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Abstract

In this two-part paper a comprehensive study of the potential to improve performance criteria of
a methanol synthesis reactor through forced periodical operations is presented. The study uses
the Nonlinear Frequency Response method, a powerful analytical and approximate tool which
gives an answer whether and under which conditions certain periodic operation would lead to
improvement of process performance. To demonstrate the method, isothermal and isobaric
methanol synthesis in a lab-scale CSTR is considered. In Part I, the analysis is performed for
single input modulations. Partial pressures of each reactant in the feed stream and the total inlet
volumetric flow-rate are considered as possible modulated inputs. The results show that
modulations of single inputs essentially do not provide potential for significant improvements. In
Part II, the study will be extended to analysis of periodic operations with simultaneous
modulations of two inputs and conditions offering significant performance enhancements will be

identified.
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1 1ntroauction
Operating processes in forced periodic mode is one way of Process Intensification (PI), which
represents a set of innovative principles in process or equipment design leading to significant
process improvements (Van Gerven and Stankiewicz, 2009). The term forced periodic operation
refers to a case when one or more inputs of a system are periodically modulated around their
corresponding steady-state value(s) (Petkovska and Seidel-Morgenstern, 2013). In chemical
engineering, the standard way to design and operate continuous processes is based on the optimal
steady-state design and a control system which keeps all outputs as close as possible to theirs
optimal steady-state values. Nevertheless, it is a known fact that perturbing the system
periodically can sometimes result in better performance than the optimal steady-state operation
(Silveston and Hudgins, 2013). Forced periodic operations of chemical reactors have been of
interest for many research groups worldwide, involved in numerous theoretical, numerical or
experimental studies (Armstrong and Teixeira, 2020; Bailey 1973; Douglas and Rippin 1966,
Douglas 1967, Douglas 1972; Renken 1972; Schadlich et al. 1983; Silveston 1987; 1998;
Silveston and Hudgins, 2013, Sterman and Ydstie 1990a, 1990b, 1991, Chen et al., 1994). These
studies showed that the time-average indicators of chemical reactor performance, such as
conversion, selectivity, production rates, productivity, could be improved by implementing

forced periodic operations.

Although the physical reasons can be different, it could be said that the process improvement
owing to forced periodic operations is always a consequence of process nonlinearity (Petkovska
and Seidel-Morgenstern, 2013). For simple cases with only one nonlinear effect, it is usually
explained based on the convexity of the nonlinear term. Nevertheless, in the cases such as
investigated in this work, with a heterogeneously catalysed complex reaction scheme, there are a
large number of coupled nonlinear effects, which do not just add up, but also have combined
effects. The contributions of these nonlinear effects and their combinations change from one
steady-state to another. Also, it is important to know that the resulting performances could be
improved, deteriorated or unchanged, in comparison to the steady-state performance (Douglas
and Rippin, 1966). The specific response to forced periodic input modulations of the system
considered in our study, for the heterogeneously catalysed synthesis of methanol carried out in a
well-mixed isothermal reactor (CSTR type), is due to a number of nonlinear phenomena and
time scales. For a complex nonlinear system such as the one investigated in our work, a simple
interpretation of the lack of improvement for single input modulation cannot be given with any

scientific certainty.



Lonsiaering that tnere are many ways 10 apply 1orced periodic operatons, €.g.: difrerent inputs
which can be modulated, different shapes of the modulated input(s), different values of the
forcing parameters (amplitude(s), frequency, phase difference, etc.), it is a challenging task to
find the mode which would lead to the highest improvement (Parulekar, 2003; Silveston et al.,
1995). It is therefore of economic importance to carry out theoretical studies for assessing the
effects of forced periodic operations of chemical processes, before any experimental studies
(Chen et al., 1994). In our previous work (Markovic¢ et al, 2008; Nikoli¢, 2016; Petkovska and
Seidel-Morgenstern, 2013; Petkovska et al., 2018) we introduced the Nonlinear Frequency
Response (NFR) method as a reliable analytical tool for evaluating possible improvements and

finding the best forcing parameters (Nikoli¢, 2016; Zivkovié et al., 2020b).

The Nonlinear Frequency Response (NFR) method is based on the analysis of the frequency
response of weakly nonlinear systems (Nikoli¢, 2016; Petkovska and Seidel-Morgenstern, 2013,
Petkovska et al., 2018). It is a general, mathematically based theoretical and approximate method
which answers the following questions (Nikoli¢, 2016; Petkovska and Seidel-Morgenstern, 2013;
Petkovska et al., 2018):

. Can the process performance be improved by periodic input modulations or not?

o Which input(s) should be periodically modulated in order to improve the process
performance?

. Which forcing parameters (amplitude(s) and frequency of the input modulations, as well

as the phase difference in the case of simultaneous modulation of two inputs) should be used?
. What would be the extent of the possible improvement?

Until now, the NFR method has been applied for studying forced periodic operations of several
different reactor systems. Simple irreversible n" order reactions were considered in continuous
stirred tank reactor (CSTR) (Markovic¢ et al., 2008, Nikoli¢-Pauni¢ and Petkovska, 2013; Nikoli¢
and Petkovska, 2016; Nikoli¢ et al., 2014a, 2014b, 2015; Nikoli¢, 2016; Nikoli¢ et al., 2016a,
2016b, 2020; Petkovska et al., 2010;), plug flow reactor (PFR) and dispersed flow tubular reactor
(DFTR) (Markovi¢ et al., 2008). Different thermal regimes were studied: isothermal (Markovic¢
et al., 2008, Nikoli¢-Pauni¢ and Petkovska, 2013; Nikoli¢ and Petkovska, 2016; Petkovska et al.,
2010), general non-isothermal (Nikoli¢-Pauni¢ and Petkovska, 2013; Nikoli¢ et al., 2014a,
2014b, 2015, 2016) and adiabatic (Nikoli¢, 2016; Nikoli¢ et al., 2016b; Nikoli¢ et al., 2020).
Single input modulation of different input shapes: general (Nikoli¢ and Petkovska, 2016; Nikoli¢
et al., 2020), sinusoidal (Markovi¢ et al., 2008, Nikoli¢-Paunié¢ and Petkovska, 2013; Nikoli¢ and
Petkovska, 2016; Nikoli¢ et al., 2014a, 2014b, 2015; Nikoli¢, 2016; Nikoli¢ et al., 2016a, 2016b;



Ferkovska et al., ZU1U;), square-wave (/Vikolic and Ferkovska, U10; NIKkolic el al., ZUZV), 10t
inlet reactant concentration (Markovi¢ et al., 2008, Nikoli¢-Paunié and Petkovska, 2013; Nikoli¢
and Petkovska, 2016; Nikoli¢ et al., 2014a, 2014b, 2015; Nikoli¢, 2016; Petkovska and Seidel-
Morgenstern, 2013; Petkovska et al., 2010;), flow-rate (Nikoli¢-Pauni¢ and Petkovska, 2013;
Nikoli¢, 2016; Nikoli¢ et al., 2016a, 2016b), inlet temperature and temperature of the
cooling/heating medium modulation (Nikoli¢ et al., 2014b, 2015), as well as simultaneous
modulation of two inputs (Nikoli¢-Pauni¢ and Petkovska, 2013; Nikoli¢ et al., 2015;2016a,
2016b, 2020; Nikoli¢, 2016) were considered. The NFR method was also used for analysis of

forced periodic operation for Sabatier reaction (Currie et al., 2018).

Recently, the results of NFR analysis of forced periodically operated adiabatic reactor in which
hydrolysis of acetic anhydride occurs for simultaneous modulation of two inputs, inlet
concentration and flow-rate (Nikoli¢, 2016; Nikoli¢ et al., 2016b), have been experimentally
confirmed (Felischak, 2020; Felischak et al., 2021).

Also recently, the NFR method was further advanced into the so-called computer-aided
Nonlinear Frequency Response (cNFR) method, by developing a user friendly software
application for implementing the NFR method, making its application much easier (Zivkovi¢ et
al., 2020a). Another recent development was establishing and implementing a new methodology
for optimizing forced periodic operations, combining the cNFR approach and multi-objective
optimization the one step optimization (Zivkovi¢ et al., 2020b). The main advantage of this
approach is that using the NFR approach leads to objective functions which are defined as
algebraic expressions of all optimization parameters, which drastically shortens the needed
computing time. Also, the optimization is performed in a single step, meaning that all
optimization parameters: the steady state point around which the forced periodic operation
should be performed and the forcing parameters (frequency, amplitudes and phase difference)

are determined at the same time.

In this paper, the NFR method is used for analysing the potential of forced periodical operations
of a chemical reactor in which the catalytic methanol synthesis from synthesis gas occurs.
Methanol is an important basic chemical which is produced on large scale in chemical industry
and used as starting material for production of paraffins, olefins and other organic chemicals, as
well as fuel or fuel additives (Fiedler et al., 2000). The important fact is that methanol can be
used as an energy carrier (Olah, 2004). Excess electrical energy from renewable resources (wind
or solar) can be used to generate hydrogen which, combined with CO and/or CO, (from biomass
or agriculture waste streams) in the presence of a suitable catalyst, can be converted into

methanol as a medium for chemical energy storage (Larsten and Sonderberg, 2013; Martin,



2U10; Ulan, ZUV2; Kaeuchle et al., ZU10; deldel et al., ZU1%). HOWEVer, methanol proauction 1or
energy storage using renewable resources deals with unavoidable fluctuations in the supply of
hydrogen, CO and/or CO,. In some cases, these fluctuations could lead to improvement of
methanol production. Previous experimental investigations showed that significant improvement
in methanol production could be achieved by forced periodic operations (Chanchlani et al.,
1992, 1994; Silveston, 1987). Experimental results presented in (Chanchlani et al., 1992, 1994)
showed that the improvement of about 35% increase of methanol production relative to steady
state is possible (when H,; and CO, in the feed stream are periodically modulated) for an
isothermal packed bed reactor when Cu/ZnO and Cu/ZnO/Al,0O3 were used as catalyst at 225°C
and 2.86 MPa.

The NFR method which is used in this work is essentially a mathematical tool which can be used
for evaluating forced periodic operations of chemical reactors, as well as any other physical
system, without the need to understand the physical reasons for the process improvement or
deterioration. As such, this method is very useful to study complex systems, such as the one

analysed in our work.

In this two-part manuscript we use the NFR method to perform a systematic search for the best
periodic process which would intensify the process of methanol synthesis. In Part I of this work,
the NFR analysis is performed for cases of single input modulations. In Part II, the cases of

simultaneous modulations of two inputs will be analysed.

2 Nonlinear frequency response method for single input modulations

By definition, frequency response is the quasi-stationary response of a stable system to a periodic
(sinusoidal or co-sinusoidal) input modulation around its steady-state value (Douglas, 1972).
Frequency response is obtained when the transient response becomes negligible (theoretically for
infinite time). For linear systems, frequency response is a periodic function of the same shape
and frequency as the input function, but with different amplitude, with a phase shift and the

mean value which is equal to the steady-state one.

On the other hand, frequency response of a nonlinear system is a complex periodic function. For
a weakly nonlinear system (Weiner and Spina, 1980), if the input x is modulated in a cosine-

wave form, with amplitude A and frequency w, around a steady-state value x;:
x(t) = x5 +Acos (wt) (1)

after long enough (theoretically infinite) time, the output of the system would contain the basic

harmonic (y;) which has the same frequency as the input modulation, a non-periodic (the so-



callea DL ) component (yYpc) anda an nrnite numocr oI nNigner narmonics (Y, Yur,...) (LJouglas,

1972; Weiner and Spina, 1980):

y(®) =ys+ypc+yi +yu+yur + .. =y, + ypc + Bicos (wt + @) + Bycos Qwt + ¢p) +
Byicos (3wt + @) + -+ (2)
where y(¢) represents the output, y, its steady-state value, while B; and ¢; are the amplitude and

the phase shift of the i-th harmonic of the output, respectively.

One convenient approach of analysing the frequency response of weakly nonlinear systems is the
concept of higher order frequency response functions (FRFs). This approach is based on Volterra
series and the generalized Fourier transform (Nikoli¢, 2016; Petkovska and Seidel-Morgenstern,
2013; Petkovska et al., 2018;Weiner and Spina, 1980). Using this approach, the nonlinear model

of a weakly nonlinear system can be replaced with a series of FRFs of different orders:Gs(,,lQ (w1),

G}(,,Zx),x(wl,wz),...,GB(,’,Q__,X(wl,...,wn),.... These FRFs are directly related with the DC component and
e i —_

n n
different harmonics of the frequency response (Nikoli¢c, 2016; Petkovska and Seidel-
Morgenstern, 2013; Petkovska et al., 2018).

This method can be applied on weakly nonlinear, stable systems, without multiple steady-states,
which can be represented with convergent Volterra series (Nikoli¢, 2016; Petkovska and Seidel-

Morgenstern, 2013; Zivkovié et al., 2020a).

In order to evaluate a forced periodic operation around a steady-state point, only the time-
average value of the periodic steady-state response is of interest. Using equation (2) it is easily
concluded that the DC (non-periodic) component of the frequency response equals the difference
between the time-average and the steady-state value of the output. Using the concept of higher
order FRFs, the DC component can be written as the following infinite series (Weiner and Spina,

1980):
"\ . A4 4
Ype = 2(5) GRx(w, — w) + 6(5) GiRxx(Ww, — W, — W) +... 3)

In equation (3) Gg,,z)gx(w, — w) 1s the asymmetrical second order FRF, G}(,f‘)gxlx,x(a),w, — w, — w) the

asymmetrical fourth order FRF, etc.

For weakly nonlinear systems, the significance of different terms in equation (3) decreases with
the increase of the corresponding FRF order. As a consequence, the DC component can be
approximated with its dominant term, which is proportional to the asymmetrical second order
function and the square of the input amplitude (Markovi¢ et al., 2008):

A2
yoc = 2(5) 6w, — ) @



Equation (4) 1S tne roundaton oI the INFK metnod Ior evaluatng periodic operations witn one
modulated input. The sign of G}(,sz),x(w, — w) determines whether the periodic operation would be
superior to the corresponding steady-state one, while its magnitude determines the possible

improvement.

The FRFs of interest are derived starting from a nonlinear dynamic model of the investigated
system. The derivation procedure of the FRFs is standard and it can be found in our previous
publications (Markovic¢ et al., 2008; Nikoli¢-Paunié¢ and Petkovska, 2013; Nikoli¢ et al., 2014a,
2014b, 2015; Nikoli¢, 2016; Nikoli¢ and Petkovska, 2016; Nikoli¢ et al., 2016a, 2016b, 2020;
Petkovska et al., 2010; Petkovska and Seidel-Morgenstern, 2013; Petkovska et al., 2018).

3 Methanol synthesis reaction.
In this paper the focus is on the production of methanol from syngas (a mixture of CO, CO, and
H,) using a commercial Cu/ZnO/Al,O;5 catalyst. The overall reaction mechanism assumes the

reactions of CO and CO, hydrogenation:

CO +2H,2CH30H )
CO, +3H,2CH30H + H,0 (6)

and the reverse water-gas shift reaction (RWGS):

COz + H,2CO + H,0 (7
(see e.g. Graaf et al. (1988)).

Kinetic model

The NFR analysis presented in this work is based on a mathematical model of the reactor
incorporating a reaction kinetic model of methanol synthesis presented in Seidel et al. (2018,
2020), which showed reasonable agreement with steady state and dynamic experimental data
from the Ph.D. Thesis of Vollbrecht (2007). The model is based on a Langmuir-Hinshelwood
mechanism which implies three main steps: adsorption of the reactants on the catalyst surface,
reaction of the adsorbed species and desorption of the reaction products. Adsorption and
desorption are assumed to be in equilibrium. Further, the model assumes three different active
centres on the catalytic surface, i.e.

e oxidized surface centres ( ()

e reduced surface centres (*)

e active surface centres for heterolytic decomposition of hydrogen ( @ ).



Lhe Tracuon OI the reaucea surrace centres was aenoted by @. rFolowing uvesen et al. (199/),
changes in the catalyst morphology due to the oxidizing influence of CO, and H,O and the
reducing influence of CO and H, were also taken into account and modelled with the following

dynamic equation:

@ = tei" (Voo max — 8) — g ¥c0,0) + k5 (Vi bmax — ) = gymod)  ®

In equation (8) it is assumed that the maximal value of the fraction of the reduced centres is

limited to ¢4y In the current study the maximal value ¢, = 0.9 was used (Seidel et al. 2020).

The equilibrium constants
kit —AG,
k== (ar) ®)

ot = ()

were fitted separately to the steady state data (Seidel et al. 2018), whereas the dynamic rate
constants k;*, k,* were fitted to dynamic data (Seidel et al. 2018).

Finally, also an ideal gas phase was assumed. Catalyst deactivation, and further side reactions
were neglected. With all of these assumptions the following lumped reaction rate expression

were obtained (Seidel et al. 2018, 2020):

e For the reaction of CO hydrogenation (Eq. (5))
1 4
r=01- ¢)k1(PCOPH22 - rmpcygoH)H ©g® (11)

e For the reaction of CO, hydrogenation (Eq. (6))

1 PcH30HPH, «2 4
r2=¢ kz(Pcoszz N PZ,,HZ)@ 0% (12)
e For the reverse water-gas shift reaction (RWGS) (Eq. (7))
_1 1 PcoPHyo « 00O
rs= 01— ) s{peo, — )06 (13)

The corresponding relative amounts of free active surface centres are given with the following

expressions (Seidel et al., 2018):

0© = (1+ KQuonpcmon + K&,pco, + K&pco) ™ (14

9® = (1 +Kup,) (15)

KOKHZOPHZ
0" (1 + Kcnsonpenson + Kco,peo, + Kiyobrao + - PHz) (16)



1n¢ réacuon ratc constants k; Were aciermined bascd on inc modincd Arrnenius cquatuon:

Tref )
k; =Ak,jexp(—BJ(T— 1)),] =123 (17)
with the reference temperature 7,,~523.15 K (Seidel et al., 2018; Vollbrecht, 2007) and j=1,2,3
corresponding to CO hydrogenation, CO, hydrogenation and reversed water-gas shift reaction,

respectively.

The equilibrium constants of the chemical reactions defined by equations (5-7), as functions of

temperature (Vollbrecht, 2007), are given in Appendix A.

The values of the kinetic parameters used in this paper are given in Table 1. These values are
somewhat different than the ones reported in our previous publications (Seide!l et al. 2018, 2020),
as they have been refitted to the experimental data of Vollbrecht (2007), by using ¢ < 0.9 in the
constraint set of the nonlinear least squares problem. In Table 1, the specific amount of surface

centres ¢y, 1S also given.

The zero values of some parameters which are given in Table 1 (i.e. K¢insomKu20, Ko» K& yson
, K&)7) are an outcome of parameter identification for the specific experimental data considered.
These parameters have a physical meaning in the original mechanism assumed and the general
form of the kinetic model is provided by presenting also the terms in which these parameters

appear.

For more details of the kinetic model the reader is referred to Seidel et al. (2018).



prapie 1. rarameters anda consiant usca 1n Kinctuc modacl

Parameter Unit Value
Pmax - 0.9
Ak co mol /kg.. s /bar’ | 0.00673
Beo - 26.4549
Ag.co, mol /kg., s /bar® | 0.0430
Bco, - 1.5308
Agrwes | mol/kge, /s /bar 0.0117
Brwes - 15.6154
VK2 bar'?2 1.1064
Kcuson bar! 0
K20 bar! 0
Ko - 0
Kco bar! 0.1497
K30 bar! 0
Kio2 bar! 0.0629
K%, bar! 0
AG, kJ/mol 0.336
AG, kJ /mol 21.841
kit s 1 79.174 104
ks s 1 1.88 105
ot mol/kgen 0.98




4. Applicauon oI the NFK metnoda to evaluate tne potential of singie Input rorcea
periodic operation of methanol synthesis reactor
In this Section, the NFR method is applied for the analysis and evaluation of possible
improvement of methanol production, for forced periodic operations with single input
modulations. The analysis is performed for a laboratory-scale uniformly mixed reactor such as
the Micro-Berty reactor, which was used for kinetic measurements (Vollbrecht, 2007) on which
the kinetic model used in this study is based. The Micro-Berty reactor, often used for kinetic
measurements for heterogeneously catalysed reactions, was designed in such a way to achieve
very good mixing and assure gradientless or uniform conditions in the whole reactor volume
(Berty 1974; Warnecke et al., 2020). The residence time distribution was evaluated by
Vollbrecht (PhD Thesis, 2007) and indeed found to be very close to exponential. Therefore, the
usage of the simple CSTR reactor model, which assumes perfect mixing, is justified. The
theoretical results present below will also serve as a basis for a planned later experimental

validation using this same reactor type.

4.1. Mathematical model
The mathematical model of the catalytic reactor for methanol synthesis is based on the following
assumptions (the assumptions listed here are consistent with the assumptions used for the kinetic

model presented above):

e The reaction occurs in an isothermal and isobaric CSTR,

e The gas phase is ideal in the range of operation parameters,

e The adsorption equilibrium between the solid and the fluid phase exists,

e The adsorption processes follow the Langmuir-Hinshelwood mechanism with the
maximal adsorption capacity ¢, (Table 1),

e The catalyst deactivation can be neglected,

e The reaction mechanism is defined with equations (5-7) and all other reactions can be

neglected.

The Micro-Berty reactor can be modelled as a continuous stirred tank reactor (CSTR). As stated
above, the reactor system in which methanol synthesis occurs is established for the case when

total pressure (p;,) is constant
6
Ptot = X; _ {Pi = const (18)

Considering that during methanol synthesis the total number of moles is decreasing and that the

total pressure is held constant, the volumetric outlet flow-rate is also changing.

The mathematical model of the analysed system can be described with the following equations:



e material balances 1or each component ¢

dp, 00,dp, - .
VGE + mcatqsatRTZ 16p dt Vopz 0— Vpl + mcatRTZ Vi]‘T'j, i=1,.,6 (19)

e total material balance for the case when total pressure is held constant

6 20 dp; - 6 w3

mcatqsatRTZi = 12 1(7p dt Voptot thot + mcatRTZi = 1Zj = 1Vijrj (20)
e the equation describing the catalyst dynamics

d¢ 1 p2 1ps

dt = kl (Pc t(¢max ¢) Klpt . ) kZ (p: t(quax ¢)) szmt ) (21)

The outlet volumetric flow-rate (V) is evaluated based on the total material balance (Eq. (20))

which can be reformulated as follows:

. . RT 6 3 00dp,
V=Vy+ mcatﬁzi = 1Zj ViTj — mcatCIsatp Zl = 121 =1dp;dt (203-)

In equations (18-20) p; represents the partial pressure of component i (i=1 for CH;0H, i=2 for
CO,, i=3 for CO, i=4 for H,, i=5 for H,O and i=6 for N,).

The adsorption equilibrium is described with the competitive adsorption Langmuir isotherm. The

26,
elements of the Jacobian matrix, (67)1) which are used in the mathematical model (Egs. (19-20)),

are given in Appendix B. In order to evaluate the total concentration of each component on the
catalyst surface, it is necessary to determine the concentration of each component on each active
surface centre of catalyst.

For analysis in the frequency domain, it is convenient to introduce dimensionless variables
(defined in Tab. 2) and to use dimensionless mathematical model. The dimensionless input and
output variables are defined as relative deviations from their steady-state values, as shown in

Tab.2.

Table 2 The definitions of dimensionless variables

Dimensionless variables Definitions
Partial pressure of component i p. =P 1 6
N T
Partial pressure of component / in the inlet stream | p_ 0= Pio = Pios . _ 1.6
W™ pos 27T
Time t t
T == "
To,s V(; / VO,s
Fraction of reduced centres on the catalyst surface ® ¢ — s
bs




Volumetric tlow-rate ot the inlet stream Vo—Vos
Vo=—="—""
VO,S
Volumetric flow-rate of the outlet stream V— VS
vV=——7
Vs
Frequency W = WqTo,s

The dimensionless frequency (w) (Tab.2) is defined based on the steady-state residence time
(to,s) calculated using the steady-state inlet volumetric flow-rate (Vo,s) and volume of the reactor

(V), as follows:

Ve
Tos = 7on (22)

For applying the NFR analysis, all nonlinear terms in the mathematical model need to be given
in the polynomial form or expanded in Taylor series around a previously established steady-state
point (Petkovska and Seidel-Morgenstern, 2013; Nikoli¢, 2016; Petkovska et al., 2018).
Therefore, the nonlinear terms (reaction rate expressions (Egs. (11-13)) from the mathematical
model (Egs. (19-20)) are replaced by their Taylor series expansions, which are given in

Appendix C.

After incorporating the dimensionless variables (Tab. 2) in the mathematical model equations
(19-21) and expanding all nonlinear terms into Taylor series form, the following set of

dimensionless model equations is obtained:
6

szsae AP

pl sapl dt

)P+ (vi1q7 + vi97 + vi357)d

dP;
dr + MearQsat,—

Vs RT
+ . \P +U+UPL)_V Meat Z(Vllql+1/12191+vl3sl

V OSpLS =1

plOS RT
(P 0 + vg +U0PL0) + =

i,s 0,spi,s

6 6
Mege (ZZ Vvi1Qu + Vi2Up + vi3Si) PiPy

6
+ (vi1Q77 + viUs7 + vi3S77) D% + CDZ (vi1Qu7 + vi2Up7 + Vi,3517)Pl) +
=1

i=1,..6 (23)



Vossaey  00idP; Vipror —~ [
mcatqsatv_ Zpl,sa dr + RT U — mcatz Z (Vi,lql + Vi,279l + 1/i,3sl)Pl + (Vi,1q7 + Vi2
e e B i=1\l=1

6 6

I./0,sptfot
="gr Yot mcatz

6
97 + vi357)® Z (vi1Que + vi2Uik + vi3Siu) PiPy

+ (vi1Q77 + viU77 + vi3S77) D% + CDZ (vi1Quy + vi2Up7 + Vi,3517)Pl) + ...
=1

(24)
dCD (d)max - ¢s) (¢max - ¢s)
ot [E] P, + | — TEllP3 + [ —TEg P4 + [E4]Ps
+[E{+E; + Es+ E4]®
= [ = E;]P;® + [ - E{]P,® + [ — E3]P,@ + [ — E4]P:®
(25)

The auxiliary coefficients ¢, O, 9, U, s, S as well as the auxiliary parameters £;-F4 used in this

dimensionless mathematical model (Egs. (23-25) are given Appendices C and D.

4.2. Inputs, outputs and frequency response functions (FRFs)

The inputs which can be modulated for the analysed system are:

e partial pressure of CO, in the feed stream,
e partial pressure of CO in the feed stream,
e partial pressure of H; in the feed stream and

o total volumetric flow-rate of the feed stream.
The outputs of the analysed system are the following variables:

e the partial pressures of all components in the outlet stream,

o the fraction of reduced active surface centres of the catalyst in the reactor (which in fact

represents the state of the catalyst in the reactor) and

e the volumetric flow-rate of the outlet stream.

The vectors of inputs X and outputs Y in the dimensionless form are defined, as follows:



20 CH;0H
Pco,0 Pco,
Pco,o Peo
X=|p Y=| Py, (26)
X Py.o
Vg CI)2
| U B

The FRFs which correlate an output y (y=1,...,7) with a modulated input x (x=1,...,4) will be
denoted as G-functions. For implementation of the NFR method for evaluating the potential

forced periodic operations, it was necessary to derive:

e the first order frequency response functions marked as Gg,},g(a)),

o the asymmetrical second order frequency response functions marked as G%?,x(w, —w).

The G-FRFs were derived by implementing a standard derivation procedure which was given in
our previous publications (Petkovska and Seidel-Morgenstern, 2013; Nikoli¢, 2016, Petkovska et
al., 2018).

4. 3. Derivation of the FRF's

The periodic modulation of input X,, defined as a dimensionless inlet partial pressure of CO,,
CO or H, (for x=1, 2 or 3) or dimensionless flow-rate (x=4), with a forcing frequency w and
forcing amplitude A,, in the shape of a co-sinusoidal function of frequency, is defined as
follows:

Ay

X,(1) = Agcos(wt) = (7)ej“’T + (%)e ot (27)

In the cases when the partial pressure of one of the reactants is the modulated input, the partial
pressure of the inert (N;) is adjusted in order to assure isobaric conditions (constant total

pressure) in the reactor.

For the general case, when input X, is periodically modulated, the output Y,, based on the

Volterra series (Volterra, 1959) can be written in the following way:

Ax\ Ay . Ay 2
Y, = (7)ef“’TG§;,1;2(w) + (7)6 TOTGM(—w) + .. + 2(7) %G (0, — w) +... (28)
After substituting the definitions of the dimensionless input (Eq.(27)) and outputs (Eq.(28)) in

the dimensionless mathematical model (Eq.(23-25)) and after collecting the terms with A,e/“, a

set of linear algebraic equations, defining the first order G-FRFs is obtained. This set of

equations can be written in the matrix form given with Eq. (29):



v v v v

10040, Pco0;s |
0 0
Pco,s Pco,s
0 Pco,o,s 0 Pco,0,s
ar oagy] [GH(w) - GE(w) bcos Pcos
o B 15 - 12 = PHy0s  PHy0s
a1 o arr) |G (w) -+ G(w) 0 0 DH..s PH,.s
2 2»
0 0 0 0
0 0 0o 0
0 0 0 VO,sptot
| RT
(29)

The solution of this matrix equation gives the matrix of all first order FRFs for all combinations

of outputs and inputs:

0 0 0 0
"Pcoz,o,s Pco,0,s !
0 0
Pco,s Pco,s
Pco,o,s 0 Pco,o,s
G H(w) - GH(w) a1 ] Pco,s Pco,s
15 15 =i " : X 0 PH,0s DPHy0.s
G e G a - a
N = @] Lo - T
0 0 0 0
0 0 0 -0
0 0 0 VO,Sptot
) RT
(30)

AN 2
By collecting the non-periodic terms with ((2) eo), a set of linear algebraic equations defining
the asymmetrical second order G-FRFs is obtained, which are again written in the matrix form
and given with Eq. (31):
yir o 7] [63ai(w— ) - G40, — w)

X

11 - Tia
2 X =l: =~ :

[71 - TI'na

V;1 V;7 GS,zf,l(c;),—a)) G%ZA(c;),—w)
(€1)

The solution of this matrix equation results with a matrix of the ASO G-FRFs for all
combinations of the inputs and outputs:

05,23,1((9,—0)) 65?2,4(@,—0)) Yin v Y - F}1 F}4]

=2 X x| ¢ . :
71 = T'7a

Y71 0 Y77

(R0, —w) - Palw,—w)



(32)
The definitions of the coefficients a;; used in equations (29) and (30) are given in Appendix E.

The definitions of the coefficients y;; used in equation (31) and (32) are given in Appendix F.

4.4. Identification and evaluation of regions of possible improvement
The main goal of implementing forced periodic operations is to improve the reactor
performance, e.g. through increase of methanol production, conversion or yield. All these
performance criteria can be evaluated based on the time-average outlet molar flow-rate of
methanol, which has been chosen as the main indicator of possible improvement that should be
maximized.
The methanol molar flow-rate can be evaluated from the methanol partial pressure and
volumetric flow-rate of the outlet stream:

PengonV
NCH,0H = R (33)
It is convenient to use the dimensionless molar flow-rate of methanol, which is defined as a

relative deviation from its steady-state value, in an analogous way as the dimensionless partial

pressures (Table 2):
. ficuson — crson,s  PeusonV — Penson,sVs
Newson = cmons = pomonds = Leuson ¥V + Peusonv (34)

The non-periodic (DC) component of the outlet molar flow-rate of methanol, which is the

measure of improvement of methanol production, can be evaluated in the following way:

Ncusonpe = Pensonpe + vpe + (Peuzonv) pe (35)
The outlet molar flow-rate of methanol is an additional output which is of interest, which can be
associated to additional sets of FRFs, which will be denoted as H-functions. If one of the inputs
X, is modulated in a co-sinusoidal way, the DC component of outlet molar flow-rate of methanol

can be approximately evaluated using the corresponding H ASO FRF:

. A\ 2 )
Newsonpe = 2(3) HZx(@, — ©) (36)

Based on equations (35 and 36) it is relatively easy to derive a relation between the H ASO FRFs
and the previously derived G-FRFs, corresponding to the methanol partial pressure and the outlet

flow-rate. The asymmetrical second order H-FRF is:

HZA (0, — ) = GEa(, — ) + GRLa(0,— ) + 5 (L@ —0) + L ~0)Gw)),

x=1, 2 3or4 37)



Basea on e NFK method, the mean (iime-average) value oI tne outliet molar 110w rate ot
methanol for co-sinusoidal modulation of input X,, can be approximately calculated using the

following expression:

. ) ANt o
(McH30H) mean = nCH3OH,s(1 + 2(7) H?) (w, — a))) (38)
where
. PCH30H,sVs
NCH30Hs =~ rr (39)

is the outlet molar flow-rate of methanol in steady state, while (hCH30 ) is the time average

mean

value of the outlet molar flows-rate over an integer number of periods P:

. 1.(k+1DP. 1 k+ 1P .
(Tct,0m) ppan = Ef]((p ) Ner,on(t)dt = 57 ]((p M pcnson(©V(©)de (40)

Based on the mean value of the methanol outlet molar flow rate, several performance indicators
were defined. One of them is the normalized methanol production rate per unit mass of catalyst

for the periodic operation (PO):

(Achqon)
. norm _ mean
(nCH30H) PO Mea (41)

Other two performance indicators analysed are yield of methanol based of total carbon:

totC __ Cremsomean 42
(YCH30H PO - (7;1602 + 7;"CU)O, mean ( )
and yield of methanol based on hydrogen:

(Acuson)

H _ o TEH30H mean

(YCI%I30H)p0 =2 (12,0 mean ®)

It should be noticed that for single input modulations, the mean values of the molar flow-rates of
the reactants in the feed stream are identical to their steady-state values. Using this fact and
equation (38), the yields defined in equations (42) and (43) can be evaluated based on their

steady-state values and function H S?},x(w, —w):

AN 2
(Y84 %n po = (Y& %n 55(1 + 2(7) HE (0, — w)) (44)
and

A\ 2
(V55 000 = (V2 o)1+ 2(5) H(0,— ) 43)

where



\rvunounss

c _ ‘remounss
(Y€%30H)SS (o2 + fico) s 0

and
(cuson)
H _ N
(YC12-130H) ss 4 s (47)

are the yields of methanol based on total carbon and based on hydrogen, respectively,

corresponding to the chosen steady-state point.

Based on the sign of ASO H-FRF H S?%x(w, — w), it is possible to predict whether the
improvement owing to periodic modulation of the input X is possible at all, or not (Petkovska
and Seidel-Morgenstern, 2013; Nikoli¢, 2016, Petkovska et al., 2018). The improvement can be

achieved only if H{} (w, — w) is positive.



S. SIMUuIATION results ana aiscussion
In this Section, the simulation results based on the NFR analysis, for periodically operated
isothermal, isobaric, lab-scale Micro-Berty reactor are given, for cases of single input
modulations of the reactant partial pressures in the feed stream, or its volumetric flow-rate. The
analysis was performed for a lab-scale reactor of the volume of the reaction mixture (i.e. gas

phase) V5=10.3 m/ and with a mass of catalyst m.,; = 0.00395 kg.

5.1.  Choosing the optimal steady-state for analysis
The first step in the analysis of forced periodic operation is to determine the optimal steady state,

around which the system inputs should be modulated.

The optimal steady-state was chosen based on multi-objective optimization with two objective
functions: normalized outlet molar flow-rate of methanol (mmol/(min kg.,)) and yield of
methanol based on total carbon, which both need to be maximized. The multi-objective
optimization problem was solved using e-Constraint method (Haimes et al., 1971). The variables
optimized were the mole fractions of all reactants (CO,, CO and H,) in feed stream and the
reactor temperature. The values of reactor pressure, the flow-rate of the feed stream and the mole
fraction of the inert (N,) were fixed. The optimization was performed in the range of validity of
the kinetic model (Vollbrecht, 2007, Seidel et al., 2018) (mole fractions of CO, and CO between
0 and 1, mole fraction of H, between 0.5 and 1 and temperature between 473 and 533 K). In the
multi-objective optimization, both objective functions were defined with the same weight and the
result of the optimization is obtained in the form of a Pareto front. By choosing the appropriate
points from the Pareto front, one can give different weights to different objective functions that
correspond e.g. to high conversion and low methanol production or vice versa. More details

about multi-objective optimization can be found e.g. in (Ehrgott, 2005).

The resulting Pareto front with the marked selected optimal steady-state point is given in
Appendix G (Figure G.1). An overview of the optimization results for that selected steady-state

point is given in Table 3.

Table 3. Overview of the chosen optimal steady-state point for analysis.

Fixed parameters
Dior (bar) Vo,s (ml/min) VN2
60 6.93 0.15

Optimization parameters

Yoo Ycos VH.s T, [K]

0.021 0.185 0.644 473




Uutputs

Vout,s
YCH30H,s Yco2,s Yco,s YH2,s YH20,s YN2s .
ml/min
0.168 0.026 0.081 0.522 0.002 0.200 5.186
Performance indicators
(Wiimon) g mmollmin/kgea] (Y855 (%) (Y Cirsom)gs (%)

336.91 61.05 39.09

5.2.  Results for single input modulations around their optimal steady-state values

The simulation results of NFR analysis for single input modulations around optimal steady-state
are presented here. The asymmetrical second order H-FRFs which correlate the outlet molar
flow-rate of methanol to the 4 inputs related to the feed reactor steam (partial pressures of CO,,
CO, H, and the volumetric flow-rate), are given in Figure 1, as a function of dimensionless
forcing frequency. The analysis of H ASO FRFs was done for the dimensionless forcing
frequencies in a wide range between 0.001 and 100, which, for the case of the laboratory-scale
reactor analysed in this work, correspond to the range of periods of the input modulations

between 560000 seconds (9333 minutes or 155 hours) and 5.6 seconds.
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Figure 1. 1nc asymmeirical second oracr A rKrS I10r SIgic mput modaulations Ol partial

pressures of CO,, CO and H, or volumetric flow-rate around their optimal steady-state values,

vs. dimensionless frequency.

As stated above, for the frequency range in which those H-ASO FRFs (Hf,?_x(w,—w)

,x =1,...4) are negative or equal to zero the improvement with single input modulations cannot

be achieved, meaning that the steady-state operation is superior to periodic processes with any of

the single input modulations. On the other hand, if H-ASO FRFs are positive, the improvement

could be obtained by periodic operations.

Based on results presented in Fig.1, it can be concluded that:

In all analysed cases of single input modulations around the optimal steady-state, the H
ASO FRFs tend to zero for high forcing frequencies, meaning that the high frequency
input modulations have no influence on the process performances. On the other hand, for
low forcing frequencies, all H ASO FRFs have asymptotic values which are negative,
meaning that the improvement is not possible. For the forcing frequencies between the
highest and the lowest, some of the H ASO FRFs reach extremes (minimum for
modulation of the inlet partial pressure of CO, or inlet volumetric flow-rate and
maximum for modulation of partial pressure of H,). For the forcing frequencies which
correspond to the extremes, the highest deterioration (for modulation of partial pressures
of CO; or inlet volumetric flow-rate) or highest improvement (for periodic modulation of
partial pressure of H,) of process performances is achieved.

For single input modulations of CO,, CO and inlet volumetric flow-rate around the
optimal stead-state, the H-ASO FRFs which correlate the outlet molar flow-rate of
methanol to modulated inputs (H® | j(0,-0), H®)| 5 (0,-0), H?)| 4 4(0,-®)), are negative
and tend to zero for high forcing frequencies. Consequently, periodic modulations of
these inputs cannot improve the process of methanol synthesis.

For single input modulation of H, partial pressure around its optimal steady-state value,
the corresponding H-ASO FRF which correlates the outlet molar flow-rate of methanol
to the modulated input (H® 3 3(w,-0)) is positive for forcing frequencies higher than 0.55
and also tends to zero for high forcing frequencies. The maximal value of this ASO FRF
of 0.049 is obtained for dimensionless forcing frequency w=1. The maximal possible
increase of the normalized outlet molar flow rate of methanol corresponding to this is
0.13% (when the highest possible forcing amplitude is used), which is practically

insignificant.



5.3.  Analysis oI maximal possiple Improvement 10r singie Input moauiatrions
The results of the previous section show that, under the defined conditions, it is not possible to
improve the reactor performance by periodic modulation of partial pressures of CO and CO, or
the volumetric flow-rate around the chosen optimal steady-state point, as corresponding ASO H-
FRFs are negative in the whole frequency range. Some insignificant improvement (maximal
increase or the normalized outlet molar flow-rate of methanol is 0.13%) is possible for periodic
modulation of partial pressure of hydrogen, considering that the corresponding ASO H-FRF is

positive for some forcing frequencies (Figure 1).

Nevertheless, generally it would be possible that single input modulations around some other
steady-state points would result with process improvement. In this section we explore these

possibilities.

Considering the fact that, for periodic operations with single input modulations, the possible
improvement is directly proportional to the corresponding ASO H-FRF, four optimizations were
performed, in which the conditions that maximize the ASO H-FRFs for the four analysed inputs
(H 5,2,2,,5((», —w),x=1,...4) were determined. The optimization variables were the steady-state
mole fractions of CO,, CO and H, in the feed stream, the steady-state temperature and the

forcing frequency.

The details about these steady-state points, for which maximal ASO H-FRFs are obtained, can
be found in the Supplementary material. The values of the input and output variables,
corresponding to the steady state points used for single input modulations of partial pressures of

CO,, CO, H; and inlet volumetric flow-rate, are given in Tables S1-S4, respectively.

The corresponding, maximized ASO H-FRFs, for all four investigated inputs, are shown in Fig.

2, as functions of dimensionless forcing frequency.

A short overview of these cases is given in Table 4. In this table, the maximal possible values of
the normalized methanol flow-rate, yield of methanol based on total carbon and yield of
methanol based on hydrogen, corresponding to the periodic operations defined in such a way that
the ASO H-FRFs are maximized, are compared with their corresponding steady-state values. The
performance criteria for the periodic operations were calculated for the frequencies
corresponding to the maxima of the H-FRFs shown in Fig. 2, and for the maximal possible
values of the amplitudes. The percentage of the maximal possible improvement (which is the

same for all three performance indicators) is also given in the last column of Table 4.



0.2

T T i T
015 -
0.1r - i
/
/ \
i / \ H
m 0.05 p \
: il I
b T T N o
T 0r L —
@) e
2 J/
-0.05 '/ i
/
I
01F modulation of inlet pco2 |
/ , .
,: = = modulation of inlet Pco
U . .
015 // modulation of inlet sz |
_____.4' = === modulation of inlet flow-rate
0.2 | | Ll il
107 1072 10™ 10° 10"

Dimensionless frequency w [-]

102

Figure 2. The maximal possible values of the asymmetrical second order H-FRFs for single

input modulations of the partial pressures of CO,, CO and H, and volumetric flow-rate of the

feed steam vs. dimensionless frequency.

Table 4. The normalized outlet molar flow-rate and yields of methanol based on total carbon and

on hydrogen for the cases corresponding to the maximal ASO H-FRFs, for steady-state and

periodic operations.

Modulated ( : ’g‘,’,g’gH) . (YE’f{tfoy) ss (Y?12130 H) S5 ( ' ZZZTSH) PO (YélfitscOH)Po (Y?IZhOH) PO Max
input impr.
[mmol/min/ % % [mmol/min/ % (%]

kgcat] kgcat] % 0
Pcoo 59.95 11.19 6.89 60.09 11.21 6.91 0.23
Pco 102.82 29.64 10.66 107.90 31.10 11.19 4.95
Py, 261.72 2793 39.11 263.50 28.12 39.37 0.68
Vg 7.69 28.89 0.68 7.70 28.92 0.69 0.12




Lhe snhapes oI the H ADU FKEFS TOr Single Input moaulations around tne new steady states whnich
correspond to the maximal H ASO FRFs (defined in Tables S1 to S4), shown in Fig 2, are
different from the shapes of the functions calculated for the optimal steady-state shown in Fig. 1.

This is a result of the fact that the functions correspond to very different steady-states.

Based on the results presented in Fig. 2 it can be concluded that for single input modulations of
inlet partial pressures of CO,, CO, H; or inlet volumetric flow-rate around the new steady-states
determined in order to maximize the ASO H-FRFs improvement is possible for all cases, in
certain ranges of forcing frequencies. On the other hand, the results presented in Table 4 show
that the possible improvement is very small (the highest improvement is obtained for partial
pressure of CO in the feed stream as the modulated input, and it is possible in the whole

frequency range).

Nevertheless, despite the fact that some improvement is possible in comparison to the
corresponding steady-states around which the four inputs should be modulated, all performance
criteria corresponding to the periodic operations with modulation of the inlet partial pressures of
CO,, CO, H, or the volumetric flow-rate of the feed stream, presented in Table 3, are by far
worse than the performance criteria corresponding to the optimal steady-state defined in Section
5.1 (Table 3). So, the conclusion of this analysis is that none of these four periodic operations

with single input modulations is acceptable.

6. Conclusions

The goal of this two-part manuscript is to present the results of a comprehensive study of the
potential of using forced periodic operations in order to improve the performance of a chemical
reactor for isothermal and isobaric methanol synthesis from syngas. Four potential forced
periodic inputs are considered: partial pressures of all reactants (CO,, CO and H;) in the feed
stream and its total volumetric flow-rate. Because of the quantity of the obtained results, the

manuscript needed to be split into two parts.

In this first part of the manuscript, only the results for single input modulations are shown. Here

are the most important results of this analysis:

e Periodic modulations of the partial pressures of CO,, CO and volumetric flow-rate of the
feed stream, around the optimal steady state, always result with performance
deterioration, instead of performance improvement, in the whole frequency range.

Therefore, such periodic operations are unacceptable.



e Periodic modulation of the partial pressure of H, around the optimal steady state could
lead to improvement of the reactor performances for some forcing frequencies with the
maximal possible improvement of 0.13% which is practically insignificant.

e [t is possible to find some cases for which some limited improvement can be achieved
with periodic modulations of the analysed inputs, if the inputs would be modulated
around some other steady-state points. Nevertheless, all these cases correspond to reactor
performances that are much worse than for the optimal steady-state process. Accordingly,
these periodic operations are also unacceptable.

e Analysis of periodic operations with simultaneous modulation of two inputs is the next
logical step, as it is a well-known fact that such operations have high potential for
improvement (Petkovska and Seidel-Morgenstern, 2013; Felischak et al., 2021), owing to
the cross-effect between the two modulated inputs, which can be easily adjusted by
adjusting the phase difference between the two inputs. This analysis will be presented in

the second part of our manuscript.

It is important to point out that frequency response functions for the four inputs, derived and
presented here, are necessary for the analysis of the periodic operations with simultaneous
modulation of two inputs, i.e. the analysis and results presented in Part II would not be possible

without the results presented in Part 1.

In both parts of our manuscript, the analysis was performed by using the nonlinear frequency
response analysis. Even for a complex case, such as the reactor for methanol synthesis, with four
potential modulated inputs and a large number of outputs, the NFR method was proven as a very
useful and efficient tool for evaluating whether the reactor performance could be improved by

using forced periodic operations, or not.



Nomenciature

Ay amplitude of input x (partial pressure of CO,, CO or H, or the volumetric
flow rate)

E auxiliary parameters for catalyst dynamic equation in dimensionless form

G;’Q (w,...,w) n'" order FRF which correlate the output y to modulated input x

AG [J/mol] Gibbs free energy

HO (w,....w) H ASO FRF which correlate the outlet molar flow-rate of component i to

modulated input x

J Jacobian matrix
k; reaction rate constant (j=1 for CO, hydrogenation, j=2 for CO
hydrogenation, j = 3 for RWGS)

ki, k3t [s] reaction rate constant for oxidation-reduction of catalyst

K; adsorption constant

K1, K> equilibrium constants for oxidation-reduction of catalyst

Kp; [bar?] reaction rate constant for (i=1) CO or (i=2) CO, hydrogenation
Kps[—] reaction rate constant for RWGS

Meqr [kg] mass of catalyst

1 [mol/s; mmol/min] molar flow rate

A" mmol/min/kg ] normalized molar flow rate (per unit of mass of catalyst)
N dimensionless molar flow rate

Dot [bar] total pressure

p; [bar] partial pressure of component i (i = 1,...,6)

P; [bar] dimensionless partial pressure of component i (i = 1,...,6)

qsat [Mmol/kg] specific amount of surface centers

q,0,9,U,s, S Taylor series coefficients for reaction rates

R [J/mol/K] gas constant

7; [mol/kgc.i/s] rate of reaction j (j=1 for CO hydrogenation, j=2 for CO,

hydrogenation, j = 3 for RWGS)
t[s] time

T [K] temperature



Ve |m”, mi|
V [m3/s]

X, Z

X

y
Y

Vi

totC
YCHion

H;
Y chon

Greek letters

a

Subscripts
DC

i

PO
SS

volume OT the gas phase in the reactor
volumetric flow rate

input (general symbol)

vector of dimensionless inputs

output (general symbol)

vector of dimensionless outputs

molar fraction of component i (i = 1,...,6 or i=CH30H, CO,, CO, H,, H,0, N;)

yield of methanol based on total carbon

yield of methanol based on hydrogen

first order FRF matrix coefficients

ASO FRF matrix coefficients

relative amount of free active surface centre

dimensionless time

residence time based on inlet volumetric flow rate

dimensionless volumetric flow rate

fraction of reduced centres on catalyst surface

maximal value of the fraction of reduced centres on catalyst surface
dimensionless fraction of reduced centres on catalyst surface

dimensionless frequency

non-periodic component (direct current)

component (i=1 for CH;0H, i=2 for CO,, i=3 for CO, i=4 for H,, i=5 for H,0, i=6

for N,)

volumetric flow rate modulation

reaction (j =1 for CO, hydrogenation, j =2 for CO hydrogenation, j =3 for

RWGS)
periodic operation
steady-state operation

feed stream



mean mecan valuc OI periodiC opcration

ref referent value

s steady-state

tot C total carbon

Superscripts

H, based on hydrogen

max maximal value

totC based on total carbon

* reduced surface centre

©) oxidized surface centre

(%9 surface centre for hydrogen
Abbreviations

AC Active centres on catalyst surface
ASO Asymmetrical Second Order
FRF Frequency Response Function
NFR Nonlinear Frequency Response
RWGS Reverse water-gas shift
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Appenaix

Appendix A - Temperature dependence of equilibrium constants of chemical reactions
[Vollbrecht, 2007]

3784.
log (Kp1) = 13.814 + 7T ’ 92833 log (T) +3.1475 10 3T — 4.2613 (10) ~'T?
[log (bar )] (A.1)
1581.7 _3 72
log (Kpz) = 15.0921 + —— —8.7639 log (T) +2.1105 10 73T — 1.9303 (10) ~'T
[log (bar )] (A.2)

log (Kp3) = 1.2777 — = +0.5194 log (T) —1.037 10 3T + 2.33110 /T2 [—]
(A3)

Appendix B Jacobian matrix

20, . .
In Appendix B, the Jacobian matrix is given, which elements (6?[) are used in mathematical

model (Egs. 19-20), with the following definition
a6
ap:

Ji= (B.1)

In order to evaluate the total concentration of each component on the catalyst surface, it is
necessary to determine the concentration of each component on each active surface centre of
catalyst.

The corresponding adsorption isotherms are given as follows

00 =KPp,8®, fori=CH;0H, CO,, CO (B.2)
07 =K p8*,fori=CHs0H, CO, H,0 (B.3)
05 = A/KuPH,0 * (B.4)

0 = /Kupn,6® (B.5)

The three active surface centres on catalyst are defined, and on each type of active centre the

components which can be adsorbed are:

e on oxidized AC ( ® ), CH30H, CO, and CO can be adsorbed,
e onreduced AC (*),CH;0H, CO,, H; and H,O can be adsorbed,

e on AC for RWGS reaction (&), H, can be adsorbed (In the model it is assumed that in
the solid phase hydrogen occurs only in elementary form. Thus, one H; is adsorbed and

occupies two places in the solid phase, corresponding to the square roots in Egs. (B.4)

and (B.5)).



UUCH,;0H UUCH;0H VUCHs0H UVUCHsOH UUCH;0H VYUCH0H
Opchon  9Pco, dpco opH, OPH,0 opn,
00co,  00co,  00co,  00co, 08¢0,  00co,
Opchon  9Pco, dpco opH, OPH,0 opn,
_|9pcuson Opco, dpco opH, OPH,0 opn,
I=| a0, 20y 20y 20y 20y 20y
OPcH,0n  9Dco, dpco opH, 0PH,0 opn,
04,0 004,0 04,0 004,0 004,0 04,0
aPCH30H dpco, dpco opH, OPH,0 opn,
08y, 06y, 96y, 96y, 06y, 06y,
Opchon  9Pco, dpco opH, OPH,0 opn,
(B.6)
J=]° +J® +J" (B.7)
159913% 005,00 09,00
0 0
O0pch,on  9Pco, dpco
005, 00%, 908,
0 0 O
JjO = dpch,on OPco,  OPco
| 968 008 908
0 0 O
apCHg,OH dpco, 9pco
0 0 0 0 0 O
0 0 0 0 0 0 }
0 0 0 0 0 O
(B. 8)
308,01
Je@n= achZOH = K&1,0n6° — K Sron° en,ond® (B.9)
30,00
Je(2)= 0ch2 =— ch?I3OHKC%2pCH3OHHOZ (B.10)
30,00
JO(3) =5, = — KGrionK @ pen,ont®™” (B.11)
o 208, 2
]2 @Y =5, =~ K &,K &onpco,0 (B.12)
98 )
JO@22) =5, =KB,0°~ K&, Do, (B.13)



19 @23) =5, = — K@ K8pco,6 (B.14)
03,1 i —KQKE&, g©? B.15
JZ @D =500 = 0HPCO (B.15)

©) 008 02
J©B2) =5 =—KRBKB,pcob (B.16)
©) 268 0] 2 02
J©B33) =5, =KD — K& pcod (B.17)
0 00 0 0O
0 00 0 0O
0 00 0 0O
® — L)
JZ=1o 0 0 5 0 0 (B.18)
PH,
0O 00 0 00
0O 00 0 00
® 20 _1 ~1/29® _lp o®2
JP 4D =5, =5 Ku,py, 20 ® — 3K p,0 (B.19)
‘695H30H 08¢H,0m 08,00 00CH 0m
Opchjon dpco, Opm, 9pH,0
98¢0, 98¢0, 98¢, 98¢0,
Opcujon dpco, 0 Opu, 9pH,0
«_| 0 0 0 0 0
"= a; 065 065 065 (B.20)
Opcuzon  9pco, 0 Opm, 9pH,0
9841,0 9641,0 9641,0 9641,0
Opcgon  Opco, 0 OpH, OpH,0 )
0 0 0 0 0
6HCH30H " " " 2 " 2
)" (A1) =5, = Kenyon® ™ — Kcuyon pensont (B.21)
696H30H . i .2
)" (1.2) =5, =~ KcnonKcopcnsont (B.22)
396113011 KuyoKopryo
J (1,4) = = KcusonPenson, — 20" (B.23)
2 PH,
aGCH30H , Ko 1 .2
J (,5)= — KCH30HPCH30HKH20(1 + Xoon )9 (B.24)
2012
J7(21) =5, . =~ KcoKcusonpco,0 (B.25)
98¢0, o 2
J"@22) =5, =Kco,0" —Kco, Pco,0 (B.26)



N 2 4 _ UVCUZ K HZU UPHZUH " 2 B 27
J (24)=5,~ " CO:PCO; Ky, 2 -~ (B.27)
69c0 . Ko 1 Y2
J7@25)=5—"= — KCOZPCOZKHZO(l + KHszZ)e (B.28)
J*(41) = apm —= — JKH.K &y, 017 /PH0 *2 (B.29)
J*(4,2) = apw = —Kn.K¢o, Pi,6*° (B.30)
Kn,0KopH,0 .2
J*(4,4) = NKnpiio + \/mﬁe (B.31)
Hy
* 2
J*(4,5) = apH — JKu,k 0(1 + KH o )p,%/2 (B.32)
3640 . .
JTGY) =50= — KuoKcusonpn,00 (B.33)
ae,,z . P
J°(52)= — Ku,0K¢o,PH,00 (B.34)
66H 0 Kn,0KopH,0 .2
J (54 = KHZOPHZOWH (B.35)
Hﬁ 0 5 Ko 1 .2
] (5 5) KH209 KHZO szo(l + KHZPHZ)Q (B36)

Appendix C Taylor series expansion of nonlinear terms (reaction rates expressions)

For the multi-variables function f(x,y,..z), the Taylor expansion is defined as:

f(x,y,.2),

of of of
= f(xsyszs), + (&) (x —xs) + (@) (y—ys) + ..+ ( 62)
Xs)YsiZs Xs)YsiZs X YsiZs
( ) of (x—x5)*  (0%f (y — y5)? 0%f
Z—2Zg)+ 922 ol + 6y2 ol + ..+ 072
xs,ys,..zs xs,ys,..zs xs,ys,..zs

0x0z

xSJyS"'ZS xsﬁst--Zs

(z—z5)° ( 9% f )

ot oxay (x—xs)(y—ys)+...+(af) (x —x)(z—2z,)

- (;’;;Z) oy (z—z) + ..

X5)YsrZs

(C.1)



1ne nonlinear terms (reaction rate expressions) are expandaed 1n 1aylor series up to secona oraer
(which are necessary for derivation of second order FRFs) around the steady state values and

given in Appendix C.1-C.3.

Appendix C.1.Taylor series expansion of the expression for the reaction rate of CO

hydrogenation (Eq.11)
Taylor series expansion of the expression for the reaction rate of CO hydrogenation is given
here.
1 4
ri=(1— ®)ki(psps? — . p1)0©0E (C.L1)
, 1
frs= (1= ¢kr(p3spas® — p1s) (C.12)
r1
~ 115+ q1Pcuson + q2Pco, + @3Pco + qaPu, + qsPu,0 + q6Pn, + @7® + Q11Pcn,on” + Q22
Pco,” + Q33Pco” + QuaPp,” + Qs5Pr0” + QesP,” + Q7792 + Q12Pch onPco, +Q
13PcH,00Pco + Q14Pch,0HPH, YQ15Pch,0HP 0 + Q16PcH 08PN, +Q23Pco,Pco
+ Q24Pc0,Ph, + Q25Pc0,Pr,0 + Q26Pco,Pn, + Q34PcoPh, + Q35PcoPr,0 + Q36P
coPn, + Q45Py,Ph,0 + Q46Pnu,Pn, + Qs6Pr,0Pn, + Q17Pct,on® + Q27Pco,®
6
+ Q37Pco® + Q47Pn, P + Qs57P 0P + Qe7PN,P =115+ ZCIiPi + q79
=1
6 6 l
+ ZZQilPiPl + ZQﬁPiCD + Q779P°
i=1l=i i=1
(C.1.3)
02p4 ky OnR4
q1 = — fl,Sgs 93 KCQI3OHP1,S - (1 - d)s)m?l,ses 63 (C14)
2, &4
G2 =— f150° 0L "KB,pas (C.1.5)
2 & 4 4
q3 =— fl,SesO 95® KL% P3,s + (1 - ¢s)k1p3,sp4,szes® 93® (C16)
5 4
qs = _zfl,SHSQ Qs® KH21/2p4,51/2 +2(1 - cps)k1p3,sp4,5295O 65® (C17)
1 4
q7; = — ¢sk1(p3,sp4,sz - Tmpl,s)ese 95® (CIS)
k
Q11=f102 98 4K§2130H2P1,52 +(1- ¢s)KT:1P1,schQI30HgsO p®* (C.1.9)
3 @4, 0 2
Q22 = f150° 08 KRB, p2s” (C.1.10)
3. 04,02 )
Q33 = fl,Ses(D es® KC% P3, 52 - (1 - ¢s)k1p3,s2p4,szKC% BSO 93® (Cll 1)

4 1 5 5 6
Q4—4— = (1 - ¢s)k1p3,sp4-,szgs® 95® + Efl,SHSO 05® KH21/2p4,51/2 + Efl,SgsO 95® KH2p4,s +4
(1 - d)s)k1203,sp4,55/2KH21/295O 95® ° (C. 1. 12)



Q12 = 2]‘-1,595(D 395® L*KCQIgOHKé%zpl,spz,s + (1 - ¢s)1.<‘7l:1p1,sl(82p2,sgs® L95® ) (C~1-13)

3,04 ky 2,4
Q3= 2]‘-1,595(D 95® KCQIgOHKé%pLSPS,s + (1 - ¢S)Ep1'SK8p3, SHSO 95® - (1 - ¢s)k1p3,s

2, @4
p4—,szKé?130Hp1,ses® 05® (C.1.14)
2, @4 2, ®5
Q14 =—2(1— p)k1P3,04,5°K Froonp1,:02 02" +2f150.° 02 K G oonp1,5Kn," *pas™* +2
kl 5
(1 — )i, P1sKu," *pas' /0L 68 (C.1.15)

2
Q23 = Zfl,SgsO 3es® 4KL%2KL% b2,sP3,s — (1 - ¢s)k1p3,sp4,szKC%2p4,sgso 95® * (C116)

02,04 2, ®5
Q24 =—- 2(1 - ¢s)k1p3,sp4,szKC%zp2,sgs 95® + zfl,SesO 95® KL%ZPZ,SKHZI/ZPALSUZ

(C.1.17)
2 4 4 2 5
Q34 = - 2(1 - ¢s)k1p3,52p4,52KC% 950 95® + 2(1 - ¢s)k1p3,sp4,52950 es® +2f1,59.9® 95®
K(% P3,sKH21/2P4,51/2 - 2(1 - qbs)k1p3,sp4,sS/ZKHzl/ZesG 95® : (Cllg)

1 2,04 k 4
Q17 = ¢sk1(p3,sp4-,sz - rmpl,s)Ké%30Hp1,ses® 95® + d)sr:lpl,ses@ 95® (C119)

1 2 4
Q27 = bokr(P3.sas? — 1p1s) K Dp2,0° 708 (C.1.20)
1
Q37 = ¢sk1(p3,sp4-,sz - fmpl,s)KC% p3,ses® 295® * B ¢sk1p3,sp4-,szes® 95® i (C 1 21)

1 5 4
Q47 = 2¢sk1(p3,sp4,sz - Tmpl,S)KHzl/zp4,sl/zgso 95® _ngsklpS,spll,szesO ‘95®
(C.1.22)

The following coefficients are equal to zero:

qs, 96» @15, Q16 Q25, @26, Us5, @66, @77, U35, @36, @45, Qa6, Us6, Q57,067

Appendix C.2.Taylor series expansion of reaction rate of CO, hydrogenations (Eq.12)
The Taylor series expansion of the expression for the reaction rate of CO, hydrogenation is given

here.

1 pps\
ry = ¢2k2(p2p42 — ;45)9 29®* (C.2.1)

1 pl,sPS,s)

fas= ¢52k2(p2,sp4-,sz ~ Kpz pas (C.2.2)



Ty =71ys+ V1P ca,on +V2Fco, T V3P co + Vsl p, + UsPp,0 + Ugt'n, T U7P + U11FcH0H
2 2 2 2 2 2
+ Ux2Pco,” + U33Pco” + UgaPy,” + UssPp,0” + UesPn,” + U779 + U12Pch,onP

co, YU13Pch,0nPco + U1aPch,0nPh, YU1sPcr,0ouPH,0 + U16PcrsouPn, +U23Pco,

Pco+ Uz4Pco,PH, + UzsPco,Pr,0 + Uz6Pco,Pn, + U3aPcoPp, + UssPcoPh,0

+ UzePcoPn, + UssPu,Pu,0 + UsePu,Pn, + UsePH,0Pn, + U17PcH,on® + Uz7P
6

COZCD + U37PCOCD + U4,7PH2(I) + U57PH20¢) + U67PN2CD =T2s + Z‘ﬁipi + 197(1)

i=1
6 6 6
+ Y, Y UaPPI+ Y U + Uy
i=1l=i i=1
(C.2.3)
KoKy, ops
€= K pan (C.2.4)
1 P1,sPs,s
€= o pes (C.2.5)
_ x3 ® 4., % 2 % 2 ® 4
V1 =—=2f2405 0s° Kcn,onbi,s — Ps k20, O (C.2.6)
%3 4., 4 %2 4
Uy =—2f50s 95® KCOZPZ,S + ¢52k2p2,sp4,5295 95® (C.2.7)

«3 4 %2 5 %2 4
194 = sz,SGS 95® &— 2f2,sgs 95® KH21/2p4,sl/2 + ¢52k2(2p2,sp4,52 + E)QS 95®

(C2.8)
95 = —2f2.405 08 (K055 + £) — p2hkpefs 08 (C.2.9)

97 =2f,,6: 08" (C.2.10)
U11=3f204 0@ 4Kc*1L1301L122?1,sZ +2K fy,0nD1,505 k€0 p®* (C.2.11)
Uz =3f204 0@ 4K5022P2,52 —2K(0,Ps°kop2s"Das 00 p®* (C.2.12)

« 4 4 «3 4 3 5 5 2 6
U44 = 3f2,595 95® 82 _2f2,ses €s® &— 4’f2,565 05® KH21/2p4,31/2a + EfZ,sgs 95® KH2p4,s
1 £2 5 «3 4
+ EfZ,ses 65® KH21/2p4,51/2 +2€¢52k2(2p2,sp4,52 + 6)65 95® _ZKH21/2p4,51/2¢52k2

(2p2,5pas +€)07208° + f1,0. 708" (C.2.13)

Uss = 3f 2,05 08 (Ki,opss + &) +2(Ki,ops,s + £) 5205 08" (C2.14)

Uz = f2505 608" (C.2.15)

Uiz =6f20; 08K CHs0nK Co,D1.5P2,s —2K CH,0nP1,sPs kaD2,sDas 0 8% 2K Co,D2,5Ds7k2
o 68" (C.2.16)

Us=—6f2505 "0 “Kin,onp1s€ + 4f 2505 08 K imonp1,sKu," *pas’* —2K tuonp1sPske

L3, 24 L34 22,25 L2
(2p2,sp4,sz + 6)95 93® _2£¢52k2ﬁ05 Hs® +2KH21/2p4,sl/2¢52k2605 95® + ¢52k2695
98" (C.2.17)

LA h 2304 .
Uts = 612505 08 "Kin,onp1,s(Kuops,s + €) +2(Ky,o0ss + &) Psikae0s 08 ™ +2K fyonps
b2ke0: 308" — b 2k,e0:08* (C.2.18)



U24 = _6]‘-2,565* AHSW ‘KEOZPZ,SS + 4]‘-2,59; VHSW VKC"FOZPZ,SKHZL/ Lp4,s”4 +2€¢s‘k2p2,5p4,5‘6; B
4 %2 5 * %3 4
‘95® _2KH21/2¢52k2p2,sp4,55/295 95® _ZKC02p2,5¢52k2(2p2,sp4,sz + 6)95 95® +2¢52k2p2,s

¥ 2 4
Pas 05 02 (C.2.19)
x4 417« %3 4 *
Uzs = 6f2,595 95® KCOZPZ,S(KHZOPS,S + 5) _2¢52k2p2,sp4,52(KHZOPS,S + 5)95 95® +2KC02
%3 4
p2,sPs ka€0s 02 (C.2.20)

« 4 4 %3 4 %3 5
U45 = _6f2,595 95® (KH20p5,S + 5)5 + 2f2,595 95® &+ 4‘fZ,ses 95® KH21/2p4,51/2
%3 4 %3 4
(KHZOPS,S + 3) _2¢52k2(2p2,sp4-,52 + 6) (KHZOPS,S + 3)95 95® _2£¢52k2605 95® +2KH21/2

%2 5 * 2 4

p4,sl/2¢52k2€95 95® + ¢52k2€65 95® (C.2.21)

U7 = —4f2505 "02 "Kin,onp1s —2¢s°koe0, 02 (C.2.22)
23, R4, 220 @4

Uy = —4f2505 02 "Kio,p2s +2¢s*kop2spas 0s 02 (C.2.23)

3,04 «2,®5 2,04
U47 = 4‘f2,505 95® &— 4‘f2,s95 95® KH21/2p4,sl/2 + 2¢32k2(2p2,sp4,52 + 6)95 95®
(C.2.24)
3,04 2,4
U57 = _4f2,595 95® (KH20p5,S + S) _2¢52k2695 95® (C~2-25)
The following coefficients are equal to zero:

9396,U33,Us6U13,U16,U23, U26,U34,U3s, Usg, Use, Use, Uz7,Us7

Appendix C.3.Taylor series expansion of reaction rate of RWGS reactions (Eq.13)
Taylor series expansion of the expression for the reaction rate of reverse water-gas shift reaction

(Eq. 13) is given below.

_ 1 pavs\ -,
r3=¢(1—¢) 1k3(P2 —Xn ;45)9 6© (C.3.1)

1 p3,sp5,s) (C3 2)

fs = ¢s(1 - ¢s) _1k3(p2,s T Kpz Dpas

r3
~ 135+ S1Pcuon + S2Pco, + S3Pco + 4Py, + SsPi,0 + S6Pn, + + 579 + S11Pci,on” + S22
Pco,” + S33Pco? + S4aPu, + SssPu,0” + SesPn,” + S77®% + S12Pcu,onPeo, +513
Pch,onPco + S14Pch,0nPh, +S15Pch,0nPH,0 + S16Pch,0HP, +523Pco,Pco + S24P
co,Pu, + S25Pco,Ph,0 + S26Pco,Pn, + S3aPcoPh, + S35PcoPH,0 + S36PcoPh,
+ S45Py,Pr,0 + S46PH,Pn, + S56PH,0PN, + S17PcH,0n® + S27Pco,® + S37Pco®
6 6 6

+ 547PH2CD + 557PH20(D + S67PN2q) =135 + ZsiPi + S7q) + ZZSUPL'PI
i=1 i=1l=i
6

+ Zsﬁpicp + S770?
i=1

(C.3.3)

1 P3sPss
¢= Kp3 Das

(C.3.4)



S1=— f3,ses* —Hsu K5H30Hp1,s - f3,56; 6’su _K(#I30Hp1,s (C-?’-S)

2 * * 2 — *
Sy =— f3,sgs HSG KCOZPZ,S - f3,sgs 95(D Kc%zpz,s + d)s(l - d)s) 1k3p2,595 956 (C-3-6)

s53= — f3500 0L K@p3s — ps(1 — b)) k365 60 (C.3.7)

S4= 305200 e+ ¢s(1 — ) 'k3(6s 60 (C.3.8)
s5=— f3,505 "6 (K055 + €) — ¢s(1 — ) k385 62 (C3.9)
s7=¢s(1— ) ka(pzs — )65 02 (C.3.10)

. W25 2 2 2 N .
S11= f3505 0L p1s2(05 “Kémon™ + 02 K&ron” + 05 08 KionKGron) — (C3.11)

* 2 * 2 * 2 2 2 * * — *
522 = f3,ses QSO pz,s (05 KC02 + GSO KC%Z + es QSO KCOZKC%Z) - ¢s(1 - ¢s) 1k3p2,5295

0L (Kéo,05 +KR,0°) (C.3.12)

S33= 3,505 0L K ps, 2 + KQp3s05(1 — ¢5) "ks(8; 60 (C.3.13)

Saa= 3505 700 €(e8s — 1) +es(1 — ds) k3085200 — ps(1 — @) k3065 6L
(C.3.14)

Sss = f3505 0.2 (Ki,ops,s + €)> + (Kipopss + ©)s(1 — ) k300770 (C3.15)

S77= 92 (1 — dg) “ks(pas — )65 6L (C.3.16)

Si2= f3,ses* gso P1,sP2,s
(295 Kéu,ouKéo, + 202 K ronK&, + 05 0L Kén,onK &, + 6562 ch?lgoHKcoz) — 1,505
02 ¢ps(1 — ) _1k3P2,s(KékH30H9s* + Ké?l30119s©) (C.3.17)

% * * 2 © * —
513 = f3,ses HSO pl,sp3,s(95 QSO KCH30HK(,% + 205O KCH30HKL%) + pl,ses HSO ¢s(1 - ¢)S) 1k3(

(Kéuon8s + KGron0L) (C.3.18)

* * 2 * * * —
514 =—- f3,595 956 p1_5€(295 KCH30H + 95 950 KLQIgOH) - pl,ses HSO d)s(]- - d)s) 1k3€
(Kl>k Hsak + KCQ@OHHSG)

(C.3.19)
* * 2 * * * —
S15= f?),ses 956 pl,s(KHZOPS,s + 8)(295 KCH30H + 0 950 KLQI30H) + pl,ses 956 ¢s(1 — (]_')S) 1
k3((K5H30H95* + K&,on02 ) (C.3.20)

* * * 2 * —_
523 = f3,595 HSO p2,sp3,s(es 05‘@ KCOZKC% + 2950 KC%ZKC%) + pZ,sgs 956 ¢s(1 - (l)s) 1k3€
* * _ * 2
(65 KCOZ + HSQ KC%Z) - KC% pCO,s¢s(1 - ¢s) 1k3p2,595 95(D
(C.3.21)
* * 2 * * * —
SZ4 = f3,595 056 ng,s(zes KCOZ + 95 05(D KC%Z) - pZ,ses 956 ¢s(1 - qbs) 1k3€
* * — %2
(65 KC02 + 950 KC%Z) +€¢5(1 - ¢s) 1kSpZ,ses 95‘@
(C.3.22)
* * 2 * * * _—
525 = f3,595 956 (KH20p5,S + 8)292,5(295 KCOZ + 95 HSO KL%Z) + p2,595 956 ¢s(1 - d)s) 1k3{
* * —_ * 2
(63 KCOZ + esO KC%Z) - (KH20p5,S + €)¢s(1 - ¢s) 1k3pZ,sgs HSO (C323)



534 = f3,595* ZQSO ZKC% P3,s€ — 95* HSO d)s(l - ¢s) _1k3<(95* e+ 950 KL% p3,s) + d)s(l - ¢s) !
CNS (C.3.24)

S35 = f3,5‘9$* 295@ ZKC% p3,s(KH20p5,s + 8) + 95* QSO ¢s(1 - ¢s) _1k3(
(05 (Ki,ops,s + €) + 0L K& pas| — ps(1 — ) ka0 68

(C.3.25)
Sas = f3505 200 e[1— 205 (Kuops,s + €)] — 85200 ds(1 — ) kag(2¢ + Kuops,s) +
¢s(1 — ps) "'k3(05 62 (C.3.26)
Si7=—(1—¢s) 350562 P1,s(KC*H30f19s* + KLQI30H9sO) (C.3.27)
Sar=—(1—¢s) 3505 02 p25(65 Ko, + 0L KSR,) + bs(1 — ps) 2ksp2 05 6L

(C.3.28)

S37= = (1= ¢9) 7' f3,605 0L K@pss — bs(1 — §) kst 6.0 (€329)
Saz=(1—b5) 7 f3,0:°0L e + ¢,(1 — ) k30662 (C.3.30)
Ss7=— (1= ¢5) 7' f3:05 0L (Kin,opss + €) — bs(1 — ) ksl 02 (C.3.31)

The following coefficients are equal to zero:
S6:516:526:936:546:556:566:576
Appendix D. The auxiliary parameters in Eq. (25) of dimensionless mathematical model

The auxiliary parameters used in Eq. (25) of dimensionless mathematical model, which describes

the catalyst dynamic, are defined as follows:

Bi=ki'h .
e (D2)
By=1) g 03
N (D4)

Appendix E — Coefficients used in matrix equation for derivation of first order G FRFs

The coefficients a;; are defined in the following way:

RTDys (96, RT ) ]
a; = mcathatVGpL.S 3771 jw — pl_sVOS”lcat(Vi,lql + Vi,27-9! + Vi,3sl); L+ l: L:l = 1,---:5

(E.1)

1 RT(aei) Vs RT ( 9 )i=1..5
@i = \ 1+ Mealsaty \p, ) O T 7, ~ prvy Meat WVinqi + ViV + Vizsi), 1= 1,...,




(E.2)

Qg = — %mcat(vi,lch +vi29; +vi3s), i=1,..,5 (E.3)
iy = F.S,s'i =1,..,5 (E-4)
ag, =E, (E.5)
A3 = — %7:@51 (E.6)
s = — %,7:%)53 (E.7)
aes = E4 (E-8)
e =jw+E1+E;+E3+ Ey (E.9)

The coefficients agq,ag7are equal to zero (ag; = ag7 = 0).

VO,S 5 agl . .
a7; = Meqrqsat Vo pi,szl _ 15[]0) — mcat( —qu- - 2191'); 1= 1,...,5 (EIO)
az76 = —Mear( —2q7 — 297) (E.11)
Vsptot
= (E.12)

Appendix F— Coefficients used in matrix equation for derivation of the G ASO FRFs

The coefficients y;; are in correlation with coefficients «;;, as follows

viu=Re(a;) foril=1,..,5, (F.1)
v7i = Re(ay;) fori=1,...,5, (F.2)
Ye6 = Re(age) (F.3)
Yei= g fori=1,.,7#6 (F.4)
Yie=qfori=1,.,7#6 (F.5)
Yiz=afori=1,.,5 (F.6)

The auxiliary functions are defined as follows:



S

RT
= 7GR (@GR —0) + G (—0)GTR(W)] + ———mea

0,s PisVo,s
6 6
[ZZ (vi1Que + viaU + viaSu) (G (@)GER( —0) + G (~w)G1R(w)) |
l=1k=1
=1..5x=1,.4

(F.7)

= [ — E5)(GSR(@)GEY(—w) + GER(—w)GEQ(w)) + [ — E4]
(GSR(@)GEA(—w) + GER(—w)GER(w)) + [ — E3] (63 (w) GEY( —w) + GI(—w)
GER(w)) + [ — E4l (G5 (w) GEY( —w) + GER(—w)GER(w)) x = 1,..4

(F. 8)

5 6 6
L7 = Meae ) [ZZ (Vi1Que + viaUn + viaSu) (G (@)GRR( o) + G (~w)G1R(w)) | x
i U=1k=1
=1,.4

(F.9)



APppendix G - upumization o1 steaay-state
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Figure G.1. Pareto front for optimal steady-state with respect of two objective functions
(normalized outlet molar flow-rate of methanol (mmol/min/kg.,,) and yield of methanol based on

total carbon (%))
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Highlights

¢ Quantifying forced periodic operation of chemical reactor

e Analysis by the Nonlinear Frequency Response method

e Methanol synthesis in isothermal and isobaric lab-scale CSTR

¢ Single input modulations (partial pressures of all reactants and volumetric flow-rate)
e No significant improvement could be obtained with single input modulations

Figure captions
Figure 1. The asymmetrical second order H FRFs for single input modulations of partial
pressures of CO,, CO and H, or volumetric flow-rate around their optimal steady-state values,

vs. dimensionless frequency.



Figure 2. 1ne maximal possible values oI tne asymmetrical second oraer H-rKES 10r singie
input modulations of the partial pressures of CO,, CO and H, and volumetric flow-rate of the

feed steam vs. dimensionless frequency.

Figure G.1. Pareto front for optimal steady-state with respect of two objective functions
(normalized outlet molar flow-rate of methanol (mmol/min/kg.,,) and yield of methanol based on

total carbon (%))

Tables

Table 1. Parameters and constant used in kinetic model

Parameter Unit Value

Pmax - 0.9

Ak,CO mol /kgcat /S /bar3 0.00673

Bco - 26.4549

Ag,co, mol /kge s /bar® | 0.0430

Bco, - 1.5308

A rwGs mol/kg, /s /bar 0.0117

Brwes - 15.6154
K2 bar12 1.1064
K¢uzon bar! 0
Kiz0 bar! 0
Ko - 0
Kco bar’! 0.1497
K&zom bar! 0
Kio2 bar’! 0.0629

K?gz bar! 0




Al mo U

AG, kJ /mol 21.841
ki s 71 79.174 10
ki s~1 1.88 10°
Gsat mol/Kgca 0.98
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prapie Z 1nc acriniuons o1 aimensionicss variablcs

Dimensionless variables Definitions
1 / Pi—DPis
Partial pressure of component i P, = = 1.6
Partial pressure of component / in the inlet stream | p_ 0= Pio ~ Pios i=1.6
O™ pos 20T
Time t t
T ==
To,s V(; / VO,s
Fraction of reduced centres on the catalyst surface ® ¢ — s
bs
Volumetric flow-rate of the inlet stream Vo—Vos
Ug = .
VO,s
Volumetric flow-rate of the outlet stream V= VS
vV=—"
Vs
Frequency W = WqTo,s




rapie 5. UVervicw oI tne ¢cnoscn oplimal stcady-Statc point 1or analysis.

Fixed parameters
Pror (bar) Vo,s (ml/min) VN2
60 6.93 0.15
Optimization parameters
Ycoas Ycos VH2.s T, [K]
0.021 0.185 0.644 473
Outputs
Vout,s
JYCH30H,s Ycoz,s Yco,s YH2,s JVH20,5 YN2,s ml/min
0.168 0.026 0.081 0.522 0.002 0.200 5.186
Performance indicators
(e, ) o Lmmol/min/kga] (YE85%h) o (%) (Yeh,0m) 55 (%)
336.91 61.05 39.09

Table 4. The normalized outlet molar flow-rate and yields of methanol based on total carbon and
on hydrogen for the cases corresponding to the maximal ASO H-FRFs, for steady-state and

periodic operations.

Modulated (ng%?gH) 55 (Y&ion )ss (Y?12130H) S5 (ng?irgrgH) PO (YE%on )PO (Y?fzgoH) PO Max
nput mpr.
[mmol/min/ % % [mmol/min/ % (%]

kgcat] kgcat] % ’
Pcon 59.95 11.19 6.89 60.09 11.21 6.91 0.23
Pco 102.82 29.64 10.66 107.90 31.10 11.19 4.95
Py 261.72 27.93 39.11 263.50 28.12 39.37 0.68
Vo 7.69 28.89 0.68 7.70 28.92 0.69 0.12




1aple >1 1NE values oI INput and Output variaples I0r Steady-State (p;,, =bU bar) with respect 1o
maximal value of H ASO FRF H®?)| | (0,-®)

Inputs (steady-state)

yield of methanol based on tot

C or based on H,, %

Molar fraction of component, [-] Temperature
[K]

Yo,s (CO2) Yo,s (CO) Yo,s (Ho) T [K]
0.0014 0.1988 0.6498 473
Forcing parameters for maximal improvement

Forcing frequency, dimesionless [-] 0.3364
Forcing amplitude of CO, 1
Ouputs (steady-state)
V e, ml/min 6.6204
Vs Vs
CH;0H CcO H H,O
ys (CH;0H) ¥s (COy) oy | s (Hz) ys (H20) Ny | Yeots
0.0234 0.0014 0.1847 | 0.6333 5.89*%10° 0.1570 1
Ry lmmolimin kgea] 55.95
Yield of methanol based on 11.19
total C, % '
Yield of methanol based on H,,
o 6.89
(]
Ouputs for periodic modulation with maximal improvement
H(z)l,l,l(()),-(l))max 0.0046
(h’é%’gli)mean,[mmol/min/kgcm] 60.09
Yield of methanol based on 1121
total C, % '
Yield of methanol based on H,,
o 6.91
0
Maximal increase of outlet
molar flow-rate of methanol, 0.23




1aple >2 1ne values oI INpul and output variaples 10r steady-Siate (p;,,~ouU bar) with respect 10
maximal value of H ASO FRF H®?)| , ,(0,-®)

Inputs (steady-state)

yield of methanol based on
total C or based on H,, %

Yo,s (CO2) Yo,s (CO) Yo,s (Ho) T'[K]
0.0814 0.0482 0.7204 473
Forcing parameters for maximal improvement
Forcing frequency, dimesionless [-] 0.2889
Forcing amplitude of CO 1
Ouputs (steady-state)
V gue» ml/min 6.3696
ys (CHOH) |y, (COp) | 20| s () ys (H;0) X | Yo
0.0416 0.0734 0.0253 | 0.6824 0.0147 0.1625 1
et om,s [mmolimin/ kgea] 102.82
Yield of n:;:}gn;: based on 29 64
Yield of mg[il’a;)ol based on 10.66
Ouputs for periodic modulation with maximal improvement
H®, 5 5(w,-0)mx 0.0989
- norm
- 107.90
[mmol/min/ kg.q|
Yield of methanol based on 31.10
tot C, %
Yield of methanol based on 11.19
H,, %
Maximal increase of outlet
molar flow-rate of methanol, 495




1aple >3 1ne values oI Input and outpul variaples 10r Steady-State (p;,, = bu bar) witn respect 1o
maximal value of H ASO FRF H®?)| ; ;(0,-®)

Inputs (steady-state)

yield of methanol based on
total C or based on H,, %

¥o,s (CO2) Yo,s (CO) T[K]
0.0250 0.3250 533
Forcing parameters for maximal improvement
Forcing frequency, dimesionless [-] 0.4354
Forcing amplitude of H, 0.3000
Ouputs (steady-state
V gut» ml/min 6.2826
ys (CHOH) |y, (CO) | 2o |y () s (H:0) &) | Yeors
0.1215 0.0304 0.2831 0.3778 6.56 104 0.1865 1
et on,s [mmolimin kgea 261.72
Yield of methanol based on
total C, % "
Yield of methanol based on
Hy, % 39.11
Ouputs for periodic modulation with maximal improvement
H(2)1,3,3((0,-(0)max 0.1508
> norm
- 263.50
[mmol/min/ kg.q]
Yield of methanol based on
total C, % 28.12
Yield of methanol based on
Hy, % 39.37
Maximal increase of outlet
molar flow-rate of methanol, 0.68




1aple >4 1ne values oI Input and outpul variaples 10r steady-State (p;,, = bu bar) witn respect 1o
maximal value of H ASO FRF H®)| 4 4(o,-®)

Inputs (steady-state)

Yo,s (CO2) Yo,s (CO) T'[K]
3.5166 104 0.0096 473
Forcing parameters for maximal improvement
Forcing frequency, dimesionless [-] 13.6903
Forcing amplitude of inlet volumetric flow-rate 1
Ouputs (steady-state)
V our» ml/min 8.844
Vs Vs
H H
ys (CHSOH) | y:(COn) | 2o |y (H) s (H:0) &y | ers
0.0029 1.7707 104 | 0.0069 | 0.8389 1.7663*104 0.1509 1
AR o Immolimin kgeal] 7.69
Yield of methanol based on
total C, % .
Yield of methanol based on 0.68
H,, % '

Ouputs for periodic modulation with maximal improvement

H(2)1,4,4(00,-(D)maX 0.0023
- norm
(nCH30H)mean’ 770
[mmol/min/ kgu]
Yield of methanol based on
total C, % 28.92
Yield of methanol based on 0.69
H,, %
Maximal increase of outlet
molar flow-rate of methanol, 012

yield of methanol based
ontotal C or based on H,, %




cat]
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ASO H FRFs
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