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9. SUPPLEMENTARY DATA  

for the article “COVID infection in 4 steps: Thermodynamic considerations reveal how viral 

mucosal diffusion, target receptor affinity and furin cleavage act in concert to drive the 

nature and degree of infection in human COVID-19 disease.” 

 

 

9.1 Model description  
 

Virus particles enter into upper airways with inhaled air and partly absorbed by the 

mucus surface. Those absorbed in the mucus diffuse through the mucus towards the cell 

surface. Once they reach the cell surface the virus particles bind to host cell receptors. On 

the other hand, the part of the viruses that was not absorbed by the mucus surface and 

remained in the air are carried by the air deeper into the airways. The goal of this analysis is 

to find the distribution of virus particles between the air, mucus surface, cell surface area 

and host cell receptors.  

The process described above consists of three steps: viral adsorption onto the mucus 

surface, diffusion through the mucus and attachment to host cell receptors.  The process 

can be modelled, and is displayed in a simplified form, in Figure S.1. Virus particles enter the 

upper airways dispersed in the inhaled air, designated with N. The inhaled air comes into 

contact with the mucus surface. A part of the virus particles is absorbed by the mucus 

surface, represented with A. The mucus thickness is x. Next, the viruses diffuse through the 

mucus and reach the membrane surface, B. State B is also known as the periciliary layer. 

Finally, the virus particles undergo the binding reaction and a part of them binds to host cell 

receptors, designated with C. Thus, the virus particles can be dispersed in air (N), free in the 

surface mucus (A), free in the mucus close to membrane surface (B) or bound to the 

membrane surface (C). The concentration of the virus in the air is n, the concentration of the 

virus in the mucus surface layer is a, the concentration of the free virus at the membrane 

surface is b and the concentration of the virus bound to the membrane surface is c. We are 

interested in how n, a, b and c change with time. 
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Figure S.1: Simplified representation of virus entry into mucus, diffusion through mucus and 

binding to host cell receptors. The orange circles represent virus particles that occupy the 

four available states: dispersed in air, suspended in mucus surface layer, free on membrane 

surface and bound to membrane receptors. The black double arrows (⇄) represent the 

absorption and binding processes, which are fast and are thus in pseudo-equilibrium. The 

black single arrow (→) represents the diffusion process, which is slow and is out of 

equilibrium. 

 

To solve this problem, we will make four assumptions: 

1. The diffusion process can be described by Fick’s law, which is applicable to most 

biological processes.  

2. The diffusion process occurs at a lower rate than the absorption and binding process, 

and is thus the rate-limiting step. This means that the virus will take a lot of time to 

diffuse from the mucus surface (A) to the membrane surface (B). But, once at the 

surface, it will bind very fast. Similarly, the absorption process represents a partition 

of virus particles between nonpolar air and polar mucus. This process is also much 

faster than diffusion. Thus, the processes of absorption and binding can be assumed 

to be close to equilibrium. This assumption simplifies the mathematic treatment of 

the problem, but can be removed, at the expense of longer equations.  

3. The concentration of host cell receptors (r) is much greater than the dissociation 

constant of the virus (K). This assumption is not problematic, since the dissociation 

constant is in the nanomolar range, while there are many host cells in the tissue. 

Again, the assumption can be removed if the equations are made a little longer. 
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4. Virus particles are polar and dissolve better in aqueous mucus solution than in air. 

Virus particles are normally assembled and dissolved in aqueous solutions, such as 

the cytoplasm, extracellular fluid, blood etc. Moreover, coronaviruses have an 

envelope consisted of a phospholipid bilayer, from which project the heads of polar 

spike proteins with carbohydrate extensions [Neuman and Buchmeier 2016; Neuman 

et al., 2011, 2006]. Thus, the surface of coronavirus particles and other viruses are 

highly polar and prefer polar environments over environments that are nonpolar. 

This means that virus particles will have a much greater solubility in mucus, which is 

a polar aqueous solution, than in nonpolar air. Again, the assumption can be 

removed, at the expense of longer equations.  

With these three assumptions, the system of equations we are solving becomes 

1. Distribution of virus particles between air and mucus surface, described by the 

partition coefficient, f. 

𝑓 =
𝑛

𝑎
  

where n and a are the concentrations of virus particles in the air and at the mucus 

surface, respectively.  

2. Fick’s law of diffusion:  

𝐽 = −𝐷
𝑎−𝑏

𝑥
  

where J is the flow rate of virus particles, D is the diffusion coefficient, a the 

concentration of virus particles at the mucus surface, b concentration of virus 

particles at the membrane surface and x mucus thickness [Atkins and de Paula, 2014, 

2011].  

3. Dissociation constant:  

𝐾 =
𝑏 ∙ 𝑟

𝑐
  

where r is the receptor concentration and c the concentration of virus particles bound 

to the receptor [Popovic and Popovic, 2022; Du et al., 2016].   
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4. Conservation:  

𝑚 = 𝑎 + 𝑏 + 𝑐 + 𝑛  

where m is the total concentration of viruses taken into the organism.  

The system of equations specified above is solved, using the four assumptions. The final 

result are the concentrations of virus particles in the four states, as a function of time.  

  

𝑎

𝑚
= 𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
  

𝑏

𝑚
=

𝐾 

𝑟
(1 − 𝑒−𝑡 𝜏⁄ )  

𝑐

𝑚
= 1 − 𝑒−𝑡 𝜏⁄   

𝑛

𝑚
= 𝑓 (𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
)  

where τ is the time constant, specific for the system, defined by the diffusion coefficient and 

mucus thickness 

𝜏 =
𝐷

𝑥2  

This solution will be justified in the next section, where the solution procedure is shown.  

9.2 Solution of the equations: Absorption, diffusion and 
binding of SARS-CoV and SARS-CoV2 variants. 

9.2.1. The model and underlying equations in more detail  

The system we are considering is shown in Figure S.1. An initial inoculum first enters the 

airways with air, which is designated as state N. The concentration of virus particles in the 

air is represented with n. Some viruses are absorbed by the mucus surface, designated as 

state A. The concentration of viruses at the mucus surface is represented with a. Then, 

virus particles slowly start diffusing towards the cell membrane surface (State B). The 

concentration of unbound viruses at cell membrane surface is designated with b. The cell 

membrane surface is at a distance x from the mucus surface, which is the path that the 

virus particles must diffuse. Finally, once the viruses reach the surface, a part of them 

binds to the host cells (State C). The concentration of bound virus particles is designated 
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with c. Thus, the system we are considering consists of an absorption process from N to A, 

a diffusion process from A to B, and a chemical reaction from B to C.  

We are interested in finding how the concentrations of viruses, n, a, b and c, change with 

time. In the analysis, we will make three assumptions. First, the virus diffusion process is 

described by the Fick’s law. This assumption is not problematic, since most biological 

processes obey the Fick’s law. Second, the diffusion process is the rate limiting step. In 

other words, diffusion is much slower than the absorption and binding processes. The 

viruses will take a lot of time to reach the cell surface, but once there, they will bind very 

fast. Thus, the binding process will be at pseudo-equilibrium and we will not have to 

consider kon and koff rate constants. Similarly, distribution of virus particles between a polar 

mucus and nonpolar air environments is also a very fast process. This assumption should 

not be a problem either, since molecular binding, and distribution of particles between 

polar and nonpolar environments are in most cases very fast processes. Moreover, this 

assumption can be removed, although in that case the equations will be a little more 

complicated. Third, the receptor concentration, r, at the cell surface is much greater than 

the virus dissociation constant, K. Dissociation constants of most viruses in the nanomolar 

range. On the other hand, the receptor concentration should be higher than this as there 

are many cells in tissues. This assumption can also be removed, at the expense of longer 

equations. Finally, the fourth assumption states that virus particles are polar and prefer 

polar mucus environment over nonpolar air. This assumption is justified by the polar 

surface of coronaviruses, consisting of the polar heads of the envelope lipids, spike 

proteins and carbohydrates [Neuman and Buchmeier, 2016; Neuman et al., 2011, 2006].  

Virus particles enter the airways, dispersed in air. Once the air comes into contact with the 

mucus surface. The mucus and air differ greatly in their physical properties. Air is gaseous 

and nonpolar, while the mucus is a polar aqueous solution. Thus, the virus particles that 

were all initially in air distribute between the nonpolar air and polar mucus. The 

distribution of virus particles is described by the partition coefficient, f 

𝑓 =
𝑛

𝑎
 (S.1) 

where n and a are the concentrations of virus particles in the air and at the mucus surface, 

respectively [Straathof, 2013]. This is the first starting equation.  
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The flow of virus particles from A to B is described by the Fick’s law [Atkins and de Paula, 

2014, 2011] 

𝐽 = −𝐷
𝑎−𝑏

𝑥
 (S.2) 

Where J is the flow of virus particles, D is the diffusion coefficient, a is the concentration of 

viruses at the mucus surface, b the virus concentration at the cell membrane surface and x 

the thickness of the mucus layer (Figure S.1).  

The virus particle flow J can easily be converted into rate at which particles leave state A, 

Ra. Virus particle flow J is defined as  

𝐽 =
1

𝑆

𝑑𝑁𝑎

𝑑𝑡
 (S.3) 

Where S is the surface area of the membrane, Na the number of viruses on the mucus 

surface (layer A) and t time. In other words, J is the number of viruses that passes through 

a unit area per unit time. On the other hand, the rate at the virus concentration changes at 

the mucus surface is   

𝑅𝑎 =
𝑑𝑎

𝑑𝑡
=

𝑑(𝑁𝑎 𝑉⁄ )

𝑑𝑡
 (S.4) 

Which can be rearranged into 

𝑅𝑎 =
1

𝑉

𝑑𝑁𝑎

𝑑𝑡
 (S.5) 

Thus, J and Ra are very similar quantities, differing only in use of surface area or volume, 

respectively. The ratio of surface area of the mucus layer to its volume is given in Figure 

S.2.  

The top plane of the mucus surface, designated with S, is its top surface with a surface 

area S. The surface opposite to it is the cell membrane surface. These two surfaces are 

equal (S) and are separated by a mucus layer, with a thickness x. The volume between 

these two surfaces is simply the product of the surface area, S, and the distance between 

them, x.  

𝑉 = 𝑆 ∙ 𝑥 (S.6) 

This means that the equation (4) can be rewritten as 

𝑅𝑎 =
1

𝑆∙𝑥

𝑑𝑁𝑎

𝑑𝑡
=

1

𝑥
(

1

𝑆

𝑑𝑁𝑎

𝑑𝑡
) =

1

𝑥
∙ 𝐽 (S.7) 

Substituting this in the Fick’s law (1) gives  

𝑥 ∙ 𝑅𝑎 = −𝐷
𝑎−𝑏

𝑥
 (S.8) 

Which is combined with equation (3) to give 
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𝑥 ∙
𝑑𝑎

𝑑𝑡
= −𝐷

𝑎−𝑏

𝑥
 (S.9) 

This is the form of the Fick’s law that will be used in the derivation and is the second 

starting equation.  

 

Figure S.2: The relationship of surface area and volume of the mucus layer. A fragment of 

the mucus layer is shown, which is located between the air and cell surface. It has a 

surface area S, thickness x and volume V = S ∙ x. 

 

The third starting equation defines the equilibrium constant describing the binding 

process. The dissociation constant, K, relates the concentration of free virus particles at 

the cell membrane surface, b, concentration of host cell receptors, r, and concentration of 

virus particles bound to receptors, c [Popovic and Popovic, 2022; Du et al., 2016].   

𝐾 =
𝑏 ∙ 𝑟

𝑐
 (S.10) 

Finally, the fourth equation is the conservation of matter. Virus particles can either be in 

the air, N, at the mucus surface, A, unbound at the cell membrane surface, B, or bound to 

the host cell receptor, C. Thus, the number of virus particles that entered, m, is divided 

into four parts 

𝑚 = 𝑎 + 𝑏 + 𝑐 + 𝑛  (S.11) 

Where n is the concentration of virus particles in the air, a is the concentration of viruses 

at the mucus surface, b is the concentration of unbound viruses at the host cell 

membranes, and c is the concentration of viruses bound to the host membranes.  

9.2.2. Concentration of free viruses at the mucus surface with time  
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The equations (S.1), (S.9), (S.10) and (S.11) represent the starting point for the derivation: 

distribution, Fick’s law, dissociation constant and conservation. The goal is to find 

equations that describe the change in the virus concentrations n, a, b and c with time. This 

is a system of 4 equations with 4 unknowns and is solvable. The derivation will begin by 

substituting the distribution, binding constant and conservation equations into the Fick’s 

law. This will eliminate n, b and c and will leave a as the only unknown. The resulting 

equation will be solved for a as a function of time. Finally, the result for a will be 

substituted into the binding constant and conservation equations to find b and c, 

respectively. 

First, the conservation equation (S.1) is rearranged to express n through a.  

𝑛 = 𝑎 ∙ 𝑓 (S.12) 

Then, conservation equation (S.11) is first rearranged to express c, using a, b and n.  

𝑐 = 𝑚 − 𝑎 − 𝑏 − 𝑛 (S.13) 

Then, n is eliminated by substituting equation (S.12), resulting in 

𝑐 = 𝑚 − 𝑎 − 𝑏 − 𝑎𝑓 (S.14a) 

𝑐 = 𝑚 − 𝑏 − 𝑎(1 + 𝑓) (S.14b) 

The fourth assumption states that virus particles are polar and dissolve much better in 

polar mucus than in nonpolar air. This means that the concentration of virus particles in 

mucus is much greater than in air: a >> n. The partition coefficient f is defined as f = n/a, 

which means that the partition coefficient will be very small: f << 1. Thus, we can set (1 + f) 

≈ 1 and equation (S.14b) reduces to 

 𝑐 = 𝑚 − 𝑏 − 𝑎 (S.15) 

This equation is then substituted into the dissociation constant equation (9) to eliminate c.  

𝐾 =
𝑏 ∙ 𝑟

𝑚−𝑎−𝑏
 (S.16) 

The resulting equation is then rearranged to express b through a.  

𝐾(𝑚 − 𝑎 − 𝑏) = 𝑏 ∙  𝑟 (S.17a) 

𝐾 𝑚 − 𝐾 𝑎 − 𝐾 𝑏 = 𝑏  𝑟 (S.17b) 

𝐾 𝑚 − 𝐾 𝑎 = 𝑏  𝑟 + 𝐾 𝑏 (S.17c) 

𝐾 𝑚 − 𝐾 𝑎 = 𝑏  (𝑟 + 𝐾) (S.17d) 

𝑏 =
𝐾 𝑚−𝐾 𝑎

(𝑟+𝐾)
   (S.17e) 

𝑏 =
𝐾 (𝑚− 𝑎)

(𝑟+𝐾)
   (S.17f) 
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Finally, equation (17f) can be simplified, using the assumption 3 that the receptor 

concentration is much greater than the dissociation constant: r >> K. This implies that r + K 

≈ r and transforms equation (17f) into 

𝑏 =
𝐾 

𝑟
 (𝑚 −  𝑎)  (S.18) 

Equation (S.18) is now substituted into the Fick’s law equation (S.9), to eliminate b.  

𝑥 ∙
𝑑𝑎

𝑑𝑡
= −

𝐷

𝑥
[𝑎 −

𝐾 

𝑟
 (𝑚 −  𝑎)] (S.19) 

This equation can be rearranged to extract r in front of the parentheses.  

𝑥 ∙
𝑑𝑎

𝑑𝑡
= −

𝐷

𝑥

1

𝑟
[𝑎𝑟 − 𝐾 (𝑚 −  𝑎)] (S.20) 

The equation above is a simple differential equation, which can be solved by separating 

the variables da and dt to different sides and integrating.  

𝑑𝑎

𝑑𝑡
= −

𝐷

𝑥2

1

𝑟
[𝑎𝑟 − 𝐾 (𝑚 −  𝑎)] (S.21a) 

𝑑𝑎

𝑑𝑡
= −

𝐷

𝑥2

1

𝑟
[𝑎𝑟 − 𝐾𝑚 + 𝐾𝑎] (S.21b) 

𝑟
1

[𝑎𝑟−𝐾𝑚+𝐾𝑎]
𝑑𝑎 = −

𝐷

𝑥2 𝑑𝑡 (S.21c) 

∫ 𝑟
1

[𝑎𝑟−𝐾𝑚+𝐾𝑎]
𝑑𝑎 = − ∫

𝐷

𝑥2 𝑑𝑡 (S.21d) 

The equation is now integrated. The variable parameters are a and t, while r, K, D and x are 

constants.  

𝑟 ∫
1

[𝑎𝑟−𝐾𝑚+𝐾𝑎]
𝑑𝑎 = −

𝐷

𝑥2 ∫ 𝑑𝑡 (S.22a) 

𝑟 ∫
1

[𝑎𝑟−𝐾𝑚+𝐾𝑎]
𝑑𝑎 = −

𝐷

𝑥2 𝑡 + 𝐶′ (S.22b) 

C’ represents the integration constant, which will be determined later. The solution of the 

integral on the left hand side is  

∫
1

[𝑎𝑟−𝐾𝑚+𝐾𝑎]
𝑑𝑎 =

1

𝑟+𝐾
ln[𝑎(𝐾 + 𝑟) − 𝐾𝑚] (S.23) 

Substituting this into equation (S.22b) gives 

𝑟
1

𝑟+𝐾
ln[𝑎(𝐾 + 𝑟) − 𝐾𝑚] = −

𝐷

𝑥2 𝑡 + 𝐶′ (S.24) 

The last equation can be simplified, using the third assumption that r >> K, meaning that 

r+K≈r. 

𝑟
1

𝑟
ln[𝑎𝑟 − 𝐾𝑚] = −

𝐷

𝑥2
𝑡 + 𝐶′ (S.25a) 

ln[𝑎𝑟 − 𝐾𝑚] = −
𝐷

𝑥2
𝑡 + 𝐶′ (S.25b) 
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The equation above is almost the solution for part a. However, it contains the integration 

constant C’. The integration constant can be easily determined, using the initial conditions 

of our system. In the beginning of the process, at t ≈ 0, the virus particles have just arrived 

with the air. Since the process of absorption of virus particles from the air is fast, the air 

and mucus surface are in pseudo-equilibrium described by equation (S.1): f = n/a. This can 

be rearranged into n = a f. On the other hand, diffusion is a much slower process, meaning 

that no particles had time to diffuse to the host membranes and bind to the receptors. 

This means that the virus concentration at the host membrane and bound virus 

concentration are both zero: b = c = 0. Thus, the conservation equation (S.11) becomes: 

𝑚 = 𝑎 + 𝑏 + 𝑐 + 𝑛 (S.26a) 

𝑚 = 𝑎 + 0 + 0 + 𝑎𝑓 (S.26b) 

𝑚 = 𝑎(1 + 𝑓) (S.26c) 

The fourth assumption states that virus particles dissolve much better in mucus than in air: 

a >> n. The ratio of solubilities in air and mucus define the partition coefficient f = n / a. 

Thus, the partition coefficient is very small f << 1, meaning that 1 + f ≈ 1. This is substituted 

into equation (S.26c) to give 

𝑚 ≈ 𝑎 (S.27) 

In other words, most virus particles are located on the mucus surface, A.  

Substituting this initial condition (a=m at t=0) into equation (S.25b) gives 

ln[𝑚𝑟 − 𝐾𝑚] = −
𝐷

𝑥2 ∙ 0 + 𝐶′ (S.28a) 

ln[𝑚(𝑟 − 𝐾)] = 𝐶′ (S.28b) 

Again, the assumption that r >> K means that r – K ≈ r. This simplifies the equation above 

and gives us the value of the integration constant.  

𝐶′ = ln(𝑚𝑟) (S.29) 

Equation (S.29) is now substituted into equation (S.25b) to remove the integration 

constant  

ln[𝑎𝑟 − 𝐾𝑚] = −
𝐷

𝑥2 𝑡 + ln(𝑚𝑟) (S.30) 

The equation above is now solved for a. First the logarithms are removed, by raising both 

sides to the exponent.  

𝑎𝑟 − 𝐾𝑚 = exp [−
𝐷

𝑥2 𝑡 + ln(𝑚𝑟)] (S.31)  

Then, the exponent product rule is used: ep+q=ep∙eq. 
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𝑎𝑟 − 𝐾𝑚 = exp [−
𝐷

𝑥2
𝑡] ∙ exp[ln(𝑚𝑟)] (S.32a) 

𝑎𝑟 − 𝐾𝑚 = exp [−
𝐷

𝑥2 𝑡] ∙ 𝑚𝑟 (S.32b) 

𝑎𝑟 − 𝐾𝑚 = 𝑚𝑟 ∙ 𝑒
−

𝐷

𝑥2𝑡
 (S.32c) 

The equation is now rearranged give the final result for a.  

𝑎𝑟 = 𝑚𝑟 ∙ 𝑒
−

𝐷

𝑥2𝑡
+ 𝐾𝑚 (S.33a) 

𝑎𝑟 = 𝑚 (𝑟 ∙ 𝑒
−

𝐷

𝑥2𝑡
+ 𝐾) (S.33b) 

𝑎𝑟

𝑚
= 𝑟 ∙ 𝑒

−
𝐷

𝑥2𝑡
+ 𝐾 (S.33c) 

𝑎

𝑚
=

1

𝑟
(𝑟 ∙ 𝑒

−
𝐷

𝑥2𝑡
+ 𝐾) (S.33d) 

𝑎

𝑚
= 𝑒

−
𝐷

𝑥2𝑡
+

𝐾

𝑟
 (S.33e) 

Equation above gives the fraction of viruses at the mucus surface, a/m, as a function of 

time. It can be simplified, by grouping the diffusion constant and mucus thickness into a 

new constant, τ = D/x². 

𝑎

𝑚
= 𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
 (S.34) 

This represents the end of the a-part of the solution.  

9.2.3. Concentration of free virus particles at the membrane surface with time  

The solution for the b-part is found by substituting the solution for a/m into the modified 

dissociation constant equation. Equation (S.18) is first rearranged.  

𝑏 =
𝐾 

𝑟
 (𝑚 −  𝑎) (S.35a) 

𝑏 =
𝐾 

𝑟
 𝑚 (1 −  

𝑎

𝑚
) (S.35b) 

𝑏

𝑚
=

𝐾 

𝑟
 (1 −  

𝑎

𝑚
)  (S.35c) 

Next equation (28) is substituted into (29c), resulting in 

𝑏

𝑚
=

𝐾 

𝑟
[1 −  (𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
)] (S.36) 

This equation is now rearranged 

𝑏

𝑚
=

𝐾 

𝑟
[1 −  𝑒−𝑡 𝜏⁄ −

𝐾

𝑟
] (S.37a) 

𝑏

𝑚
=

𝐾 

𝑟
[(1 −  

𝐾

𝑟
) − 𝑒−𝑡 𝜏⁄ ] (S.37b) 
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Since r >> K, we can set (1 – K/r) ≈ 1. This simplifies the equation into 

𝑏

𝑚
=

𝐾 

𝑟
[1 − 𝑒−𝑡 𝜏⁄ ] (S.38) 

This is the final solution of the b-part of the problem.  

9.2.4. Concentration of virus particles bound to the membrane  

The c-part of the problem is solved by substituting the solutions for the a-part and b-part 

into the conservation equation. We start from the conservation equation, which was 

previously modified into equation (S.15). We divide equation (S.15) with m to give 

𝑐 = 𝑚 − 𝑎 − 𝑏 (S.39a) 

𝑐

𝑚
= 1 −

𝑎

𝑚
−

𝑏

𝑚
 (S.39b) 

Then we substitute the equations (S.34) and (S.38) 

𝑐

𝑚
= 1 − (𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
) −

𝐾 

𝑟
[1 − 𝑒−𝑡 𝜏⁄ ] (S.40a) 

𝑐 = 1 − 𝑒−𝑡 𝜏⁄ −
𝐾

𝑟
−

𝐾 

𝑟
+

𝐾 

𝑟
𝑒−𝑡 𝜏⁄  (S.40b) 

𝑐 = (1 − 2
𝐾

𝑟
) − 𝑒−𝑡 𝜏⁄ (1 −

𝐾 

𝑟
) (S.40c) 

Since r >> K, we can set (1 – K/r) ≈ 1 and (1 – 2K/r) ≈ 1. This simplifies the equation into  

𝑐 = 1 − 𝑒−𝑡 𝜏⁄  (S.41) 

This is the result for the c-part of the problem.  

9.2.5. Concentration of virus particles in air 

The air above the mucus is in pseudo-equilibrium with the mucus surface. The pseudo-

equilibrium state is described by the partition coefficient f, through equation (S.1). Equation 

(S.1) can be rearranged into  

𝑛 = 𝑓 ∙ 𝑎 (S.42) 

This equation is divided with m to give. 

𝑛

𝑚
= 𝑓 ∙

𝑎

𝑚
 (S.43) 

Then a/m is substituted by equation (S.34).  

𝑛

𝑚
= 𝑓 (𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
) (S.44) 

This is the final solution to the problem.  
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9.2.6. Summary 

In summary, viral diffusion through the mucus and attachment to host cell receptors was 

modeled as a combination of absorption, diffusion and chemical reaction. The absorption 

process was represented by the partition coefficient. The diffusion process was 

represented by Fick’s law. The chemical reaction was represented by the dissociation 

constant equation. The diffusion process was assumed to be slower than the absorption 

and chemical reaction. The final solution to the problem is: 

𝑎

𝑚
= 𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
 (S.45) 

𝑏

𝑚
=

𝐾 

𝑟
(1 − 𝑒−𝑡 𝜏⁄ ) (S.46) 

𝑐

𝑚
= 1 − 𝑒−𝑡 𝜏⁄  (S.47) 

𝑛

𝑚
= 𝑓 (𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
) (S.48) 

Where: 

𝜏 =
𝐷

𝑥2 (S.49) 

The function of a/m is shown in Figures S.3 and S.4 for SARS-CoV and SARS-CoV-2. For 

small values of t, the graphs for SARS-CoV and SARS-CoV-2 are very similar (Figure S.3). For 

large values of t, the two graphs diverge (Figure S.4). The K values for Figures S.3 and S.4 

were taken from [Walls et al., 2020]. 

 

 

Figure S.3: Concentration of virus particles at the surface mucus as a function of time, for 

small time values. Since t is small, the exponent term in equation (S.45) dominates, which 
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depends on virus diffusion properties summarized by τ. Since SARS-CoV and SARS-CoV-2 

particles are of almost identical size and construction, their diffusion properties are very 

similar and the a/m graphs are almost identical for small t.  

 

Figure S.4: Concentration of virus particles at the surface mucus as a function of time, for 

large time values. When t is large, the exponent term in equation (S.45) becomes very small, 

meaning that a/m is determined by the dissociation equilibrium constant, K. Since K is 

different for SARS-CoV and SARS-CoV-2, the graphs of a/m will be different at larger t 

values.  

9.3. Gibbs energy of binding and pathogenesis   

The formulas derived above can be used to explain the differences between clinical pictures 

of SARS-CoV and SARS-CoV-2 infections. The formula describing the change in virus 

concentration in inhaled air with time is 

𝑛

𝑚
= 𝑓 (𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
) (S.49) 

where n is the virus concentration in air, m the original amount of viruses that entered the 

organism, f the partition coefficient for viruses between air and mucus, t time, τ time 

constant (describing diffusion properties of virus particles), K dissociation constant for 

antigen-receptor binding and r receptor concentration on host cells.  

A volume of air with viruses is taken into the airways through the nose, travelling from the 

nasal cavity to the alveoli. As it travels, it gives more and more viruses to the surrounding 

airway tissue. The more the air travels, the longer the time it has been in contact with the 

tissue, t. The air carrying viruses has taken some time to reach the lower airways, having to 
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pass first through the nasal cavity, oral cavity, larynx, trachea etc. This means that for the 

lower airways t is large.  

The large value of t greatly simplifies the function describing the virus concentration in air. 

This means that in the lower airways (where t → ∞) the equation simplifies into 

𝑛

𝑚
= 𝑓 (𝑒−𝑡 𝜏⁄ +

𝐾

𝑟
) (S.50a) 

𝑛

𝑚
= 𝑓 (𝑒−∞ 𝜏⁄ +

𝐾

𝑟
) (S.50b) 

𝑛

𝑚
= 𝑓 (𝑒−∞ +

𝐾

𝑟
) (S.50c) 

𝑛

𝑚
= 𝑓 (0 +

𝐾

𝑟
) (S.50d) 

Thus, the final equation describing the concentration of virus particles in the lower airways 

is 

𝑛

𝑚
=

𝑓

𝑟
 𝐾 (S.51) 

The parameter r is the receptor (ACE2) concentration in the host tissue. Since SARS-CoV and 

SARS-CoV-2 viruses both attack respiratory pathways, the parameter r is the same for both 

viruses. The parameter f depends on the properties of the virus particle surface. Since SARS-

CoV and SARS-CoV-2 have a very similar morphology [Neuman and Buchmeier, 2016; 

Neuman et al., 2011, 2006], their surfaces are very similar and the f parameter is essentially 

identical for the two viruses. Thus, the only parameter that differs between SARS-CoV and 

SARS-CoV-2 is the dissociation constant, K.  

The equation above says that the concentration of viruses that arrives to lower airways is 

proportional to the dissociation constant K. We can use equation (S.51) to compare the 

concentrations of viruses that arrive to the lower airways. The parameters r and f are the 

same for both viruses. Thus, the ratio of concentrations of virus particles that reach the 

lower respiratory pathways depends only on the ratio of the dissociation constants 

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉)

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉−2)
=

𝐾(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉)

𝐾(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉−2)
 (S.52) 

Where n(SARS-CoV) and n(SARS-CoV-2) are the concentrations of SARS-CoV and SARS-CoV-2 

virus particles that reach the lower respiratory pathways, respectively, while K(SARS-CoV) 

and K(SARS-CoV-2) are the dissociation constants of the SARS-CoV and SARS-CoV-2, 

respectively.  

The dissociation constant is proportional to the exponent of the standard Gibbs energy of 

binding, meaning that small changes in the latter will lead to great changes in the former. 
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Dissociation constant, K, is related to the standard Gibbs energy of binding, ΔBG⁰, through 

the equation 

𝐾 = exp (+
∆𝐵𝐺0

𝑅𝑇
) (S.53) 

where R is the universal gas constant and T temperature (the sign before ΔBG⁰ is plus 

instead of minus, since: ΔBG⁰ = - RT ln (KB) and KB = 1/K, where KB is the binding constant, 

the reciprocal of the dissociation constant) [Popovic and Popovic, 2022]. Equation (S.53) 

shows that the dissociation constant K is proportional to the exponent of the standard Gibbs 

energy of binding, ΔBG⁰. This means that small changes in ΔBG⁰ will make great changes in K 

and thereby in the concentration of viruses in the lower airways, through equation (S.52).  

In summary, the consideration above means that if a virus A has a more negative (smaller) 

standard Gibbs energy of binding than virus B, the dissociation constant of virus A will be 

much smaller than that of virus B, due to the exponent in equation (S.53). This means that 

the concentration of virus A particles in the lower respiratory pathways will be much smaller 

than that of virus B, according to equation (S.52). If more virus B particles reach the lower 

respiratory pathways, virus B will infect lower respiratory pathways more often than virus A. 

This will now be tested with SARS-CoV and SARS-CoV-2 viruses.  

9.4. Comparison of SARS-CoV and SARS-CoV-2 

According to equations (S.52) and (S.53), the ratio of concentrations of SARS-CoV and SARS-

CoV-2 viruses reaching the lower airways depends on standard Gibbs energies of binding of 

the two viruses. Dissociation constants of SARS-CoV and SARS-CoV-2 (Hu-1 variant) were 

reported by Walls et al. [2020]. The dissociation constant, K, of SARS-CoV is 5.0 nM, while 

that of SARS-CoV-2 is 1.2 nM, at 30°C [Walls et al., 2020]. These values can be substituted 

into equation (S.53), to find standard Gibbs energy of binding, ΔBG⁰. This results in ΔBG⁰ = -

48.2 kJ/mol for SARS-CoV and ΔBG⁰ = -51.8 kJ/mol for SARS-CoV-2. Thus, ΔBG⁰ of SARS-CoV is 

only a little less negative (greater) than that of SARS-CoV-2.  

The K values of the two viruses can be used to find the ratio of concentrations reaching the 

lower airways, using equation (S.52).   

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉)

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉−2)
=

𝐾(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉)

𝐾(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉−2)
 (S.54a) 

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉)

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉−2)
=

5.0 𝑛𝑀

1.2 𝑛𝑀
 (S.54b) 



17 

 

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉)

𝑛(𝑆𝐴𝑅𝑆−𝐶𝑜𝑉−2)
= 4.2 (S.54c) 

This means that the concentration of SARS-CoV reaching the lower airways is 4.2 times 

greater than that of SARS-CoV-2. Therefore, even though SARS-CoV has just a slightly less 

negative (greater) standard Gibbs energy of binding than SARS-CoV-2, much more SARS-CoV 

particles will reach the lower airways.    
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