Spin states of Mn(II) and Fe(III) complexes with thiosemicarbazone

Milica Savića, Mima Jevtovićb, Božidar Čobeljićc, Maja Grudenc, and Matija Zlatara

^aUniversity of Belgrade – Institute of Chemistry, Technology and Metallurgy – National Institute of the Republic of Serbia, Belgrade, Serbia ^bInnovation Centre of Faculty of Chemistry, Belgrade, Serbia ^cUniversity of Belgrade – Faculty of Chemistry, Belgrade, Serbia

The ligand HL(E)-2-(1-(thiazol-2-yl)ethylidene)hydrazine-1-carbothioamide) was synthetized in the reaction of thiosemicarbazide and 2-acetylthiazole in molar ratio 1:1 in water, with 3 drops of 2M HCl. (Scheme 1). The reaction of the ligand HL with metal salt $Fe(BF_4)_2 \cdot 6H_2O$ in a molar ratio 1:1 in methanol results in the formation of bis Fe(III) complex with composition [FeL₂]BF₄H₂O (1) (Scheme 2). The reaction of the HL ligand with the metal salt MnCl₂·4H₂O in a molar ratio 1:1 in methanol/water mixture results in the formation of bis Mn(II) complex (2) with composition $[MnL_2]$ (Scheme 3).

Scheme 1. Synthesis of ligand HL

Scheme 2. Synthesis of complexes $[Fe(L)_2]BF_4 \cdot H_2O(1)$ and $[Mn(L)_2](2)$

Both complexes 1 and 2 with HL ligand are bis octahedral complexes in which two deprotonated ligand molecules coordinate in a mer arrangement through two NNS sets of donor atoms, through thiazole and imine nitrogens and thioenolate sulfur (Fig. 1; Fig. 2). Furthermore, the central metal ions in both cases have the same d⁵ electronic configuration. However, effective magnetic moment measurements (1.95 µB for Fe(III) complex and 5.73 µB for Mn(II) complex, respectively) and analysis of the crystal geometries show that these two complexes have a different number of unpaired electrons. We rationalized the results by DFT calculations.

Table 1. Relative spin state energies (kcal/mol) for $[Fe^{|||}(L)_2]^+$ and $[Mn^{||}(L)_2]$

S4 C10 C8 N6 C12 N7 C11 Fel C5 N4 C6 C4 C2 C6 C3 C6 C4 C5 N1 N2 C2 N4 C5 N1 N3 C1 S1 C1 S1 Mn1 C7 C12 C10 N5 C12 C10 C8 C8 C8 C8 C9 C8 C9 C9 C9 C9

Fig. 1. The complex 1 crystallizes in the orthorhombic space group *Pbca*. CShM (OC-6) = 1.731

CShM (TPR-6) = 11.228

C3 C6
N1 N2 C2 N4 C5
C1 N3
C1 N8 Mn1 C7 C11 N8 N7 N5
C12 C10 N6
S4 C9 C8
34

Fig. 2. The complex 2 crystallizes in the triclinic space group P-1. CShM (OC-6) = 7.979CShM (TPR-6) = 6.517

	[Fe ^{III} (L) ₂] ⁺		[Mn ^{II} (L) ₂]		
Level of theory	E _{HS-LS} (X-ray) ^a	E _{HS-LS} (opt.) ^b	E _{HS-LS} (X-ray1) ^a	E _{HS-LS} (X-ray2) ^a	E _{HS-LS} (opt.) ^b
OPBE/TZP	50.74	18.97	-51.15	-52.99	-0.15
OLYP/TZP	53.75	13.48	-44.11	-46.07	-4.59
B97-D/TZP	50.43	11.40	-46.91	-48.80	-5.41
SSB-D/TZP	43.84	8.57	-49.42	-51.23	-5.76
B3LYP*/TZP	52.53	14.03	-40.45	-42.84	-8.60
B97-D/TZP-COSMO ^c	49.08	11.58	-49.28	-51.24	-6.90
SSB-D/TZP-COSMO ^c	42.62	8.92	-51.20	-53.53	-7.00

a) single-point on X-ray geometries; for Mn(II) two crystalographically independent complexes; b) geometry optimization; c) COSMO – DMSO as solvent

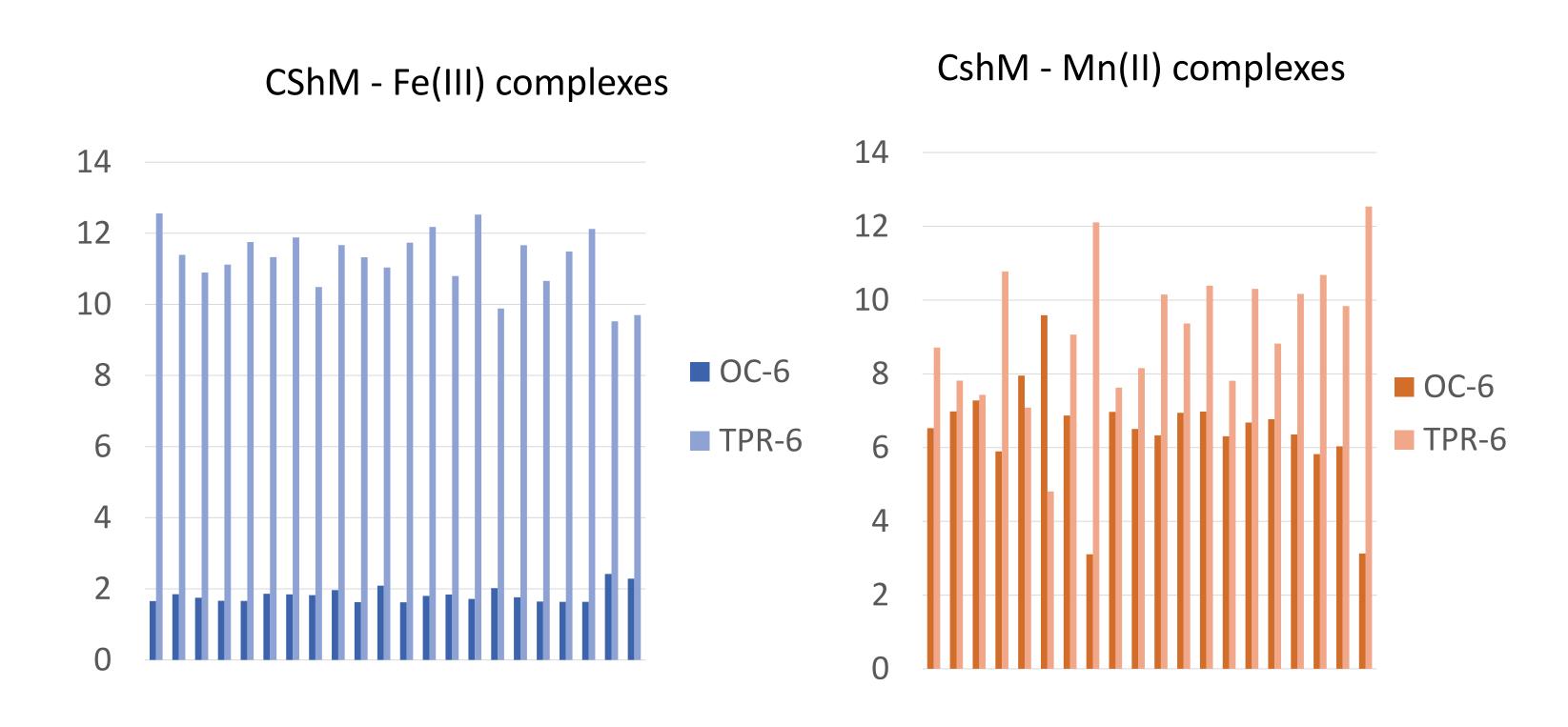


Fig 3. Continuous shape measures (CShMs) for similar Fe(III) and Mn(II) complexes

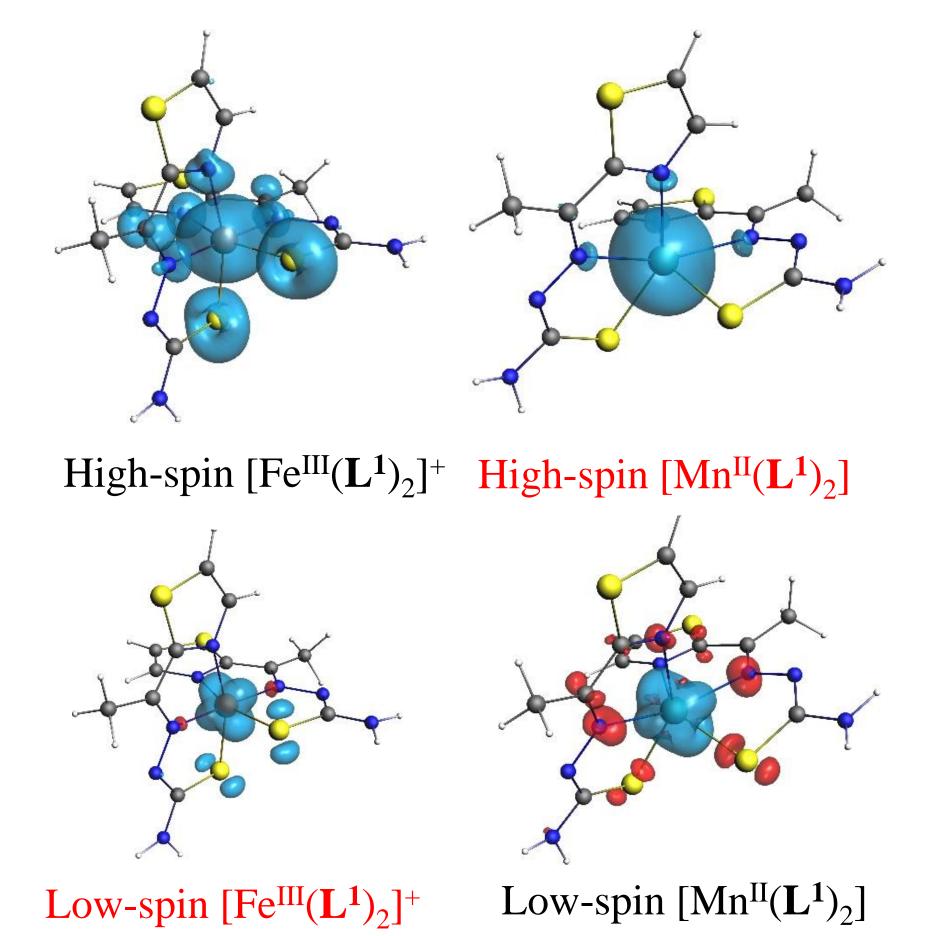
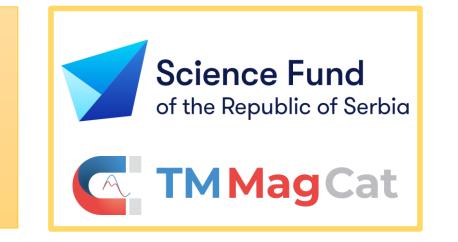



Fig 4. Spin densities (B97-D/TZP-Xray) of complexes 1 and 2.

