for the following applications: gas flow sensor, vacuum 
detector and thermal converter [3,4,6]. On the other hand, it is important for contemporary sensors 
generally to enable intelligent mode of operation, to ensure minimum costs of fabrication and application 
and maximum simplicity. 
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  This paper presents preliminary experimental results achieved in the realization of a simple and low-cost 
intelligent vacuum sensor. To this purpose we utilized our multipurpose thermopile MEMS chips and a 
processing module based on our intelligent control unit originally designed for piezoresistive sensors. 

2. Intelligent thermopile - based vacuum sensor construction and principle of operation 

Using technological procedure developed for IHTM piezoresistive pressure sensors, multipurpose 
thermal MEMS sensors with p+Si/Al thermocouples were realized. As shown in Fig. 1, two thermopiles, 
with 30 thermocouples each, are positioned to the right and left from the heater located in the central part 
of the chip. "Cold" thermocouple junctions are placed on the rim in the vicinity of the p+Si thermistors. 
The membrane area consists of sputtered oxide 1μm thick and partially etched residual n-Si of thickness 
dn-Si. In order to improve performance, diced single chips were etched again and structures with different 
membrane thicknesses were fabricated.  

Thermopile based vacuum sensor operation is based on dependence of the gas thermal conductivity on 
the pressure inside the housing. For a specific value of thermal conductivity GAS (p, T), at a given 
pressure and ambient temperature, a temperature difference between hot and cold thermocouple junctions, 

T, is established. Due to thermoelectric conversion voltage is generated at the thermopile, U (p, T). 
When operating under constant current conditions, Iconst, the temperature difference and the sensor output 
also depend on variations of the heater resistance with temperature, RH(T). Taking into account all of the 
mentioned influences, a general formula for the output sensor voltage can be written as 

 

constHgas ITRTpTNTpU ,,, ,  (1) 

 
where N is the number of the thermocouples in the thermopile, while  is the Seebeck coefficient of the 
thermocouples. Without getting into details we will just point out that ambient temperature changes 
induce shift of the voltage/pressure curve as shown in Fig. 2. 

2.1. Construction of the intelligent vacuum sensor 

For the purposes of vacuum measurements, chips are mounted on TO-8 housing and welded in 
specially designed transducer housing as shown in Fig. 3. The process flange complies with the NW 16-
KF vacuum standard. The sensor mount is compatible with the TO-8 housing. 
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Fig. 1. Photograph of the multipurpose chip containing: 
two thermopiles with 30 p+Si/Al thermocouples (1), 
p+Si heater (2) and p+Si thermistors (3). 

Fig. 2. Theoretical dependence of voltage of one thermopile of a sensor 
with residual n-Si thickness, dn-Si = 13.4 m, with constant current of 
3 mA applied at p+Si heater for different ambient temperatures. 
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Fig. 3. Multipurpose thermal sensor for vacuum measurements 
mounted on a TO-8 housing and welded into a specially 
designed transducer housing and intelligent sensor control unit. 

Fig. 4. Experimental (dots) and simulation (line) dependence of 
voltage at one thermopile on pressure for sensor with 
dn-Si = 2.9 μm, obtained for 3 mA bias current at p+Si heater. 

 
Contact wires are bonded to pins of TO-8 housing and connected with the intelligent sensor control 

unit (Fig. 3), optimized for piezoresistive pressure sensors. The electronic unit of the intelligent sensor 
first performs A/D conversion, and then digital processing of signals from the vacuum sensor.  

2.2. Software adaptation 

We modified software originally optimized for our pressure transmitters to use with the intelligent 
thermal vacuum sensor. The blocks for physical signal processing, linearization and temperature 
compensation have been extensively modified. A different approach to A/D converter initialization was 
also necessary, since the output signal of a thermal sensor is different from that of a pressure sensor. 

In the part of the code dealing with linearization, a polynomial up to 5th order was introduced based on 
fitting of experimental U(p), output voltage being an independent and pressure a dependent variable 
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A manual temperature compensation method was implemented. Voltage correction factor is 

interactively entered in the code. The polynomial coefficients are determined for measurements done at 
calibration temperature, Tcal. At an arbitrary temperature T1, the output voltage will be higher ( 1  cal) or 
lower ( 1  cal) for each point in the pressure range, due to the shift of U (p) curve. Therefore, instead of 
the voltage U, as read on display, it is necessary to use the corrected voltage value in the polynomial, 
U  U – U, where U is the correction factor calculated at the chosen pressure according to 

constpTcalconstpTconstpT cal
UUU ,,, 11

. 

3. Experiment 

The dependence of the output thermopile voltage on pressure was measured in a range of 
(10-3 - 105) Pa. Experimental and theoretical dependence for a sensor with dn-Si = 2.9 μm are shown in 
Fig. 4. Our procedure consisted of two independent measurement sets, the first one for the range 
(10–3 - 200) Pa, and the second one for (300 - 105) Pa. In the first set, pressure was changed continuously 
by slowly letting the air into the system. In the second set, the pressure was generated and controlled by a 
Mensor APC 600 pressure calibrator. 
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Fig. 5. Experimental setup: 1) electronics unit with alphanumerical 
display, 2) Agilent E3466A Dual Output DC Power Supply – 
electronics supply, 3) current source (Keithley 220) – sensors heater 
supply, 4) Pressure Calibrator Mensor APC 600, 5) laptop with 
special software and connected programmator. 

Fig. 6. Linear dependence of the pressure values read at the 
intelligent system display for the chosen pressures 
generated by Mensor APC 600 in the range (5-20) mbar. 

 
Because of the quoted procedure, we performed the complete testing for p > 300 Pa where full control 

of pressure was assured. The experimental setup is shown in Fig. 5, while Fig. 6 shows the values 
measured by our intelligent sensor system and the corresponding values generated by the calibrator. 

4. Conclusion 

We presented a realization of a simple and low-cost intelligent vacuum sensor based on our 
multipurpose thermopile MEMS chips and an intelligent control unit originally designed for our 
piezoresistive pressure sensors. The adaptation of the software module was of key importance, since it 
ensured an extended mode of operation and multipurpose applicability of our vacuum measurement 
system. A fourth-order polynomial was used for the data processing. A special care has been taken to 
ensure an adequate temperature compensation. A linear dependence of pressure values read at the 
intelligent system display on pressures generated by pressure calibrator was observed. 
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