# Novel cerium and praseodymium doped phosphate tungsten bronzes: Synthesis, characterization, photoluminescent properties and behavior in Briggs-Rauscher reaction 

 Joksovicia ${ }^{\text {a }}$, Maja Pagnacco ${ }^{\text {b* }^{+}}$
a. Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
b. Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia
c. Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11001 Belgrade, Serbia
d. Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200 D, box 2425, B-3001, Leuven, Belgium
e. Institute of General and Physical Chemistry, Studentski trg 12/V, 11158, P.O. box 45, Belgrade, Serbia
f. Faculty of Mining and Geology, University of Belgrade, Djušina 7, 11120 Belgrade, Serbia
g. L ${ }^{3}$ - Luminescnet Lanthanide Lab, Department of Chemistry, Ghent Univeristy, Krijgslaan 281 - S3, B-9000, Ghent, Belgium
*coresponding author: maja.pagnacco@nanosys.ihtm.bg.ac.rs or maja.milenkovic@ymail.com

## Structural and thermal analysis of Ce-PWA, Pr-PWA, Ce-PWB, and Pr-PWB

In Fig. S1 is shown the FTIR spectrum of 6-PWA, at room temperature. In the spectrum of 6-PWA are characteristic bands of molecule $\mathrm{H}_{2} \mathrm{O}, \mathrm{PO}_{4}$ tetrahedral, and $\mathrm{WO}_{6}$ octahedral. The band at $3404 \mathrm{~cm}^{-1}$ corresponds to $v\left(\mathrm{H}_{2} \mathrm{O}\right)$ vibration, while the band at $1636 \mathrm{~cm}^{-1}$ corresponds to $\delta\left(\mathrm{H}_{2} \mathrm{O}\right)$ vibration. The IR characteristic bands of the Keggin's anion structure are: the band at $1080 \mathrm{~cm}^{-1}$ pertains to $v_{3}\left(\mathrm{PO}_{4}\right)$ vibration, the band at $983 \mathrm{~cm}^{-1}$ corresponds to vibration of $\mathrm{v}_{1}\left(\mathrm{PO}_{4}\right)$ tetrahedron, the band at 889 $\mathrm{cm}^{-1}$ corresponds to $v(\mathrm{~W}=\mathrm{O})$ vibration, the band at $802 \mathrm{~cm}^{-1}$ confirms the vibration $v(\mathrm{O}-\mathrm{W}-\mathrm{O})$, the band at $595 \mathrm{~cm}^{-1}$ can be assigned to the vibration $v_{4}\left(\mathrm{PO}_{4}\right)$ of the tetrahedron and the band at $525 \mathrm{~cm}^{-1}$ corresponds to the $v_{2}\left(\mathrm{PO}_{4}\right)$ vibration.


Fig. S1 FTIR spectrum of 6-PWA

The observed XRPD patterns of Ce and Pr doped phosphate tungsten acids (Ce-PWA and Pr-PWA, respectively) are shown in Fig. 3 and in Table S1. It is obvious that the determined data for studied acids more or less differs among each other, and also with the data for cubic 6-PWA (calcined at the $\sim 60-170^{\circ} \mathrm{C}$ region [30]) and for $\mathrm{Ca}-\mathrm{PWA}$ (calcined at $170^{\circ} \mathrm{C}$ [41]). This fact could primarily indicate that these two studied compounds most probably were not dehydrated enough and that contain more than 6 molecules of water, i.e., that 6-PWA structure was not completely achieved at $80^{\circ} \mathrm{C}$.

Table S1 Observed inter-planar spacings ( $\mathrm{d}_{\text {obs }}$, in $\AA$ ) and intensities ( $\mathrm{I}_{\text {obs }}$, in \%) of Ce-PWA and Pr-PWA, in comparison with 6-PWA and Ca-PWA

| 6-PWA ${ }^{1}$ |  |  | Ca-PWA ${ }^{2}$ |  | Ce-PWA |  | Pr-PWA |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hkl | $\mathrm{d}_{\text {obs }}$ | $\mathrm{I}_{\text {obs }}$ |
| 110 | 8.580 | 66 | 8.55 | 37 |  |  | 8.612(6) | 32 |
| 111 | 7.008 | 2 |  |  | 6.900(6) | 7 | 6.936(3) | 7 |
| 200 | 6.073 | 16 | 6.05 | 11 | 5.81(9) | 1 | 6.080(3) | 9 |
| 211 | 4.961 | 15 | 4.93 | 88 | 4.943(2) | 15 | 4.973(7) | 33 |
|  |  |  |  |  | 4.825(2) | 14 |  |  |
| 220 | 4.297 | 36 | 4.28 | 100 | 4.408(2) | 65 | 4.437(2) | 74 |
|  |  |  |  |  | 4.339(2) | 52 | 4.362(2) | 65 |
|  |  |  |  |  |  |  | 4.304(4) | 20 |
| 221 | 4.052 | 1 |  |  | 4.022(9) | 5 | 4.038(7) | 5 |
| 310 | 3.843 | 24 | 3.84 | 19 |  |  | 3.850(3) | 16 |
|  |  |  | 3.60 | 29 | 3.6441(8) | 82 | 3.658(2) | 100 |
| 222 | 3.508 | 100 | 3.50 | 69 | 3.496(4) | 7 | 3.509(3) | 62 |
|  |  |  |  |  | 3.424(4) | 5 |  |  |
| 321 | 3.248 | 4 |  |  | 3.262(1) | 40 | 3.2721(6) | 35 |
|  |  |  |  |  | 3.2225(8) | 22 | 3.232(2) | 14 |
|  |  |  | 3.10 | 37 | 3.125(3) | 8 | 3.139(3) | 10 |
| 400 | 3.039 | 29 | 3.04 | 21 | 3.087(1) | 28 | 3.0986(9) | 29 |
|  |  |  |  |  |  |  | 3.041(2) | 18 |
|  |  |  |  |  |  |  | 2.990(4) | 7 |
|  |  |  |  |  | 2.911(2) | 43 | 2.921(2) | 37 |
| 330 | 2.864 | 13 | 2.87 | 25 | 2.8309(6) | 100 | 2.8480(6) | 59 |
|  |  |  |  |  | 2.8185(4) | 41 |  |  |
| 420 | 2.717 | 7 |  |  | 2.700(3) | 10 | 2.710(1) | 12 |
|  |  |  |  |  | 2.6328(8) | 10 | 2.637(2) | 11 |
| 332 | 2.590 | 51 | 2.59 | 40 |  |  | 2.591(1) | 29 |
|  |  |  |  |  | 2.526(1) | 8 | 2.534(2) | 9 |
|  |  |  | 2.44 | 19 | 2.4734(3) | 11 | 2.481(2) | 10 |
|  |  |  |  |  | 2.4347(7) | 7 | 2.4422(3) | 9 |
|  |  |  |  |  | 2.4189(5) | 23 | 2.4264(5) | 18 |
| 510 | 2.383 | 23 | 2.38 | 54 | 2.3836(7) | 35 | 2.3894(4) | 51 |
| 511 | 2.338 | 1 |  |  | 2.3530(7) | 5 | 2.3583(7) | 4 |
|  |  |  |  |  | 2.2673(3) | 9 | 2.274(2) | 8 |
| 521 | 2.218 | 5 | 2.22 | 5 | 2.2401(3) | 32 | 2.2460(2) | 24 |
|  |  |  |  |  | 2.212(5) | 4 | 2.220(1) | 8 |
| 440 | 2.148 | 4 |  |  | 2.152(1) | 15 | 2.1570 (6) | 16 |
|  |  |  |  |  | 2.122(1) | 16 | 2.1290 (3) | 16 |
| 530 | 2.085 | 2 |  |  | 2.0743(9) | 13 | 2.078(1) | 13 |
| 600 | 2.025 | 6 |  |  |  |  | 2.026(4) | 4 |
| 611 | 1.971 | 13 | 1.97 | 59 | 1.971(1) | 8 | 1.9744(5) | 18 |
| 620 | 1.921 | 4 |  |  |  |  | 1.9383(9) | 4 |
|  |  |  |  |  |  |  | 1.9195(3) | 4 |
|  |  |  |  |  |  |  | 1.9092(3) | 5 |
| 540 | 1.898 | 2 |  |  | 1.891(1) | 5 | 1.8963(5) | 9 |
| 541 | 1.875 | 7 |  |  |  |  | 1.879(2) | 4 |
| 622 | 1.832 | 2 |  |  | 1.832(5) | 10 | 1.8355(5) | 9 |
|  |  |  |  |  | 1.8146(3) | 37 | 1.8170(4) | 36 |
| 444 | 1.753 | 1 |  |  | 1.774(1) | 6 |  |  |
| 710 | 1.719 | 20 | 1.72 | 25 | 1.732(1) | 7 | 1.7349(8) | 6 |


|  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |

Contrariwise, XRPD patterns of Ce and Pr doped phosphate tungsten bronzes (Ce-PWB and Pr-PWB, respectively; Fig. 4 and Table S2 are very similar and highly comparable between each other. It can be also emphasized here that peaks with the highest intensities for Ce-PWB and Pr-PWB (i.e., at about $23-24^{\circ}, 33-34^{\circ}$, and $53.5-56^{\circ}$ angle $2 \theta$ ranges) are quite similar to $\mathrm{Ca}-$ PWB [41]. These peaks are without expressively visible doublets which are characteristic for PWB [30], but broadened and with more or fewer shoulders present, which could indicate two (or more) diffraction maximums. Therefore, it is obvious that the observed data for these studied bronzes are analogical to those obtained for PWB crystallized as monoclinic at temperature conditions of $750{ }^{\circ} \mathrm{C}$ \{ICDD-PDF (International Centre for Diffraction Data-Powder Diffraction File): 50-0660 [30]\}, and for Ca-PWB crystallized at temperature conditions of $650^{\circ} \mathrm{C}$ [41], as well. This fact primarily indicates that these four phases are iso-structural between each other.

Table S2 Observed inter-planar spacings ( $\mathrm{d}_{\text {obs }}$, in $\AA$ ) and intensities ( $\mathrm{I}_{\text {obs }}$, in \%) of Ce-PWB and Pr-PWB, in comparison with PWB, Ca-PWB, and Li-PWB

| $\mathbf{P W B}^{1}$ |  | Ce-PWB |  |  | Pr-PWB |  | Ca-PWB ${ }^{2}$ |  | Li-PWB |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| hkI | $\mathrm{d}_{\text {obs }}$ | $\mathrm{I}_{\text {obs }}$ |
| 002 | 3.840 | 41 |  |  |  |  | 3.810(2) | 33 | 3.840 | 100 |
| 020 | 3.749 | 100 | 3.743(2) | 100 | 3.749(2) | 100 | 3.726(2) | 100 | 3.757 | 81 |
| 200 |  |  |  |  |  |  |  |  | 3.653 | 85 |
| -120 | 3.337 | 1 |  |  |  |  |  |  | 3.344 | 15 |
| -112 | 3.108 | 6 | 3.099(6) | 10 |  |  |  |  |  |  |
| 112 | 3.083 | 5 |  |  | 3.092(2) | 7 | 3.091(6) | 13 | 3.099 | 15 |
| 022 |  |  |  |  |  |  |  |  | 2.687 | 29 |
| -2 02 | 2.677 | 40 | 2.663(1) | 68 | 2.6632(8) | 62 | 2.6567(9) | 64 |  |  |
| 202 | 2.637 | 26 |  |  |  |  |  |  |  |  |
| -2 20 |  |  |  |  |  |  |  |  | 2.620 | 42 |
| 122 |  |  |  |  |  |  |  |  | 2.523 | 5 |
| 222 |  |  |  |  |  |  |  |  | 2.166 | 10 |
| -2 22 | 2.173 | 14 | 2.173(2) | 17 | 2.178(1) | 16 | 2.1687(6) | 12 |  |  |
| -320 |  |  |  |  |  |  |  |  | 2.045 | 2 |
| 213 | 2.006 | 2 |  |  | 2.001(4) | 2 | 1.992(4) | 3 |  |  |
| 132 |  |  |  |  |  |  |  |  | 2.018 | 2 |
| 312 |  |  |  |  |  |  |  |  | 1.987 | 5 |
| 004 | 1.922 | 3 |  |  |  |  |  |  | 1.921 | 7 |
| 040 |  |  |  |  |  |  |  |  | 1.880 | 8 |
| -104 | 1.866 | 11 | 1.877(4) | 9 | 1.869(2) | 9 |  |  |  |  |
| 014 | 1.861 | 10 |  |  |  |  | 1.8583(7) | 18 |  |  |
| 041 |  |  |  |  |  |  |  |  | 1.825 | 18 |
| 322 |  |  |  |  |  |  |  |  | 1.806 | 10 |
| -114 | 1.810 | 4 |  |  | 1.803(3) | 5 | 1.793(2) | 12 |  |  |
| 024 | 1.712 | 6 |  |  |  |  |  |  | 1.710 | 9 |
| -3 31 | 1.708 | 6 |  |  |  |  |  |  |  |  |
| 042 |  |  |  |  |  |  |  |  | 1.691 | 7 |
| -2 40 |  |  |  |  |  |  |  |  | 1.672 | 9 |

```
    -214 1.668 15 1.678(1) 23 1.6782(8) 18 1.6671(3) 40
    142
    1.646 16
    2331.603 1
    -2 24 1.555 3
```



```
    42 1.512 5
    403 1.490 8
    -143 1.487 3 1.484(2) 4 4 1.484(3)
    1.330(3) 4 1.332(2) 3
    1.253(2) 7 1.253(1) 5
```

1) $\operatorname{Ref}[30],{ }^{2)} \operatorname{Ref}[41]$

Table S3 Calculated inter-planar spacings ( $\mathrm{d}_{\text {calc }}$, in $\AA$ ) of Ce-PWB, PrPWB, Ca-PWB, and Li-PWB in comparison with PWB

|  | PWB ${ }^{1}$ | Ce-PWB | Pr-PWB | Ca-PWB | Li-PWB |
| :---: | :---: | :---: | :---: | :---: | :---: |
| hkI | $\mathrm{d}_{\text {calc }}$ |
| 002 | 3.843 |  |  | 3.823 | 3.841 |
| 020 | 3.758 | 3.759 | 3.764 |  | 3.761 |
| 200 |  |  |  | 3.721 | 3.655 |
| -120 | 3.344 |  |  |  | 3.344 |
| -112 | 3.114 | 3.096 |  |  |  |
| 112 | 3.086 |  | 3.083 | 3.090 | 3.101 |
| 022 |  |  |  |  | 2.687 |
| -2 02 | 2.669 | 2.667 | 2.672 |  |  |
| 202 | 2.633 |  |  | 2.658 |  |
| -2 20 |  |  |  |  | 2.621 |
| 122 |  |  |  |  | 2.524 |
| -2 22 | 2.176 | 2.175 | 2.179 |  |  |
| 222 |  |  |  | 2.168 | 2.167 |
| -320 |  |  |  |  | 2.045 |
| 132 |  |  |  |  | 2.019 |
| 213 | 2.010 |  | 2.007 |  |  |
| 321 |  |  |  | 1.994 |  |
| 312 |  |  |  |  | 1.987 |
| 004 | 1.921 |  |  |  | 1.921 |
| 040 |  | 1.880 |  |  | 1.880 |
| 400 |  |  |  | 1.861 |  |
| -104 | 1.865 |  | 1.864 |  |  |
| 014 | 1.862 |  |  |  |  |
| 041 |  |  |  |  | 1.826 |
| 322 |  |  |  |  | 1.807 |
| -114 | 1.810 |  | 1.810 |  |  |
| 114 |  |  |  | 1.795 |  |
| 024 | 1.711 |  |  |  | 1.710 |
| -204 | 1.711 |  |  |  |  |
| -3 31 | 1.708 |  |  |  |  |
| 204 | 1.692 |  |  |  |  |
| 042 |  |  |  |  | 1.689 |
| -240 |  | 1.678 | 1.674 |  | 1.672 |
| 402 |  |  |  | 1.669 |  |
| -2 14 | 1.668 |  |  |  |  |
| 142 |  |  |  |  | 1.646 |
| 233 | 1.603 |  |  |  |  |
| -2 24 | 1.557 |  |  |  |  |
| 005 |  |  | 1.536 | 1.529 |  |
| 242 | 1.530 | 1.535 |  |  | 1.534 |
| 422 |  |  |  |  | 1.512 |


|  | 134 |  |  |  | 1.486 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 403 |  |  |  |  | 1.489 |
|  | -143 | 1.486 |  | 1.488 |  |  |
|  | 342 |  |  |  |  | 1.389 |
|  | -2 25 |  |  | 1.332 |  |  |
|  | 404 |  | 1.331 |  |  |  |
|  | -2 25 |  |  |  | 1.326 |  |
|  | -106 |  | 1.254 |  |  |  |
|  | -442 |  |  |  | 1.250 |  |
|  | 060 |  |  | 1.254 |  |  |

## ${ }^{1)} \operatorname{Ref}[30]$

Considering the previous discussion, the unit cell dimensions of $\mathrm{Ce}-\mathrm{PWB}, \mathrm{Pr}-\mathrm{PWB}, \mathrm{Ca}-\mathrm{PWB}$, and $\mathrm{Li}-\mathrm{PWB}$ were calculated in the present paper in monoclinic symmetry starting from the initial data for PWB (ICDD-PDF: 50-0660 [30]), and presented at Table S3 and Table 1. The obtained results indicate that these values are, as expected, more or less varying between the different bronzes. We believe that one of the primary reasons for such behavior could be various ionic radiuses of included different dopants. Accordingly, there were chosen following values for coordination number VIII [51], of: 1.143 $\AA$, 1.126 $\AA$, $1.12 \AA$, and $0.92 \AA$ for $\mathrm{Ce}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Ca}^{2+}$, and $\mathrm{Li}^{+}$, respectively. Variations of such ionic radiuses by unit cell dimensions are studied for different bronzes and presented in Figure S2. For every variation, there were further calculated linear and polynomial coefficients of the regression ( $\mathrm{R}^{2}$; hereinafter coefficients-C), which was previously shown to be a very useful accessory tool for different correlation parameters [52].

From Figure S2, it can be seen that polynomial variations are something better than the linear. Also, it is obvious that various dopants in the studied bronzes more or less affecting to their structures. Namely, $a_{0}$ axis, angle $\beta_{0}$ and volume $\mathrm{V}_{0}$ increase, whereas $\mathrm{b}_{0}$ and $\mathrm{c}_{0}$ axes decrease with the increase of dopants ionic radiuses. More specifically, relatively good coefficients ( C 1 ) can be associated with the $\mathrm{a}_{0}, \mathrm{c}_{0}, \beta_{0}$ and $\mathrm{V}_{0}$ parameters ( $0.510 ; 0.556 ; 0.662$; and 0.702 ; respectively), whereas axis $b_{0}$ shows very poor correlation ( 0.182 ). Deviations from better correlation coefficients from these could be found by the fact that $\mathrm{Ce}^{3+}$ and $\mathrm{Pr}^{3+}$ belong to the same REEs group, whereas $\mathrm{Ca}^{2+}$ and $\mathrm{Li}^{+}$belong to the other chemical groups and have different electro-negativity.

I

d


e



Figure S2 Linear (column I, left) and polynomial (column II, right; C1) variations of ionic radiuses (in $\AA$ ) for Ce-PWB, Pr-PWB, Ca-PWB and Li-PWB bronzes by: a) axis $\mathrm{a}_{0}$ (in $\AA$ ); b) axis $\mathrm{b}_{0}$ (in $\AA$ ); c) axis $\mathrm{c}_{0}$ (in $\AA$ ); d) angle $\beta_{0}$ (in ${ }^{\circ}$ ); and e) volume $\mathrm{V}_{0}$ (in $\AA^{3}$ )

On the other hand, second option that could be considered is that praseodymium is characterized as $\operatorname{Pr}^{4+}(0.96 \AA$ for coordination number VIII [51]). In that case, excellent coefficients (C2; Figure S3) were obtained for the $\mathrm{a}_{0}, \mathrm{c}_{0}$, $\beta_{0}$ and $\mathrm{V}_{0}$
parameters (0.998; 0.992; 0.910; and 0.992 ; respectively). Similarly, much better values were also obtained for the $\mathrm{b}_{0}$ axis (0.416).


Figure S3 Linear (column I, left) and polynomial (column II, right; C2) variations of ionic radiuses (in $\AA$ ) for Ce-PWB, $\mathrm{Pr}-\mathrm{PWB}$, Ca-PWB and Li-PWB bronzes by: a) axis $\mathrm{a}_{0}$ (in $\AA$ ); b) axis $\mathrm{b}_{0}$ (in $\AA$ ); c) axis $\mathrm{c}_{0}\left(\right.$ in $\AA$ ); d) angle $\beta_{0}\left(\right.$ in ${ }^{\circ}$ ); and e) volume $\mathrm{V}_{0}$ (in $\AA^{3}$ )

Furthermore, we considered another two more possible options. Namely, third option that was taken into account is that $\mathrm{Ce}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Ca}^{2+}$, and $\mathrm{Li}^{+}$are with the coordination number VI [51], having ionic radiuses of: $1.01 \AA, 0.99 \AA, 1.00 \AA$, and $0.76 \AA$ for $\mathrm{Ce}^{3+}, \mathrm{Pr}^{3+}, \mathrm{Ca}^{2+}$, and $\mathrm{Li}^{+}$, respectively. The resulting coefficients (C3; Figure S4) are also excellent and significantly better than those for coordination number VIII (C1), having following values for the $\mathrm{a}_{0}, \mathrm{c}_{0}, \beta_{0}$ and $\mathrm{V}_{0}$ parameters of: $0.879 ; 0.966 ; 0.976$; and 0.946 ; respectively. On the contrary, axis $b_{0}$ shows also very poor correlation ( 0.155 ).

I

b


C

d

e







Figure S4 Linear (column I, left) and polynomial (column II, right; C3) variations of ionic radiuses (in $\AA$ ) for Ce-PWB, Pr-PWB, Ca-PWB and Li-PWB bronzes by: a) axis $\mathrm{a}_{0}$ (in $\AA$ ); b) axis $\mathrm{b}_{0}$ (in $\AA$ ); c) axis $\mathrm{c}_{0}$ (in $\AA$ ); d) angle $\beta_{0}$ (in ${ }^{\circ}$ ); and e) volume $\mathrm{V}_{0}$ (in $\AA^{3}$ )

At last, fourth option that was considered is that praseodymium is also characterized as $\operatorname{Pr}^{4+}(0.85 \AA$ for coordination number VI [51]). The resulting coefficients (C4; Figure S5) are the best among all of the four options studied (i.e., C1-C4), indicating to the theoretically most probably solution. These coefficients are as follows: 1.000 (axis $\mathrm{a}_{0}$ ); 0.518 (axis $\mathrm{b}_{0}$ ); 0.966 (axis $\mathrm{c}_{0}$ ); 0.989 (angle $\beta_{0}$ ); and 0.997 (volume $\mathrm{V}_{0}$ ).

## I

a

b


C

d





II





Figure S5 Linear (column I, left) and polynomial (column II, right; C4) variations of ionic radiuses (in $\AA$ ) for Ce-PWB, Pr-PWB, Ca-PWB and Li-PWB bronzes by: a) axis $\mathrm{a}_{0}$ (in $\AA$ ); b) axis $\mathrm{b}_{0}$ (in $\AA$ ); c) axis $\mathrm{c}_{0}$ (in $\AA$ ); d) angle $\beta_{0}$ (in ${ }^{\circ}$ ); and e) volume $\mathrm{V}_{0}$ (in $\AA^{3}$ )

Finally, although crystal structure refinements were beyond the scope of this paper, different calculated unit cell dimensions between PWB, Ce-PWB, Pr-PWB, Ca-PWB, and Li-PWB (Table 1), and their more or less different increasedecrease behavior (Figures S2-S5), as well, could be sufficient proof of the various tilting of their $\mathrm{WO}_{6}$ octahedrons and $\mathrm{PO}_{4}$ tetrahedrons. Such tilting is caused by different inserted cations into the PWB structure, leading to their different polyhedral distortions, site occupancy factors, bond lengths, angles, etc., which were also confirmed in our studies of some other materials [55,57,58].

## Photoluminescent (PL) properties

The PWA, PWB, Ce-PWA, Ce-PWB, Pr-PWA, and Pr-PWB have shown fluorescent properties without characteristic emission peaks of $\mathrm{Ce}^{3+}$ and $\mathrm{Pr}^{3+}$ (Fig. 8, Fig. S7).

The results of lifetime measurements of pure matrixes and doped samples are presented in Table S4 and Fig. S6.
The CIE chromaticity diagrams have shown that all samples emit in deep blue region which can exhibit potential use as blue emitting source for white light LED's (presented in Fig. 10 and Fig. S7 and coordinates are given in Table S5).

Table S4 The results of lifetime measurements of pure matrixes and doped samples

| Sample | $\tau_{\mathbf{1}}(\mu \mathbf{s})$ | $\mathbf{R}^{2}$ |
| :---: | :---: | :---: |
| PWA | 2.91 | 0.9938 |
| Ce-PWA exc. 320 nm | 2.20 | 0.9845 |
| Ce-PWA exc. 376 nm | 1.69 | 0.9862 |
| Pr-PWA | 3.29 | 0.9834 |
| PWB | 2.66 | 0.9860 |
| Ce-PWB | 2.01 | 0.9850 |
| Pr-PWB | 2.70 | 0.9842 |



Fig. S6 Emission spectra of: a PWA and b Ce-PWA excited at 320 nm ; $\mathbf{c}$ Ce-PWA and d Pr-PWA under exctiation at 376 nm at room temperature


Fig. S7 Excitation spectra of: a PWA; b Ce-PWA; c Pr-PWA emission observed at peak maxima $\sim 430 \mathrm{~nm}$ at room temperature


Fig. S8 Decay profiles of: a PWB; b Ce-PWB; c Pr-PWB excited at 376 nm and measured at room temperature


Fig. S9 Decay profiles of: a PWA and b Ce-PWA excited at 320 nm ; $\mathbf{c}$ Ce-PWA and $\mathbf{d} \operatorname{Pr}-\mathrm{PWA}$ excited at 376 nm , measured at room temperature


Fig. S10 The CIE chromaticity diagram of: a PWA ( $x=0.167, y=0.127$ ) and $\mathbf{b}$ Ce-PWA ( $x=1.175, y=0.158$ ) excited at 320 $\mathrm{nm} ; \mathbf{c} C e-P W A(x=0.165, \mathrm{y}=0.125)$ and $\mathbf{d} \operatorname{Pr}-\operatorname{PWA}(\mathrm{x}=0.158, \mathrm{y}=0.099)$ excited at 376 nm .

