Table S1. Profile parameters for the studied space groups without constraints.

Space group		$1 a^{-} 3 d$	$R^{-} 3$ c	Fddd	C2/c	I^{-1}	$R^{-} 3$	I41/a
SCOR		2.1657	2.1658	2.1779	2.1751	3.9389	2.1440	2.1189
Overall scale f. $\left(\times 10^{-6}\right)$		40(1)*	13.3(9)	8.4(5)	16.2(8)	77(7)	13(1)	29(2)
Eta (p-v) or m(p-vii)		0.62(8)	$0.66(8)$	0.65(0.2	0.4	0.68	0.67(8)
Overall temp. factor		-1.8(2)	-2.1(2)	-2.1(2)	-0.2(2)	0.4(2)	-2.0(3)	-1.9(2)
Halfwidth parameters	U	0.52(6)	0.53(7)	0.48(0.14(2)	0.11(3)	0.49(7)	(6)
	V	-0.10(3)	-0.11(3)	-0.12(3)	-0.12(2)	-0.09(3)	-0.10(3)	-0.11(3)
	W	0.016(3)	0.016(3)	0.018(3)	0.037(4)	0.028(7)	0.016(3)	0.015(3)
Preferred orientation		0.24(7)	0.38(7)	0.22(8)	0.71(3)	-0.59(8)	0.46(8)	0.37(6)
Asymmetry parameters	As 1	0.18(1)	0.18(1)	0.18(2)	0.09(1)	0.05(2)	0.17(1)	0.18(1)
	As 2	0.100(4)	0.100(4)	0.107(5)	0.052(5)	0.034(8)	0.099(4)	0.102(4)
X parameter		0.009(1)	0.009(4)	0.009(1)	0.009(2)	0.002(4)	0.008(1)	0.009(1)
Zero-point		0.026(6)	0.028(6)	0.026(6)	0.023(4)	0.02(1)	0.025(6)	0.024(6)
No of varied param.		116	132	141	$171{ }^{1}$	139^{2}	153	140

*-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number
${ }^{1}$-For the monoclinic C2/c s.g., number of varied parameters for chlorite was, in this case, decreased to 29 because the maximum of total varied parameters could be 200 [21]
${ }^{2}$-For the triclinic $I^{-} 1$ s.g., instead of 100 parameters for the background description, 6 Chebyschev's polynomial parameters were used, and 2θ were omitted from the region, from 4° to 10°.

Table S2. Unit cell dimensions and quantitative contents of garnet and chlorite for the studied space groups without constraints. Calculated $4 \times c_{0} / a_{0}$ parameters and distortion angles (α) for the rhombohedral $R^{-} 3 c$ and $R^{-} 3$ s.g.'s, and specific geometry-mathematical transformations [5,6] of the crystallographic axes within $I^{-} 3 d, R^{-} 3 c, R^{-} 3, F d d d, C 2 / c$, and $I^{-} 1$ s.g.'s are also presented.

Space group	Ia ${ }^{-} 3 d$	$R^{-} 3 \mathrm{c}$	Fddd	C2/c	I'1	$R^{-} 3$	I41/a
$a_{0}(\AA)$	11.869(1)*	16.790(4)	16.809(6)	16.774(2)	11.873(3)	16.791(4)	11.872(3)
$b_{0}(\AA)$	11.869(1)	16.790(4)	16.776(8)	11.852(1)	11.852(3)	16.791(4)	11.872(3)
$c_{0}(\AA)$	11.869(1)	10.273(3)	11.857(4)	11.879(1)	11.936(3)	10.272(3)	11.860(5)
$a_{0} \times \sqrt{3} / 2(\AA)$	10.279(1)	1	/	1	1	1	1
$a_{0} \times \sqrt{2}(\AA)$	16.785(1)	1	1	/	16.791(3)	1	1
$b_{0} \times \sqrt{2}(\AA)$	1	1	1	16.761(1)	16.761(3)	1	1
$c_{0} \times \sqrt{ } 2(\AA)$	1	1	16.768(4)	16.799(1)	16.880(3)	1	1
$\Delta\left\|a_{0}-b_{0}\right\|$	1	1	0.033(7)	0.013(2)	0.030(3)	1	1
$\Delta\left\|a_{0}-\mathrm{c}_{0}\right\|$	1	1	0.041(5)	0.025(2)	0.089(3)	1	1
$\Delta\left\|b_{0}-c_{0}\right\|$	1	1	0.008(6)	0.038(1)	0.119(3)	/	1
$a_{0} / \sqrt{ } 2(\AA)$	1	11.872(4)	11.886(6)	11.861(2)	1	11.873(4)	1
$b_{0} / \sqrt{ } 2(\AA)$,	1	11.862(8)	/	1	/	1
$c_{0} / \sqrt{3} / 2(\AA)$	1	11.862(3)	1	1	1	11.861(3)	1
$\Delta\left\|a_{0}-b_{0}\right\|$	1	1	0.024(7)	0.009(2)	0.021(3)	/	1
$\Delta\left\|a_{0}-\mathrm{c}_{0}\right\|$	1	0.010(4)	0.029(5)	0.018(2)	0.063(3)	0.012(4)	0.010(4)
$\Delta\left\|b_{0}-c_{0}\right\|$	/	1	0.005(6)	0.027(1)	0.084(3)	/	/
<a0>	11.869(1)	11.867(4)	11.868(6)	11.864(1)	11.887(3)	11.869(4)	11.868(4)
$4 \times c_{0} / a_{0}$	1	2.4474	1	1	/	2.4470	1
$\alpha\left({ }^{\circ}\right)$	1	60.036	1	1	1	60.044	1
$\alpha_{0}\left({ }^{\circ}\right)$	90	90	90	90	89.77(2)	90	90
$\beta_{0}\left({ }^{\circ}\right)$	90	90	90	134.55(5)	90.45(2)	90	90
$\gamma_{0}\left({ }^{\circ}\right)$	90	120	90	90	90.14(2)	120	90
$V_{0}\left(\AA^{3}\right)$	1671.9(3)	2508(1)	3344(2)	1683.1(3)	1679.6(8)	2508(1)	1671.7(9)
garnet (in \%)	91(5)	91(9)	89(8)	86(5)	75(9)	88(10)	90(9)
chlorite (in \%)	9(1)	9(2)	11(2)	14(1)	25(4)	12(2)	10(2)

*-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number.

Table S3. Calculated Al sof's (in \%) and selected Si-O, Y-O, and Ca-O distances (in \AA) for the studied space groups without constraints.

Space group	Ia ${ }^{-} 3 d$	$R^{-} 3 \mathrm{c}$	Fddd	C2/c	$I^{-} 1$	$R^{-} 3$	I41/a
Al1	104(1)*	113(17)	114(11)	99(11)	100(31)	122(5)	104(1)
Al2	1	101(6)	92(11)	114(10)	91(33)	103(7)	105(1)
Al3	1	1	1	97(11)	93(34)	103(3)	1
Al4	/	1	1	108(10)	86(34)I	103(3)	1
Al5	1	1	1	/	125(29)	/	1
Al6	1	1	1	1	91(32)	1	1
Al7	1	1	1	1	89(29)	1	1
Al8	1	1	/	1	90(30)	1	/
$\triangle \mathrm{Al}$	0	12(12)	22(11)	17(10)	39(32)	19(5)	1(1)
<Al>	104(1)	107(12)	102(11)	104(10)	96(32)	108(4)	104(1)
$\mathrm{Al}_{\text {ca0 }}$	90.5	91.5	91.0	93.0	81.5	90.5	91.0
Alvo	90.8	90.7	91.9	77.7	81.8	90.7	91.0
Si1-O	1.622(5)	1.63(2)	1.61(6)	1.65(6)	1.60(12)	1.66(6)	1.55(3)
Si2-O	1	1	1.64(8)	$1.59(6)$	1.58(12)	1.60(6)	1.62(3)
Si3-O	1	1	1	1.65(7)	1.69(12)	1	1.67(3)
Si4-O	1	1	1	1.64(6)	1.59(12)	1	1
Si5-O	1	1	1	/	1.65(11)	1	1
Si6-O	/	/	/	/	1.73(12)	/	/
<Si-O>	1.622(5)	1.63(2)	1.62(7)	1.63(6)	1.64(12)	1.63(6)	1.61(3)
Y1-O	1.950(5)	1.87(2)	1.91(7)	1.95(6)	1.92(10)	1.89(5)	1.97(3)
Y2-O	1	1.99(2)	1.99(7)	1.96(6)	2.00(10)	1.90(5)	1.91(3)
Y3-O	1	1	1	2.02(6)	2.14(10)	2.00(5)	1
Y4-O	1	/	/	1.96(5)	2.01(12)	1.97(5)	/
Y5-O	1	1	1	1	1.87(10)	1	1
Y6-O	1	1	1	1	2.00(10)	1	1
Y7-O	1	1	1	1	1.98(11)	1	1
Y8-O	1	1	1	1	1.98(11)	1	1
ΔY	1	0.12(2)	0.08(7)	0.07(6)	0.27(10)	0.11(5)	0.06(3)
$<Y$-O>	1.950(5)	1.93(2)	1.95(7)	1.97(6)	1.99(10)	1.94(5)	1.94(3)
Ca1-O	2.490(5)	2.45(2)	2.48(7)	2.50 (6)	2.42(11)	2.44(5)	2.40(4)
$\mathrm{Ca} 2-\mathrm{O}$	2.357(5)	2.41(2)	2.46 (6)	2.50(6)	2.46(12)	2.42(6)	2.47(3)
Ca3-O	1	1	2.40 (7)	$2.39(6)$	2.33(12)	1	1
Ca4-O	1	1	1	2.38(6)	2.43(11)	1	1
Ca5-O	/	/	/	/	2.45(11)	/	/
Ca6-O	/	/	/	/	2.40(12)	/	/
<Ca-O>	2.424(5)	2.43(2)	2.45(7)	2.44(6)	2.42(12)	2.43(6)	2.44(4)
<D-O>	2.105(5)	2.09(2)	2.12(7)	2.12(6)	2.12(12)	2.11(6)	2.10(3)

${ }^{*}$-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number. $\langle D-\mathrm{O}\rangle=\{\langle\mathrm{Si}-\mathrm{O}\rangle+\langle Y-\mathrm{O}\rangle+2 \times\langle\mathrm{Ca}-\mathrm{O}\rangle\} / 4$

Figure S1. Final Rietveld plot for the $I a^{-} 3 d$ space group without constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Y calc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S2. Final Rietveld plot for the $R^{-} 3 c$ space group without constraints. Observed intensities (Yobs) were presented with red color, calculated intensities ($\mathrm{Y}_{\text {calc }}$) were presented with black color, and differences between observed and calculated intensities (Yobs-Y $\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S3. Final Rietveld plot for the Fddd space group without constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Y calc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S4. Final Rietveld plot for the C2/c space group without constraints. Observed intensities (Yobs) were presented with red color, calculated intensities ($\mathrm{Y}_{\text {calc }}$) were presented with black color, and differences between observed and calculated intensities (Yobs-Y $\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S5. Final Rietveld plot for the $I^{-} 1$ space group without constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Ycalc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S6. Final Rietveld plot for the $R^{-} 3$ space group without constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Ycalc) were presented with black color, and differences between observed and calculated intensities (Yobs-Y $\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S7. Final Rietveld plot for the $I 4_{1} / a$ space group without constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Y calc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Table S4. Profile parameters for the studied space groups with constraints.

Space group		Ia-3d	R ${ }^{-}$c	Fddd	C2/c	I^{-1}	$R^{-} 3$	I41/a
SCOR		2.2613	2.1696	2.2627	2.6920	3.9769	2.2691	2.1482
Overall scale f. $\left(\times 10^{-6}\right)$		3	17	9.7	15	5	47(6)	30(2)
Eta (p-v) or m(p-vii)		0.61(9)	0.62(8)	0.66(9)	0.4(1)	0.5(2)	0.66(9)	0.70(8)
Overall temp. factor		-1.8(2)	-2.0(2)	-1.8(2)	-0.7(2)	0.5(2)	2.0(3)	1.6(2)
Halfwidth parameters	U	0.52(7)	0.53(7)	0.47(8)	0.19(4)	0.13(4)	0.53(7)	0.50(7)
	V	-0.	-0.	-0.	-0.	-0	-0.11(3)	-0.09(3)
	W	0.015(3)	0.016(3)	0.017(4)	0.039(5)	0.027(8)	0.016(3)	0.014(3)
Preferred orientation		0.02(6)	0.07(5)	0.03(7)	0.75(4)	-0.35(7)	0.14(6)	0.40(5)
Asymmetry parameters	As 1	0.17(1)	0.18(1)	0.17(2)	0.09(2)	0.05(2)	0.17(1)	0.17(1)
	As 2	0.099(5)	0.102(4)	0.103(5)	0.054(6)	0.030(8)	0.098(5)	0.098(5)
X parameter		0.009(1)	0.009(1)	0.009(1)	0.007(2)	-0.001(4)	-0.002(4)	0.008(1)
Zero-point		0.024(6)	0.026(6)	0.024(6)	0.018(6)	0.023(9)	0.025(6)	0.021(6)
No of varied param.		115	131	140	1691	$135{ }^{2}$	151	139

*-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number.
${ }^{1}$-For the monoclinic C2/c s.g., number of varied parameters for chlorite was, in this case, decreased to 31 because the maximum total varied parameters could be 200 [21]
${ }^{2}$-For the triclinic $I^{-} 1$ s.g., instead of 100 parameters for the background description, 6 Chebyschev's polynomial parameters were used, and 2θ were omitted from the region from 4° to 10°.

Table S5. Unit cell dimensions and quantitative contents of garnet and chlorite for the studied space groups with constraints. Calculated $4 \times c_{0} / a_{0}$ parameters and distortion angles (α) for the rhombohedral $R^{-} 3 c$ and $R^{-} 3$ s.g.'s, and specific geometry-mathematical transformations [5,6] of the crystallographic axes within $I a^{-} 3 d, R^{-} 3 c, R^{-} 3, F d d d, C 2 / c$, and $I^{-} 1 \mathrm{~s} . g$. 's, are also presented.

Space group	Ia ${ }^{-} 3 d$	$R^{-} 3 \mathrm{c}$	Fddd	C2/c	I^{-1}	$R^{-} 3$	I41/a
$a_{0}(\AA)$	11.868(1)*	16.790(5)	16.805(8)	16.775(2)	11.875(3)	16.790(6)	11.869(3)
$b_{0}(\AA)$	11.868(1)	16.790(5)	16.778(9)	11.853(2)	11.852(3)	16.790(6)	11.869(3)
$c_{0}(\AA)$	11.868(1)	10.273(6)	11.858(6)	11.880(2)	11.931(3)	10.273(6)	11.865(5)
$a_{0} \times \sqrt{3} / 2(\AA)$	10.278(1)	1	/	/	1	1	1
$a_{0} \times \sqrt{2}(\AA)$	16.784(1)	1	1	1	16.794(3)	1	1
$b_{0} \times \sqrt{2}(\AA)$	1	1	1	16.763(2)	16.761(3)	1	1
$c_{0} \times \sqrt{ } 2(\AA)$	1	1	16.770(6)	16.801(2)	16.873(3)	1	1
$\Delta\left\|a_{0}-b_{0}\right\|$	1	1	0.027(8)	0.012(2)	0.033(3)	1	1
$\Delta\left\|a_{0}-\mathrm{c}_{0}\right\|$	1	1	0.035(7)	0.026(2)	0.079(3)	1	1
$\Delta\left\|b_{0}-c_{0}\right\|$	1	1	0.008(8)	0.038(2)	0.112(3)	1	1
$a_{0} / \sqrt{ } 2(\AA)$	I	11.872(5)	11.883(8)	11.862(2)	1	11.872(6)	1
$b_{0} / \sqrt{ } 2(\AA)$	I	1	11.864(9)	1	1	/	1
$c_{0} / \sqrt{3} / 2(\AA)$	1	11.862(6)	1	1	1	11.862(6)	1
$\Delta\left\|a_{0}-b_{0}\right\|$	1	1	0.019(8)	0.009(2)	0.023(3)	/	1
$\Delta\left\|a_{0}-\mathrm{c}_{0}\right\|$	1	0.010(6)	0.025(7)	0.018(2)	0.056(3)	0.010(6)	0.004(4)
$\Delta\left\|b_{0}-c_{0}\right\|$	/	1	0.006(8)	0.027(2)	0.079(3)	/	1
<a0>	11.868(1)	11.867(6)	11.868(8)	11.865(2)	11.886(3)	11.867(6)	11.868(4)
$4 \times c_{0} / a_{0}$	1	2.4474	1	1	/	2.4474	1
$\alpha\left({ }^{\circ}\right)$	1	60.036	1	1	1	60.036	1
$\alpha_{0}\left({ }^{\circ}\right)$	90	90	90	90	89.76(2)	90	90
$\beta_{0}\left({ }^{\circ}\right)$	90	90	90	134.54(1)	90.45(2)	90	90
$\gamma_{0}\left({ }^{\circ}\right)$	90	120	90	90	90.14(2)	120	90
$V_{0}\left(\AA^{3}\right)$	1671.8(3)	2508(2)	3343(3)	1683.6(5)	1679.1(8)	2508(2)	1671.5(9)
garnet (in \%)	86(5)	88(7)	88(7)	86(8)	77(8)	84(7)	91(7)
chlorite (in \%)	14(2)	12(2)	12(2)	14(2)	23(4)	16(2)	9(1)

*-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number.

Table S6. Calculated Al sof's (in \%) and selected Si-O, Y-O and Ca-O distances (in \AA) for the studied space groups with constraints.

Space group	Ia ${ }^{-} 3 d$	$R^{-} 3 \mathrm{c}$	Fddd	C2/c	I^{-1}	$R^{-} 3$	I41/a
Al1	90(0)*	101(3)	97(13)	123(8)	93(24)	83(2)	88(6)
Al2	/	79(3)	83(13)	57(8)	87(24)	97(2)	92(6)
Al3	1	1	1	86(8)	90(21)	90(8)	1
Al4	/	/	/	94(8)	90(21)	90(8)	/
Al5	1	/	1	1	112(11)	1	1
Al6	/	1	1	1	68(11)	/	1
Al7	1	1	1	1	88(19)	1	1
Al8	1	1	1	1	92(19)	1	1
$\triangle \mathrm{Al}$	0	22(3)	14(13)	66(8)	44(11)	14(2)	4(6)
<Al>	90(0)	90(3)	90(13)	90(8)	90(19)	90(5)	90(6)
$\mathrm{Al}_{\text {<aO }}$	91.0	91.5	91.0	92.5	82.0	91.5	91.0
Alvo	90.9	90.7	91.3	77.1	82.4	90.7	91.3
Si1-O	1.640(4)	1.642(7)	1.644(6)	1.656(8)	1.644(7)	1.645(7)	1.647(6)
Si2-O	1	1	1.644(7)	1.648(8)	1.644(8)	1.644(8)	1.649(5)
Si3-O	1	1	1	1.65(1)	1.644(7)	1	1.650(7)
Si4-O	/	/	/	1.655(8)	1.644(8)	/	/
Si5-O	1	/	1	/	1.645(8)	1	1
Si6-O	1	1	/	1	1.646(7)	/	/
<Si-O>	1.640(4)	1.642(7)	1.644(6)	1.652(8)	1.644(8)	1.644(8)	1.649(6)
Y1-O	1.935(4)	1.900(6)	1.905(6)	1.922(7)	1.966(6)	1.939(7)	1.972(7)
Y2-O	1	1.960(6)	1.980(6)	1.911(7)	1.953(6)	1.906(6)	1.918(6)
Y3-O	1	1	1	2.062(9)	1.960(7)	1.988(7)	1
Y4-O	1	/	/	1.902(6)	1.989(7)	1.944(6)	/
Y5-O	1	1	1	/	1.894(6)	/	1
Y6-O	1	1	1	1	1.910(6)	1	1
Y7-O	1	1	1	1	1.982(7)	1	1
Y8-O	1	1	1	/	2.001(7)	/	/
ΔY	1	0.060(6)	0.075(6)	0.160(8)	0.107(6)	0.082(6)	0.054(6)
$<Y$-O>	1.935(4)	1.930(6)	1.942(6)	1.949(7)	1.957(6)	1.944(6)	1.945(6)
Ca1-O	2.495(4)	$2.408(6)$	$2.410(5)$	2.414(7)	2.405(6)	2.408(7)	$2.410(7)$
$\mathrm{Ca} 2-\mathrm{O}$	2.332(4)	2.408(6)	2.410 (5)	2.416(7)	$2.406(7)$	2.408(7)	2.411(6)
Ca3-O	1	1	2.408(6)	2.412(9)	$2.404(7)$	1	1
Ca4-O	1	1	1	2.409(8)	2.406 (6)	1	1
Ca5-O	/	1	/	1	2.405(6)	1	/
Ca6-O	1	/	/	/	2.404(6)	/	/
<Ca-O>	2.414(4)	2.408(6)	2.409(5)	2.413(8)	2.405(6)	2.408(7)	2.410(6)
<D-O>	2.100(4)	2.097(6)	2.101(6)	2.107(8)	2.103(6)	2.101(7)	2.104(6)

${ }^{*}$-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number. $\langle D-\mathrm{O}\rangle=\{\langle\mathrm{Si}-\mathrm{O}\rangle+\langle Y-\mathrm{O}\rangle+2 \times\langle\mathrm{Ca}-\mathrm{O}\rangle\} / 4$

Figure S8. Final Rietveld plot for the $I a^{-} 3 d$ space group with constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Y calc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S9. Final Rietveld plot for the $R^{-} 3 c$ space group with constraints. Observed intensities (Yobs) were presented with red color, calculated intensities ($Y_{\text {calc }}$) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S10. Final Rietveld plot for the Fddd space group with constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Y calc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S11. Final Rietveld plot for the C2/c space group with constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Ycalc) were presented with black color, and differences between observed and calculated intensities (Yobs-Y $\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S12. Final Rietveld plot for the $I^{-} 1$ space group with constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Y calc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S13. Final Rietveld plot for the $R^{-} 3$ space group with constraints. Observed intensities (Yobs) were presented with red color, calculated intensities ($\mathrm{Y}_{\text {calc }}$) were presented with black color, and differences between observed and calculated intensities (Yobs-Y $\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Figure S14. Final Rietveld plot for the $I 41 / a$ space group with constraints. Observed intensities (Yobs) were presented with red color, calculated intensities (Y calc) were presented with black color, and differences between observed and calculated intensities ($\mathrm{Y}_{\text {obs }}-\mathrm{Y}_{\text {calc }}$) were presented with blue color. Reflection (Bragg) positions were presented with green vertical bars; upper row: garnet; lower row: chlorite.

Table S7. Selected distances (in \AA) and angles (in ${ }^{\circ}$) for the orthorhombic Fddd space group (without ${ }^{\mathrm{a}}$ and with ${ }^{\mathrm{b}}$ constraints).

distances		Fddd ${ }^{\text {a }}$	Fddd ${ }^{\text {b }}$	expected ${ }^{\text {\# }}$	angles		Fddd ${ }^{\text {a }}$	Fddd ${ }^{\text {b }}$	expected*
$\mathrm{Si}(1)-\mathrm{O}(2)$	$2^{\text {¢ }}$	1.70(6)**	1.644(6)						
$\mathrm{Si}(1)-\mathrm{O}(4)$	2	1.52(6)	1.644(6)						
$<\mathrm{Si}(1)-\mathrm{O}>$		1.61(6)	1.644(6)	1.645					
$\mathrm{O}(2)-\mathrm{O}(2)$	1	2.54(8)	$2.562(7)$		$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{O}(2)$	1	97(5)	102.4(5)	
$\mathrm{O}(2)-\mathrm{O}(4)$	2	2.62(10)	2.750(7)		$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{O}(4)$	2	109(6)	113.5(5)	
$\mathrm{O}(2)-\mathrm{O}(4)$	2	2.67(8)	2.732(7)		$\mathrm{O}(2)-\mathrm{Si}(1)-\mathrm{O}(4)$	2	112(6)	112.4(5)	
$\mathrm{O}(4)-\mathrm{O}(4)$	1	2.57(9)	$2.572(5)$		$\mathrm{O}(4)-\mathrm{Si}(1)-\mathrm{O}(4)$	1	116(7)	103.0(5)	
<O-O>		2.62(9)	2.683(7)	2.686	$<\mathrm{O}-\mathrm{Si}(1)-\mathrm{O}>$		109(6)	109.5(5)	109.54
$\mathrm{Si}(2)-\mathrm{O}(1)$	1	1.61(8)	1.646(7)						
$\mathrm{Si}(2)-\mathrm{O}(3)$	1	1.71(5)	1.642(6)						
$\mathrm{Si}(2)-\mathrm{O}(5)$	1	1.61(11)	1.645(8)						
$\mathrm{Si}(2)-\mathrm{O}(6)$	1	1.61(6)	1.643(7)						
$<\mathrm{Si}(2)-\mathrm{O}>$		1.64(8)	1.644(7)	1.645					
$<\mathrm{Si}-\mathrm{O}>$		1.62(7)	1.644(6)	1.645					
$\mathrm{O}(1)-\mathrm{O}(3)$	1	2.88(8)	2.823(7)		$\mathrm{O}(1)-\mathrm{Si}(2)-\mathrm{O}(3)$	1	120(5)	118.3(5)	
$\mathrm{O}(1)-\mathrm{O}(5)$	1	2.49(13)	2.650(8)		$\mathrm{O}(1)-\mathrm{Si}(2)-\mathrm{O}(5)$	1	101(8)	107.3(6)	
$\mathrm{O}(1)-\mathrm{O}(6)$	1	2.42(8)	2.490(9)		$\mathrm{O}(1)-\mathrm{Si}(2)-\mathrm{O}(6)$	1	98(6)	98.4(6)	
$\mathrm{O}(3)-\mathrm{O}(5)$	1	2.67(9)	2.613(8)		$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{O}(5)$	1	106(6)	105.3(6)	
$\mathrm{O}(3)-\mathrm{O}(6)$	1	2.87(6)	2.861(7)		$\mathrm{O}(3)-\mathrm{Si}(2)-\mathrm{O}(6)$	1	120(5)	121.1(5)	
$\mathrm{O}(5)-\mathrm{O}(6)$	1	2.64(10)	2.613(9)		$\mathrm{O}(5)-\mathrm{Si}(2)-\mathrm{O}(6)$	1	110(7)	105.2(6)	
<O-O>		2.66 (9)	2.675(8)	2.686	$<\mathrm{O}-\mathrm{Si}(2)-\mathrm{O}>$		109(6)	109.3(6)	109.54
$<\mathrm{O}-\mathrm{O}\rangle_{\text {tet }}$		2.64(9)	2.679(8)	2.686	$<\mathrm{O}-\mathrm{Si}-\mathrm{O}>$		109(6)	109.4(6)	109.54
$\mathrm{Y}(1)-\mathrm{O}(1)$	2	1.95(6)	1.974(6)						
$Y(1)-\mathrm{O}(2)$	2	1.95(9)	1.934(6)						
$Y(1)-\mathrm{O}(3)$	2	1.83(5)	1.806(5)						
$<Y(1)-\mathrm{O}>$		1.91(7)	1.905(6)	1.931					
$\mathrm{O}(1)-\mathrm{O}(2)$	2	2.61(10)	$2.726(8)$		$\mathrm{O}(1)-Y(1)-\mathrm{O}(2)$	2	84(5)	88.4(4)	
$\mathrm{O}(1)-\mathrm{O}(2)$	2	2.91(10)	$2.800(8)$		$\mathrm{O}(1)-Y(1)-\mathrm{O}(2)$	2	96(6)	91.6(4)	
$\mathrm{O}(1)-\mathrm{O}(3)$	2	2.63(7)	2.652(7)		$\mathrm{O}(1)-Y(1)-\mathrm{O}(3)$	2	88(4)	89.0(4)	
$\mathrm{O}(1)-\mathrm{O}(3)$	2	2.73(8)	2.700(7)		$\mathrm{O}(1)-Y(1)-\mathrm{O}(3)$	2	92(4)	91.0(4)	
$\mathrm{O}(2)-\mathrm{O}(3)$	2	2.66(12)	2.631(8)		$\mathrm{O}(2)-Y(1)-\mathrm{O}(3)$	2	89(6)	89.3(4)	
$\mathrm{O}(2)-\mathrm{O}(3)$	2	2.70(7)	2.661(7)		$\mathrm{O}(2)-Y(1)-\mathrm{O}(3)$	2	91(4)	90.7(4)	
<O-O>		2.71(9)	2.695(8)	2.731	$<\mathrm{O}-\mathrm{Y}(1)-\mathrm{O}>$		90(5)	90.0(4)	90.0
$Y(2)-\mathrm{O}(4)$	2	1.93(5)	1.943(6)						
$Y(2)-\mathrm{O}(5)$	2	2.03(9)	2.013(6)						
$Y(2)-\mathrm{O}(6)$	2	2.00(6)	1.983(7)						
$<Y(2)-\mathrm{O}>$		1.99(7)	1.980(6)	1.931					
$<Y$-O>		1.95(7)	1.942(6)	1.931					
$\mathrm{O}(4)-\mathrm{O}(5)$	2	2.71(8)	2.749(8)		$\mathrm{O}(4)-Y(2)-\mathrm{O}(5)$	2	86(4)	88.0(4)	
$\mathrm{O}(4)-\mathrm{O}(5)$	2	2.89(11)	2.847(8)		$\mathrm{O}(4)-Y(2)-\mathrm{O}(5)$	2	94(6)	92.0(4)	
$\mathrm{O}(4)-\mathrm{O}(6)$	2	2.90(7)	2.817(8)		$\mathrm{O}(4)-Y(2)-\mathrm{O}(6)$	2	95(4)	91.7(4)	
$\mathrm{O}(4)-\mathrm{O}(6)$	2	2.65(8)	2.735(8)		$\mathrm{O}(4)-Y(2)-\mathrm{O}(6)$	2	85(4)	88.3(4)	
$\mathrm{O}(5)-\mathrm{O}(6)$	2	2.80(9)	2.740 (9)		$\mathrm{O}(5)-Y(2)-\mathrm{O}(6)$	2	88(5)	86.6(4)	
$\mathrm{O}(5)-\mathrm{O}(6)$	2	2.89(11)	2.909(8)		$\mathrm{O}(5)-Y(2)-\mathrm{O}(6)$	2	92(5)	93.4(4)	
<O-O>		2.81(9)	2.800(8)	2.731	$<\mathrm{O}-Y(2)-\mathrm{O}>$		90(5)	90.0(4)	90.0
$<\mathrm{O}-\mathrm{O}\rangle_{\text {oct }}$		2.76 (9)	2.748(8)	2.731	<O-Y-O>		90(5)	90.0(4)	90.0
$\mathrm{Ca}(1)-\mathrm{O}(1)$	4	2.63(8)	2.496(5)						
$\mathrm{Ca}(1)-\mathrm{O}(2)$	4	2.33(6)	2.323(5)						
<Ca(1)-O>		2.48(7)	2.410(5)	2.406					
$\mathrm{O}(1)-\mathrm{O}(1)$	2	2.91(7)	2.903(7)		$\mathrm{O}(1)-\mathrm{Ca}(1)-\mathrm{O}(1)$	2	67(3)	71.1(3)	

$\mathrm{O}(1)-\mathrm{O}(1)$	2	4.45(12)	4.125(7)		$\mathrm{O}(1)-\mathrm{Ca}(1)-\mathrm{O}(1)$	2	115(5)	111.5(3)	
$\mathrm{O}(1)-\mathrm{O}(2)$	4	3.10(12)	2.943 (8)		$\mathrm{O}(1)-\mathrm{Ca}(1)-\mathrm{O}(2)$	4	77(4)	75.2(3)	
$\mathrm{O}(1)-\mathrm{O}(2)$	4	3.53(9)	3.430(8)		$\mathrm{O}(1)-\mathrm{Ca}(1)-\mathrm{O}(2)$	4	91(4)	90.7(3)	
$\mathrm{O}(1)-\mathrm{O}(2)$	4	2.91(10)	$2.800(8)$		$\mathrm{O}(1)-\mathrm{Ca}(1)-\mathrm{O}(2)$	4	71(4)	71.0(3)	
$\mathrm{O}(2)-\mathrm{O}(2)$	2	2.54(8)	$2.562(7)$		$\mathrm{O}(2)-\mathrm{Ca}(1)-\mathrm{O}(2)$	2	66(3)	66.9(3)	
<O-O>		3.22(10)	3.104(8)	3.103	$<\mathrm{O}-\mathrm{Ca}(1)-\mathrm{O}>$		81(4)	80.4(3)	80.51
$\mathrm{Ca}(2)-\mathrm{O}(4)$	4	2.41(5)	$2.326(5)$						
$\mathrm{Ca}(2)-\mathrm{O}(6)$	4	2.52(6)	2.493(5)						
<Ca(2)-O>		2.46 (6)	2.410(5)	2.406					
$\mathrm{O}(4)-\mathrm{O}(4)$	2	4.19(7)	$3.970(7)$		$\mathrm{O}(4)-\mathrm{Ca}(2)-\mathrm{O}(4)$	2	121(3)	117.2(3)	
$\mathrm{O}(4)-\mathrm{O}(4)$	2	2.57(9)	$2.572(7)$		$\mathrm{O}(4)-\mathrm{Ca}(2)-\mathrm{O}(4)$	2	65(3)	67.1(3)	
$\mathrm{O}(4)-\mathrm{O}(6)$	4	3.45(9)	$3.430(8)$		$\mathrm{O}(4)-\mathrm{Ca}(2)-\mathrm{O}(6)$	4	89(3)	90.7(3)	
$\mathrm{O}(4)-\mathrm{O}(6)$	4	2.90(7)	2.817(8)		$\mathrm{O}(4)-\mathrm{Ca}(2)-\mathrm{O}(6)$	4	72(3)	71.5(3)	
$\mathrm{O}(4)-\mathrm{O}(6)$	4	3.03(7)	$2.946(8)$		$\mathrm{O}(4)-\mathrm{Ca}(2)-\mathrm{O}(6)$	4	76(3)	75.3(3)	
$\mathrm{O}(6)-\mathrm{O}(6)$	2	2.93(9)	2.832(7)		$\mathrm{O}(6)-\mathrm{Ca}(2)-\mathrm{O}(6)$	2	71(3)	69.2(3)	
<O-O>		3.16(8)	3.084(8)	3.103	$<\mathrm{O}-\mathrm{Ca}(2)-\mathrm{O}>$		81(3)	80.9(3)	80.51
$\mathrm{Ca}(3)-\mathrm{O}(1)$	1	2.40(7)	$2.326(6)$						
$\mathrm{Ca}(3)-\mathrm{O}(2)$	1	2.52(8)	2.493(6)						
$\mathrm{Ca}(3)-\mathrm{O}(3)$	1	2.32(7)	2.322(6)						
$\mathrm{Ca}(3)-\mathrm{O}(3)$	1	2.34(6)	2.490(6)						
$\mathrm{Ca}(3)-\mathrm{O}(4)$	1	2.54(7)	2.492(6)						
$\mathrm{Ca}(3)-\mathrm{O}(5)$	1	2.30 (6)	2.323(6)						
$\mathrm{Ca}(3)-\mathrm{O}(5)$	1	2.51(7)	2.494(7)						
$\mathrm{Ca}(3)-\mathrm{O}(6)$	1	$2.30(7)$	2.323 (6)						
<Ca(3)-O>		2.40 (7)	2.408(6)	2.406					
<Ca-O>		$2.45(7)$	$2.409(5)$	2.406					
$\mathrm{O}(1)-\mathrm{O}(2)$	1	3.10(12)	2.943 (8)		$\mathrm{O}(1)-\mathrm{Ca}(3)-\mathrm{O}(2)$	1	78(4)	75.2(3)	
$\mathrm{O}(1)-\mathrm{O}(3)$	1	2.63(7)	2.652(7)		$\mathrm{O}(1)-\mathrm{Ca}(3)-\mathrm{O}(3)$	1	67(3)	66.7(3)	
$\mathrm{O}(1)-\mathrm{O}(4)$	1	3.42(7)	3.431(8)		$\mathrm{O}(1)-\mathrm{Ca}(3)-\mathrm{O}(4)$	1	88(3)	90.7(4)	
$\mathrm{O}(1)-\mathrm{O}(5)$	1	4.33(9)	4.256(8)		$\mathrm{O}(1)-\mathrm{Ca}(3)-\mathrm{O}(5)$	1	124(4)	124.0(4)	
$\mathrm{O}(1)-\mathrm{O}(6)$	1	2.42(8)	2.490(9)		$\mathrm{O}(1)-\mathrm{Ca}(3)-\mathrm{O}(6)$	1	62(3)	64.8(3)	
$\mathrm{O}(2)-\mathrm{O}(3)$	1	2.70(7)	2.661(7)		$\mathrm{O}(2)-\mathrm{Ca}(3)-\mathrm{O}(3)$	1	68(3)	67.0(3)	
$\mathrm{O}(2)-\mathrm{O}(3)$	1	3.96 (8)	4.052(7)		$\mathrm{O}(2)-\mathrm{Ca}(3)-\mathrm{O}(3)$	1	109(4)	108.8(3)	
$\mathrm{O}(2)-\mathrm{O}(5)$	1	2.84(9)	$2.856(8)$		$\mathrm{O}(2)-\mathrm{Ca}(3)-\mathrm{O}(5)$	1	69(3)	69.9(3)	
$\mathrm{O}(2)-\mathrm{O}(6)$	1	3.42(12)	3.473(8)		$\mathrm{O}(2)-\mathrm{Ca}(3)-\mathrm{O}(6)$	1	90(5)	92.2(4)	
$\mathrm{O}(3)-\mathrm{O}(3)$	1	2.83(9)	3.003(7)		$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(3)$	1	75(4)	77.1(3)	
$\mathrm{O}(3)-\mathrm{O}(5)$	1	2.67(9)	2.613(8)		$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(5)$	1	70(3)	68.5(3)	
$\mathrm{O}(3)-\mathrm{O}(5)$	1	3.50(9)	3.425(8)		$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(5)$	1	93(4)	90.6(3)	
$\mathrm{O}(3)-\mathrm{O}(4)$	1	2.79(8)	$2.876(7)$		$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(4)$	1	70(3)	70.5(3)	
$\mathrm{O}(3)-\mathrm{O}(5)$	1	3.44(8)	3.519(8)		$\mathrm{O}(3)-\mathrm{Ca}(3)-\mathrm{O}(5)$	1	96(4)	93.9(3)	
$\mathrm{O}(4)-\mathrm{O}(5)$	1	2.89(11)	2.847(8)		$\mathrm{O}(4)-\mathrm{Ca}(3)-\mathrm{O}(5)$	1	73(4)	72.4(3)	
$\mathrm{O}(4)-\mathrm{O}(6)$	1	3.03(7)	$2.946(8)$		$\mathrm{O}(4)-\mathrm{Ca}(3)-\mathrm{O}(6)$	1	78(3)	75.3(3)	
$\mathrm{O}(5)-\mathrm{O}(5)$	1	2.94(8)	$2.995(8)$		$\mathrm{O}(5)-\mathrm{Ca}(3)-\mathrm{O}(5)$	1	75(3)	76.8(3)	
$\mathrm{O}(5)-\mathrm{O}(6)$	1	2.89(11)	$2.909(8)$		$\mathrm{O}(5)-\mathrm{Ca}(3)-\mathrm{O}(6)$	1	74(4)	74.2(3)	
<O-O>		3.10(9)	3.108(8)	3.103	$<\mathrm{O}-\mathrm{Ca}(3)-\mathrm{O}>$		81(3)	81.0(3)	80.51
$<\mathrm{O}-\mathrm{O}\rangle_{\text {dod }}$		3.16 (9)	3.099(8)	3.103	$<\mathrm{O}-\mathrm{Ca}-\mathrm{O}>$		81(3)	80.8(3)	80.51
<D-O>		2.12(7)	2.101(6)	2.097					

${ }^{*}$-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number.
\$-Frequency of occurrences.
$\langle\mathrm{D}-\mathrm{O}\rangle=\{\langle\mathrm{Si}-\mathrm{O}\rangle+\langle Y-\mathrm{O}\rangle+2 \times\langle\mathrm{Ca}-\mathrm{O}\rangle\} / 4$
*-Expected from the calculations for the cubic $I a^{-} 3 d$ s.g. [19].

Table S8. Selected distances among the studied cation sites (in \AA) for the orthorhombic Fddd space group (withouta and with ${ }^{\text {b }}$ constraints).

distances	Fddd ${ }^{\text {a }}$	Fddd ${ }^{\text {b }}$	expected ${ }^{*}$
$\mathrm{Ca}(1)-Y(1)$	3.31799(4)	3.31785(5)	3.317
$\mathrm{Ca}(2)-Y(2)$	3.31799(4)	3.31785(5)	3.317
$<\mathrm{Ca}(3)-Y(1)>$	3.32(2)	3.332(3)	3.317
$<\mathrm{Ca}(3)-Y(2)>$	3.31(2)	3.302(3)	3.317
$\mathrm{Ca}(1)-\mathrm{Si}(1)$	3.08(4)	2.968(6)	2.966
$\mathrm{Ca}(1)-\mathrm{Si}(2)$	3.62(4)	3.558(5)	3.634
$\mathrm{Ca}(2)-\mathrm{Si}(1)$	2.85(4)	2.961(6)	2.966
$\mathrm{Ca}(2)-\mathrm{Si}(2)$	3.71(3)	3.749(4)	3.634
$<\mathrm{Ca}(3)-\mathrm{Si}(1)>$	3.64(3)	$3.642(4)$	3.634
$<\mathrm{Ca}(3)-\mathrm{Si}(2)>$	3.29(4)	3.292(6)	3.300
$Y(1)-\mathrm{Si}(1)$	3.37(2)	3.319(3)	3.317
$<Y(1)-\mathrm{Si}(2)>$	3.32(3)	3.282(4)	3.317
$Y(2)-\mathrm{Si}(1)$	3.27(2)	3.316(3)	3.317
$<Y(2)-\mathrm{Si}(2)>$	3.32(4)	3.357(5)	3.317
$\mathrm{Ca}(1)-\mathrm{Ca}(3)$	3.66(2)	3.656(3)	3.634
$\mathrm{Ca}(2)-\mathrm{Ca}(3)$	3.63(3)	3.626(3)	3.634
$<\mathrm{Ca}(3)-\mathrm{Ca}(3)>$	3.61 (3)	3.620(5)	3.634
$<\mathrm{Si}(1)-\mathrm{Si}(2)>$	3.66(4)	3.652(4)	3.634
$<Y(1)-Y(1)>$	5.13922(8)	5.13909(9)	5.138
$<Y(1)-Y(2)>$	5.13922(8)	$5.13909(9)$	5.138
$<Y(2)-Y(2)>$	5.13922(8)	5.13909(9)	5.138

*-The numbers in parentheses are the esd's multiplied with SCOR [26] and refer to the last significant number.
${ }^{\#}$-Expected from the calculations for the cubic $I a^{-3} 3 d$ s.g. [19].

