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Abstract 

Copper electrodeposition in a form of powder was examined using the pulsating overpotential 

(PO) regime from the sulfate electrolyte without or with an addition of various concentrations 

of chloride ions. Morphological and structural characteristics of the produced particles were 

analyzed by the scanning electron microscope (SEM) and the X-ray diffraction (XRD) 

method. The final morphology of Cu powders was determined with two parallel processes: a) 

suppression of hydrogen evolution reaction due to pause duration considerably longer than 

the deposition time, and b) catalytic effect of added chlorides. Depending on the amplitude of 

overpotential applied, addition of chlorides into the solution led to either an appearing of 

dendrites or to formation of very branchy dendrites, what confirms a catalytic effect of these 

ions on the process of Cu electrolysis. The novel forms of copper dendrites, such as the 

needle-like and the 2D (two dimensional), were identified in this investigation, and the 

catalytic effect of chlorides on copper electrodeposition has been just discussed by 

morphological analysis of these dendritic forms. The XRD analysis of the copper dendrites 

obtained with an addition of chlorides showed predominantly oriented the Cu crystallites in 

(111) plane. 

 

 

Introduction  

Copper powder market is one of the largest growing market in the world, with an estimated 

growth of almost 500 milion USD during 2020 – 2026 1. This growth is caused by the fact 

that almost all industrial branches are consumers of copper powder. Application of copper 

powder is primarily based on its high electrical and thermal conductivity, making this powder 

very suitable in fabrication of electronic and electrical parts 2. Due to use in 

pharmaceuticals, biochemical sector is also large consumer of this powder. Aside from the 

electronic and pharmaceutical industries, the other large consumers are powder metallurgy 

sector, industrial machinery manufacturing, production of coating and conductive inks, 
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alloyed with other metals like zinc, tin, nickel for decorative paintings and coatings, in 

manufacturing printing inks, antifouling paints, etc 2. 

 Application of Cu powder in all above-mentioned technologies is associated with a size 

and form of particles. Cu powder consists of particles of various size from a nano scale to 

those of several hundred microns [3]. The shape of particles is determined by a way of their 

production, and irregular rough, spherical, dendritic and cauliflower-like are a typical forms 

of Cu particles 4. Irrespective of method production, the demands which Cu powder must 

fulfill for various applications are high purity, without or with low content of oxygen, 

low-temperature sintering activity, etc. For that purpose, to avoid oxidation of Cu powder the 

process of its stabilization with compounds like benzoic acid and K – Na tartarate is often 

used 5. 

 The main ways for production of Cu as powder are: the ultrasonic spray pyrolysis [6], 

hydrometallurgy [7], water and gas atomization 8, 9, gel-casting [10], chemical reduction 

methods 11, electrolysis 3, 12–19, etc. The spherical form of the particles is usually 

obtained by the ultrasonic spray pyrolysis and gas atomization, irregular particles are formed 

by water atomization, while dendritic and cauliflower-like particles are the most often forms 

obtained by electrolysis. Electrolysis is often used way for a production of Cu powder, with 

many advantages relative to the other synthesis methods. These advantages can be 

summarized as follows: easy control of size and form of particles by the selection of the 

working conditions and regimes of electrodeposition, a low equipment and product cost, a 

high purity of the produced particles, environmentally friendly, low energy consumption, etc. 

20. 

 The electrolytic obtained dendrites of Cu are 3D (three dimensional) form like a tree of 

pine and are constructed from the corncob-like parts representing its basic element 3, 12. 

They are formed without or with negligible contribution of evolved hydrogen as the second 

reaction in the powder production range. The cauliflower-like forms represent the other type 

of particles obtained by electrolysis and they are formed under strong effect of parallel 

hydrogen evolution reaction [3, 12]. The micro structure of both dendritic and 

cauliflower-like particles was similar and consisted of agglomerates of approximately 

spherical grains. Copper as powder can be obtained by all available electrolysis techniques 

including both the constant 3, 12–19 and pulse reverse 3, 15, 21–23 regimes of 

electrolysis. The main parameters determining the particle size and distribution are: the type 

and composition of electrolyte, temperature, the type of working electrode, circulation rate, a 

design of experments, etc. 3, 24–27. In the last time, a special attention is devoted to the 

effect of various addition agents or additives added to the electrolyte on mophology, size and 

distribution of the Cu particles 21, 28–32. The some typical additives used in the processes 

of Cu electrolysis are: polyvinylpyrrolidone (PVP) [21, 30], sodium dodecyl sulfate (SDS) 

[21, 30, 32], polyethylene glycol (PEG) [21], cellulose [21], cetyltrimethylammonium 

bromide (CTAB) 30, 32–35, thiourea (Tu) [21], potassium ferrocyanide 29 and 

2,2′-dipyridine [29], etc. For example, the particles of spherical shape can be obtained by 

addition of the mixture of potassium ferrocyanide and 2,2′-dipyridine. 

 An chloride ions are widely used as additive in Cu electrodeposition processes from the 

sulfate electrolytes, and the effect of this additive on mechanism of Cu electrodeposition is 

well elaborated 36–38. However, the effect of chloride ions on dendritic growth has not 
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been enough explored, and the only few data can be found in the literature 39, 40. On the 

other hand, pulse reverse regimes of electrolysis, like pulsating overpotential (PO) [41, 42], 

offer a great possibility in investigation of metal electrodeposition processes, because 

deposits of desired characteristics can be obtained by an easy regulation of parameters 

constructing these regimes. Combining benefits which can be achieved by application of both 

chloride ions as additive and pulse reverse regimes on a quality of metal deposits, the aim of 

this investigation was to analyze an influence of various concentrations of chloride ions 

added to the basic sulfate electrolyte on formation of Cu dendrites by use of the PO regime. 

The novel procedure predicting a formation of Cu dendrites in conditions in which their 

formation was not possible by application of constant regimes of electrodeposition will be 

proposed. It will be done by application of very long pause duration, the very high 

overpotential amplitudes and by addition of chloride ions. 

 

Experimental  

 The square-wave pulsating overpotential (PO) regime consisted of 30 ms long pulse of 

deposition (tc) and 100 ms long pause duration (tp) was used for copper electrodeposition. 

The selected overpotential amplitudes (A) were: –1100, –1250 and –1400 mV vs. Ag/AgCl. 

Electrodeposition of Cu was performed from the sulfate electrolyte (0.15 M CuSO4 + 0.50 M 

H2SO4), without or with 5, 15 and 30 mM added HCl. The solution was prepared using the 

high purity water (Milipore, 18 M cm) and p.a. reagents. The cathodic polarization curves 

for electrodeposition of copper from the same solutions were recorded potentiostatically in 

the potential range of zero to 1500 mV with a scan rate of 5 mV/s. The Tafel plots were 

obtained in the potential range of OCP ± 250 mV with a scan rate of 0.001 V/s. The cathodic 

Tafel slopes were plotted versus different chloride ion concentrations. 

  All electrochemical experiments were performed at a temperature of 22.0  0.50 oC in a 

three-electrode cell using potentiostat/galvanostat Autolab (GTSTAT101) with GPES 

software Version 4.5. In all experiments, an electrodeposition time was 480 s. The working 

electrode was the high purity copper (99.8 %), while the counter and the reference electrodes 

were a Pt grid and Ag/AgCl (3 M KCl), respectively. 

 For morphological characterization of electroltically obtained Cu deposits, a scanning 

electron microscope (SEM), model TESCAN Digital Microscopy, VEGA3 was used. The 

selected Cu deposit chemical composition was analyzed by X-ray energy dispersive 

spectroscopy (EDS), model Oxford, UK INCA X-MAX. Crystallographic structures 

determination was performed by X-ray diffraction (XRD) with a diffractometer model Philips 

PW1730 and a monochromatic Cu K𝛼 radiation (𝜆 = 0.15405 nm). The peaks were identified 

in comparison with the Joint Committee on Powder Diffraction Standards (JCPDS) files. 

 

Results and discussion  

 Figure 1 shows copper powder deposits produced from an electrolyte containing 0.15 M 

CuSO4 in 0.50 M H2SO4 by the PO regimes with A of –1100 mV (Figure 1a and 1b), –1250 

mV (Figure 1c and 1d) and –1400 mV (Figure 1e and 1f). The PO regimes with tc of 30 ms 

and tp of 100 ms were applied in all experiments. The small agglomerates of Cu grains of 

cauliflower-like shape were obtained with A of –1100 mV (Figure 1a and 1b). Aside from 

these Cu grains agglomerates (Figure 1c), an increase of A from –1100 to –1250 mV led to 
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formation of three-dimensional (3D) dendritic forms, as shown on Figure 1d. The similar 

morphological forms were also observed with A of –1400 mV. The mixture of 

cauliflower-like agglomerates of Cu grains and 3D dendritic particles was obtained with this 

amplitude of overpotential (Figure 1e and 1f). 

 Applying the same PO regime, it is examined the influence of chloride ions on a shape of 

powdered particles, and the Cu deposits obtained with different concentrations of added 

chlorides are shown on Figures 24. 

 Figure 2 shows the Cu powder deposits obtained with A of –1100 mV and 

concentrations of chloride ions of 5 mM (Figure 2a and 2b), 15 mM (Figure 2c and 2d) and 

30 mM (Figure 2e and 2f). Formation of dendritic forms with appearing those in the form of 

needles occurs with the smallest concentration of added chlorides (Figure 2a and 2b). The 

addition of chloride ions in a concentration of 15 mM led to a formation of branched 

dendrites including formation and those in the form of needles (Figure 2c and 2d). Finally, 

the dendrites with the sharp tips, and well defined trunk and branches are predominantly 

formed with the largest examined concentration of chloride ions of 30 mM (Figure 2e and 2f). 

These dendrites have mainly the two dimensional (2D) shape. 

 The very branchy particles of dendritic shape were also obtained using A of –1250 mV 

(Figure 3). The dendrites formed with an addition of chloride ions in a concentration of 5 and 

15 mM were mainly of the 3D shape (Figure 3a–3d). The presence of dendrites like needles 

can be also noticed among those obtained with a concentration of chloride ions of 15 mM 

(Figure 3c). At the end, the dendrites obtained with an addition of 30 mM HCl were 

predominantly 2D shape (Figure 3e and 3f). 

 Finally, the same trend in the shape of dendrites is kept with the largest analysed A of – 

1400 mV (Figure 4). The appearing of the needle-like dendrites as a result of addition of 5 

mM chloride ions is also mentioned (Figure 4a and 4b). The very branchy 3D pine-like 

dendrites are formed with an addition of 15 mM chloride ions (Figure 4c and 4d). Finally, the 

dendrites like 2D are formed with 30 mM concentration of chloride ions (Figure 4e and 4f). 

 For the basic solution (0.15 M CuSO4 + 0.50 M H2SO4), overpotential amplitudes of 

–1100, –1250 and –1400 mV are outside the limiting diffusion current density plateau and 

situated deep in the hydrogen evolution region 3, 43, 44 (see the polarization curve for Cu 

electrodeposition from the basic sulfate solution on Fig. 5a). The beginning of evolution of 

hydrogen as the parallel reaction to copper electrolysis corresponds to certain overpotential 

inside the limiting diffusion current density plateau, with a tendency of intensification of this 

reaction with an increase of overpotential. The starting from some overpotential, hydrogen 

evolution becomes so intensive that a strong influence on hydrodynamic conditions in the 

near-electrode layer is achieved, and it is manifested by the fast growth of the current density 

with further increase of overpotential at the polarization curve. In constant potentiostatic 

regime, the 3D pine-like dendrites are obtained under the diffusion control, inside the limiting 

diffusion current density plateau, while the cauliflower-like agglomerates of Cu grains are 

obtained at overpotentials outside the limiting diffusion current density plateau in conditions 

of vigorous hydrogen evolution [3, 43]. The cauliflower-like agglomerates of Cu grains were 

situated around holes formed by a detachment of hydrogen bubbles, making the typical 3D 

foam or the honeycomb-like structures. 

 The two parallel processes are responsible for morphological forms given on Figures 1–4: 
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(a) suppression of evolution of hydrogen as the second reaction, and (b) the strong effect of 

chloride ions on formation and growth of dendrites. Since hydrogen evolution reaction was 

completely suppressed, the current efficiency for copper electrodeposition reaction is 100 %. 

It is confirmed by the absence of holes originating from the detached hydrogen bubbles in the 

surface morphologies obtained under various electrodeposition conditions. 

 In our case, the evolution of hydrogen was completely suppressed by use of the PO 

regimes of long both pulse of deposition and pause, whereby pause duration was 3.33 longer 

than deposition pulse duration. In the PO regimes, morphology of metal deposits does not 

depend only on A and p (where p represents the pause to pulse ratio, and is defined as p = 

tp/tc), but also depends on the lengths of tp and tc for the same ratio 3. With the applied 

overpotential amplitude in hydrogen evolution range, the increasing p leads to a decreasing 

amount of generated hydrogen with a strong consequences on the shape, size and distribution 

of holes formed by the detachment of hydrogen bubbles 15. Simultaneously, the change of 

morphology of Cu deposits around holes from an agglomerates of Cu grains of 

cauliflower-like shape to very branchy dendritic particles was noticed. At p values 

considerably larger than 1, evolution of hydrogen can be completely inhibited, and various 

structures like pyramid-like are formed 3.     

By the selection of the suitable A and p values in the PO regime, morphology of 

metal deposit becomes similar to that formed under the constant potentiostatic conditions (p = 

0) at an overpotential of electrodeposition lower than that corresponding to the applied 

amplitude of overpotential [3]. The increasing p values lead to decreasing the degree of 

diffusion control, and deposits corresponding to the activation, or the activation-diffusion 

control can be obtained. In our case, depending on the overpotential amplitude applied, the 

copper deposits obtained in the absence of chloride ions (Figure 1) correspond to those 

formed at overpotentials inside the diffusion controlled electrodeposition. In the constant 

potentiostatic regime, the cauliflower-like agglomerates of Cu grains (Figure 1a and 1b) are a 

feature of electrodeposition process at the overpotential belonging to very beginning of the 

full diffusion control before the dendritic growth was initiated. The appearing of mixture of 

Cu grains agglomerates of cauliflower-like shape and individual dendrites corresponds to the 

diffusion controlled electrodeposition under the constant potentiostatic conditions, but after 

the minimal overpotential for initiation of the dendritic growth was reached (Figure 1c–1f).  

Anyway, the applied PO regime made the strong effect on morphology of Cu deposits 

by an inhibition of hydrogen evolution. On the other side, the addition of chloride ions to the 

electrolyte catalyzed or accelarated copper electrodeposition reaction 36. In our case, it is 

manifested by either an appearing of dendrites at the overpotential amplitude of –1100 mV at 

which they are not formed from the electrolyte without added chlorides (Figure 2) or a strong 

ramification of already formed dendrites at higher overpotential amplitudes of –1250 and 

–1400 mV (Figures 3 and 4).  

The cathodic polarization curves for Cu electrodeposition from the electrolytes with 

an addition of 5, 15 and 30 mM HCl are also shown on Fig. 5a. The addition of chloride ions 

caused a depolarization of the electrode potential (see inset on Fig. 5a) and the decrease of 

the limiting diffusion current density values without any effect on length of the plateaus. 

Simultaneously, aside from on the values of the current density peak, there was no any other 

significant effect of various concentrations of chloride ions on the polarization characteristics 
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of copper. The increase of the maximum current density with increasing the concentration of 

chloride ions, together with the depolarization on the beginning of deposition process reveals 

a catalytic effect of chloride on Cu electrodeposition, and it was in an accordance with those 

found in Ref. [38]. The limiting diffusion current densities for the electrolytes with the 

chlorides were for about 25 % smaller than the value obtained for the basic sulfate 

electrolyte. 

The catalytic effect of chloride ions can be ascribed to formation of adsorbed chloride 

layer at the electrode surface which mediates to a reduction of Cu(II) ions introducing an 

additional reaction pathways in a mechanism of Cu electrodeposition 40. Namely, 

electrodeposition of Cu from chloride free acid sulfate electrolytes occurs through two 

successive one-electron reactions [40]: 

Cu2+ + e– = Cu+  E = –0.087 VSCE (1) 

and 

Cu+ + e– = Cu  E = 0.281 VSCE (2) 

where a reaction path (1) is the rate-determining step. 

When chloride ions were added, the two additional reaction steps occur parallelly 

with reaction steps (1) and (2) [40]: 

Cu2+ + Cl–ads + e– = CuClads E = 0.338 VSCE (3) 

and 

CuClads + e– = Cu + Cl– E = –0.063 VSCE (4) 

 These competitive reaction pathways cause an acceleration of Cu electrodeposition 

process and formation of very branchy dendrites. This mechanism predicting adsorption of 

chloride ions at the cathode results in an overall depolarization of process of reduction and it 

is valid for concentrations of chloride ions in the electrolytes up to 100 mM 40, that was the 

case in this investigation. 

 Simultaneously, the catalytic effect of added chlorides on Cu electrodeposition can be 

explained by ab inito molecular orbital theory 37, by which small concentrations of chloride 

ions added to the solution change mechanism of reaction for electron transfer from an 

outer-sphere reaction (water–water bridge) to an inner-sphere reaction (chloride bridge) what 

results in an increase of the exchange current density (i0) for Cu2+/Cu+ reaction step 37.  

  The dependencies of the cathodic Tafel slopes on a concentration of the chloride ions 

are shown on Fig. 5b. The values of Tafel slope in the 116 – 140 mV dec-1 range indicate that 

the reduction process occurs mostly through the two consecutive one-electron reactions (Eqs. 

(1) and (2)), and which is slightly effected by the presence of adsorbed complex Cu–Cl [38, 

40]. 

 The catalytic effect of chloride ions can be confirmed by a shape of dendrites formed 

with added chlorides. Some of shapes of Cu dendrites like the needle-like (Figures 2b, 3c and 

4b) and those of the 2D shape (Figures 2f, 3f and 4f) substantially differ from the usual 

referred shape for the Cu dendrite. As already mentioned, the typical Cu dendrite is 3D (three 

dimensional) pine-like shape with stalk and branches in the corncob-like form 3, 12. The 

needle-like and very long 2D dendrites are a feature of processes of the electrodeposition 

characterized by the higher i0 values than that for Cu 45, such as Ag 46 and Zn 47. 
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Figure 6 shows the dependencies of the particle size defined by a length of dendrite stalk on 

the concentration of chloride ions obtained at the given overpotential amplitudes. The largest 

effect is achieved with the largest analysed concentartion of chloride ions of 30 mM. The 2D 

dendrites were predominantly formed with this concentration of chlorides (Figures 2–4). 

 Irrespective of the shape of the dendrite, all forms of Cu dendrites shown here follow 

both the electrochemical 3, 47 and classical Wranglen’s 48 definition of dendrite. 

Regarding an electrochemical definition, a dendrite represents an irregularity or protrusion 

created in the initial stage of process of the electrodeposition and burried deep in the 

diffusion layer of macroelectrode. The spherical diffusion layer is formed around the tip of 

protrusion, causing the activation controlled growth of such tip. Simultaneously, the 

electrodeposition process on an electrode surface is the full diffusion controlled 3.  

 Wranglen defines a dendrite as a sceleton consisted from stalk and branches giving to a 

dendrite an appearance of tree 48. The 2D dendrite represents a dendrite which stalk and 

branches are in the one plane. The branches developed from a stalk are denoted by primary 

branches, while the corresponding dendrite is denoted as primary (P) dendrite. The secondary 

branches are developed from primary branches, while such dendrite is referred as secondary 

(S) dendrite. Hence, some of the Cu dendrites obtained in the presence of chlorides     

(Figures 2e and 2f, 3e and 3f, 4e and 4f) belong to S type. Simultaneously, the very branchy 

3D dendrites with the sharp tips and consisted of small approximately spherical grains were 

also formed. They keep the pine-like shape (Figures 3b and 3d), but were considerably 

smaller than the usual referred 3D pine-like Cu dendrite. 

 The catalytic effect of chloride ions can be also perceived as follows: without chloride 

ions, an obtaining of the individual dendrites with overpotential amplitudes of –1250 and 

–1400 mV (Figure 1c–1f) indicated that the critical overpotential for initiation of growth of 

dendrite, i [3] was reached with these overpotential amplitudes. On the other hand, this 

overpotential was not reached with A of –1100 mV (Figure 1a and 1b). Formation of 

branchy dendrites as only surface morphology from the electrolytes containing chloride ions 

(Figures 2–4) clearly indicates that the critical overpotential for instantaneous growth of 

dendrite, c [3] was exceeded with all three ovepotential amplitudes, that represents a clear 

proof of the strong acceleration of the electrodeposition processes with added chloride ions. 

 The EDS spectrums obtained from the parts of Cu dendrites close to their tips, together 

with the corresponding SEM micrograph, are shown on Figure 7. EDS analysis showed only 

the presence of copper, while the presence of chlorine was not detected in the Cu dendrites. 

This was in accordance with previosly reported investigations 39, 49 that in the electrolytes 

with a concentration of chloride ions smaller than 50 mM, all chlorine is dissolved at cathodic 

overvoltage higher than 146 mV (vs. Cu/Cu2+); the condition fulfilled in our case. 

 Figure 8 displays the X-Ray diffractogram of the Cu dendrites formed with A of –1250 

mV using a concentration of chloride ions of 5 mM. Three diffraction peaks by orientations 

along the (111), (200) and (220) directions correspond to 2 angles of 43.3˚, 50.5˚ and 74.2˚ 

are indexed according to the face centered cubic (FCC) copper structure as indicated in 

reference code (04-0386).  

 The diffraction peaks that would indicate on the presence of impurities such as copper 

oxide or copper hydroxide are not detected, meaning that the obtained Cu powders were of 

the high purity. This result is consistent with that of EDS analysis.  
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 The sharp and strong peaks showed that the produced particles of Cu were very 

crystalline. It is well known that crystal facets that grow more slowly exhibit stronger 

intensity in the XRD pattern and consequently found more on the surface of the crystal. 

Therefore, it can be concluded that because the surface energy of (111) plane in FCC crystal 

lattice is lower than the other planes like (200) and (220), respectively, the dendritic Cu is 

abundant in {111} planes [50]. Due to the difference in surface energy of different crystal 

planes, the rate of electrodeposition on each of them is different. In other words, the rate of 

crystal growth onto Cu crystal planes is as follows: (220) > (200) > (111) [51]. The Cu 

crystallites oriented in (111) plane are the origin from the growth centers present in the 

interior of the Cu crystals. The (111) plane is denoted as slow growing plane, and this crystal 

plane survives in the growth process, causing the predominant orientation of Cu crystallites in 

this plane in all dendritic shapes. The other planes such as (220) and (200) belong to the fast 

growing planes, and they disappear through the growing process. The origin of Cu crystallites 

oriented in these planes is primarily of growth centers present at the tips of growing crystals, 

and hence, the tips of all dendritic shapes are constructed from them [17]. Anyway, for the 

difference from morphology of the particles, the addition of chloride ions does not affect their 

crystalographic charactecteristics. The Cu crystallites remained predominatly oriented in the 

(111) plane as already observed in the dendritic particles obtained without an addition of the 

chloride ions [17]. 

Finally, the 2D shape of the Cu dendrite was very similar to the Cu dendrites obtained by 

a galvanic replacement reaction (GRR)-based solution chemistry methodology 52. 

According to this method of synthesis of Cu dendrites, Cu was obtained on gold foil in the 

presence of added chloride ions as HCl or NaCl, where chloride ions augment an 

uninterrupted replacement reaction. This similarity can indicates the strong correlation 

between the form of Cu dendrites and an addition of chloride ions irrespective of method of 

their synthesis. Certainly, it will be the subject of the future investigation.  

 Anyway, a novel procedure for a production of very branchy Cu dendrites by the PO 

regime is proposed. The superfine dendrites constructed from small approximately spherical 

grains, as well as the needle-like and the 2D dendrites were formed in conditions in which 

their formation was not possible in the constant potentiostatic regime. It is attained by 

application of the high overpotential amplitudes, enough long pause duration to suppress 

hydrogen evolution reaction, and by the catalytic effect of the chloride ions. 

 

Conclusions 

Influence of chloride ions on formation and shape of Cu dendrites produced by the PO 

regime has been investigated by the SEM analysis of the obtained powders. The sulfate 

electrolyte containing 0.15 M CuSO4 in 0.50 M H2SO4 without or with an addition of 5, 15 

and 30 mM HCl was used in this investigation. In all PO regimes, a tc of 30 ms and a tp of 

100 ms are used, while the values of overpotential amplitude were varied to be –1100, –1250 

and –1400 mV vs. Ag/AgCl. It can be concluded from the obtained results: 

 

1. Dependeng on the overpotential amplitude applied, the application of PO regime with 

the pause duration 3.33 times longer than the deposition pulse led to a suppression of 
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evolution of hydrogen as a parallel reaction, causing formation of either 

caulflower-like structures or individual dendrites. 

2. The addition of chloride ions catalyzes Cu electrodeposition reaction, that is 

manifested by a formation of very branchy dendrites, as well as by their appearing at 

the overpotential amplitude at which they are not formed without added chloride ions. 

3. The some novel forms of Cu dendrites like the needles and the 2D forms were 

identified in this investigation. 

4. In the dendritic particles prepared from the electrolyte with an addition of chloride 

ions, the crystallites of Cu were predominantly oriented in (111) plane. 

 

References  

[1]https://www.marketwatch.com/press-release/copper-powder-market-size-forecast-period-o

f-2020-to-2025-detailed-investigation-of-global-market-size-regional-and-country-level-

market-top-companies-industry-outlook-2020-10-04. 

[2] https://www.transparencymarketresearch.com/copper-copper-alloy-powder-market.html. 

[3] K. I. Popov, S. S. Djokić, N. D. Nikolić and V. D. Jović, Morphology of electrochemically 

and chemically deposited  metals, Springer, New York, NY, USA, 2016, pp. 1–368. 

https://doi.org/10.1007/978-3-319-26073-0.  

[4] Lj. Avramović, V. M. Maksimović, Z. Baščarević, N. Ignjatović, M. Bugarin, R. Marković 

and N. D. Nikolić, Influence of the shape of copper powder particles on the crystal 

structure and some decisive characteristics of the metal powders, Metals, 9 56 (2019). 

https://doi.org/10.3390/met9010056.  

[5] M. G. Pavlović, Lj. J. Pavlović, I. D. Doroslovački and N. D. Nikolić, The effect of 

benzoic acid on the corrosion and stabilisation of electrodeposited copper powder, 

Hydrometallurgy, 73, 155 (2004). https://doi.org/10.1016/j.hydromet.2003.08.005. 

[6] S. Stopić, P. Dvorak and B. Friedrich, Synthesis of spherical nanosized copper powder by 

ultrasonic spray pyrolysis, World of Metallurgy – ERZMETALL, 58, 195 (2005). 

https://doi.org/10.1016/j.materresbull.2006.03.006. 

[7] S. S. Djokić, Production of metallic powders from aqueous solutions without an external 

current source, in: S. S. Djokić  (Eds), Electrochemical Production of Metal Powders, 

Series: Modern Aspects of Electrochemistry, Springer, New York, NY, USA, 2012, 

volume 54, pp. 369–398. https://link.springer.com/bookseries/6251. 

[8] O. Neikov, S. Naboychenko, I. Mourachova, V. Gopienko, I. Frishberg and D. Lotsko, 

Production of copper and copper alloy powders, in Handbook of Non-Ferrous Metal 

Powders: Technologies and Applications, Elsevier, Oxford, United Kingdom, 2009, pp. 

331–332. https://doi.org/10.1016/b978-1-85617-422-0.00016-1. 

[9] https://www.copper-powder99.com/copper-powder/gas-atomized-copper-powder/. 

[10] W. Chen, J. Cheng, H. Chen, N. Ye, B. Wei, L. Luo and Y. Wu, Nanosized copper 

powders prepared by gel-casting method and their application in lubricating oil, Trans. 

Nonferrous Met. Soc. China, 28, 1186 (2018). 

https://doi.org/10.1016/s1003-6326(18)64756-9. 

Page 9 of 18

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://www.marketwatch.com/press-release/copper-powder-market-size-forecast-period-of-2020-to-2025-detailed-investigation-of-global-market-size-regional-and-country-level-market-top-companies-industry-outlook-2020-10-04
https://www.marketwatch.com/press-release/copper-powder-market-size-forecast-period-of-2020-to-2025-detailed-investigation-of-global-market-size-regional-and-country-level-market-top-companies-industry-outlook-2020-10-04
https://www.marketwatch.com/press-release/copper-powder-market-size-forecast-period-of-2020-to-2025-detailed-investigation-of-global-market-size-regional-and-country-level-market-top-companies-industry-outlook-2020-10-04
https://www.transparencymarketresearch.com/copper-copper-alloy-powder-market.html
https://doi.org/10.1007/978-3-319-26073-0
https://doi.org/10.3390/met9010056
https://doi.org/10.1016/j.hydromet.2003.08.005
https://doi.org/10.1016/j.materresbull.2006.03.006
https://link.springer.com/bookseries/6251
https://doi.org/10.1016/b978-1-85617-422-0.00016-1
https://www.copper-powder99.com/copper-powder/gas-atomized-copper-powder/
https://doi.org/10.1016/s1003-6326(18)64756-9


For Review Only

10 

 

[11] M. S. Aguilar, R. Esparza and G. Rosas, Synthesis of Cu nanoparticles by chemical 

reduction method, Trans. Nonferrous Met. Soc. China, 20, 1510 (2019).  

https://doi.org/10.1016/s1003-6326(19)65058-2. 

[12] N. D. Nikolić, Lj. J. Pavlović, M. G. Pavlović and K. I. Popov, Morphologies of 

electrochemically formed copper powder particles and their dependence on the quantity 

of evolved hydrogen, Powder Technol., 185, 195 (2008). 

https://doi.org/10.1016/j.powtec.2007.10.014. 

[13] G. Orhan and G. Hapci, Effect of electrolysis parameters on the morphologies of copper 

powder obtained in a rotating cylinder electrode cell, Powder Technol., 201, 57 (2010). 

https://doi.org/10.1016/j.powtec.2010.03.003. 

[14] G. Orhan and G. G. Gezgin, Effect of electrolysis parameters on the morphologies of 

copper powder obtained at high current densities, J. Serb. Chem. Soc., 77, 651 (2012). 

https://doi.org/10.2298/jsc110627196o. 

[15] N. D. Nikolić, G. Branković and M. G. Pavlović, Correlate between morphology of 

powder particles obtained by the different regimes of electrolysis and the quantity of 

evolved hydrogen, Powder Technol., 221, 271 (2012). 

https://doi.org/10.1016/j.powtec.2012.01.014. 

[16] T. N. Ostanina, V. M. Rudoi, A. V. Patrushev, A. B. Darintseva and A. S. Farlenkov, 

Modelling the dynamic growth of copper and zinc dendritic deposits under the 

galvanostatic electrolysis conditions, J. Electroanal. Chem., 750, 9 (2015). 

https://doi.org/10.1016/j.jelechem.2015.04.031. 

[17] N. D. Nikolić, Lj. Avramović, E. R. Ivanović, V. M. Maksimović, Z. Baščarević and N. 

Ignjatović, Comparative morphological and crystallographic analysis of copper powders 

obtained under different electrolysis conditions, Trans. Nonferrous Met. Soc. China, 29, 

1275 (2019). https://doi.org/10.1016/s1003-6326(19)65034-x. 

[18] N. D. Nikolić, P. M. Živković, M. G. Pavlović and Z. Baščarević, Overpotential controls 

a morphology of electrolytically produced copper dendritic forms, J. Serb. Chem. Soc., 

84, 1209 (2019).   https://doi.org/10.2298/jsc190522066n. 

[19] V. S. Nikitin,  T. N. Ostanina, V. M. Rudoi, T. S. Kuloshvili and A. B. Darintseva, 

Features of hydrogen evolution during electrodeposition of loose deposits of copper, 

nickel and zinc, J. Electroanal. Chem., 870, 114230 (2020). 

https://doi.org/10.1016/j.jelechem.2020.114230. 

[20] M. Amiri, S. Nouhi and Y. Azizian-Kalandaragh, Facile synthesis of silver 

nanostructures by using various deposition potential and time: A nonenzymetic sensor for 

hydrogen, Mater. Chem. Phys., 155, 129 (2015). 

https://doi.org/10.1016/j.matchemphys.2015.02.009. 

[21] R. K. Nekouei, F. Rashchi and N. N. Joda, Effect of organic additives on synthesis of 

copper nano powders by pulsing electrolysis, Powder Technol., 237, 554 (2013). 

https://doi.org/10.1016/j.powtec.2012.12.046.  

[22] K. I. Popov, Lj. J. Pavlović, E. R. Ivanović, V. Radmilović and M. G. Pavlović, The 

Page 10 of 18

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://doi.org/10.1016/s1003-6326(19)65058-2
https://doi.org/10.1016/j.powtec.2007.10.014
https://doi.org/10.1016/j.powtec.2010.03.003
https://doi.org/10.2298/jsc110627196o
https://doi.org/10.1016/j.powtec.2012.01.014
https://doi.org/10.1016/j.jelechem.2015.04.031
https://doi.org/10.1016/s1003-6326(19)65034-x
https://doi.org/10.2298/jsc190522066n
https://doi.org/10.1016/j.jelechem.2020.114230
https://doi.org/10.1016/j.matchemphys.2015.02.009
https://doi.org/10.1016/j.powtec.2012.12.046


For Review Only

11 

 

effect of reversing current deposition on the apparent density of electrolytic copper 

powder, J. Serb. Chem. Soc., 67, 61 (2002). https://doi.org/10.2298/jsc0201061p. 

[23] S. Wahyudi, S. Soepriyanto and M. Z. Mubarok, Sutarno, Effect of pulse parameters on 

the particle size of copper powder electrodeposition, IOP Conf. Ser. Mater. Sci. Eng., 547, 

012020 (2019).  https://doi.org/10.1088/1757-899x/547/1/012020. 

[24] M. G. Pavlović, Lj. J. Pavlović, V. M. Maksimović, N. D. Nikolić and K. I. Popov, 

Characterization and morphology of copper powder particles as a function of different 

electrolytic regimes, Int. J. Electrochem. Sci., 5,1862 (2010). 

[25] R. K. Nekouei, F. Rashchi and A. Ravanbakhsh, Copper nanopowder synthesis by 

electrolysis method in nitrate and sulfate solutions, Powder Technol., 250, 91 (2013). 

https://doi.org/10.1016/j.powtec.2013.10.012. 

[26] R. K. Nekouei, F. Rashchi and A. A. Amadeh, Using design of experiments in synthesis 

of ultra-fine copper particles by electrolysis, Powder Technol., 237, 165 (2013). 

https://doi.org/10.1016/j.powtec.2013.01.032. 

[27] H. Wang, Q. Wang, W. Xia, B. Ren, Effect of jet flow between electrodes on power 

consumption and the apparent density of electrolytic copper powders, Powder Technol., 

343, 607 (2019). https://doi.org/10.1016/j.powtec.2018.11.078. 

[28] J. Xue, Q. Wu, Z. Wang and S. Yi, Function of additives in electrolytic preparation of 

copper powder, Hydrometallurgy, 82, 154 (2006). 

http://dx.doi.org/10.1016/j.hydromet.2006.03.010. 

[29] W. Lou, W. Cai, P. Li, J. Su, S. Zheng, Y. Zhang and W. Jin, Additives-assisted 

electrodeposition of fine spherical copper powder from sulfuric acid solution, Powder 

Technol., 326, 84 (2018). https://doi.org/10.1016/j.powtec.2017.12.060. 

[30] H. Dong, Y. Wang, F. Tao and L. Wang, Electrochemical fabrication of shape-controlled 

copper hierarchical structures assisted by surfactants, J. Nanomater., 901842 (2012). 

https://doi.org/10.1155/2012/901842. 

[31] F. Pagnanelli, Shape evolution and effect of organic additives in the electrosynthesis of 

Cu nanostructures, J. Solid State Electrochem., 23, 2723 (2019). 

https://doi.org/10.1007/s10008-019-04360-z. 

[32] B. Nanda and M. Mallik, Production of copper powder by electrodeposition with 

different equilibrium crystal shape, Trans. Indian Inst. Met., 73, 2113 (2020).  

https://doi.org/10.1007/s12666-020-02015-6. 

[33] H. Wu, Z. Li, Y. Wang, X. Li and W. Zhu, Inhibition effect of CTAB on 

electrodeposition    of Cu in  micro via: experimental and MD simulation 

investigations. J. Electrochem. Soc., 166, D816 (2019). 

https://doi.org/10.1149/2.0651915jes . 

[34] H. Wu, Z. Li, Y. Wang and W. Zhu, Communication—fast bottom-up filling of high 

aspect ratio micro vias using a single CTAB additive, J. Electrochem. Soc., 167, 132507 

(2020). https://doi.org/10.1149/1945-7111/abbce5 . 

Page 11 of 18

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://doi.org/10.2298/jsc0201061p
https://doi.org/10.1088/1757-899x/547/1/012020
https://doi.org/10.1016/j.powtec.2013.10.012
https://doi.org/10.1016/j.powtec.2013.01.032
https://doi.org/10.1016/j.powtec.2018.11.078
http://dx.doi.org/10.1016/j.hydromet.2006.03.010
https://doi.org/10.1016/j.powtec.2017.12.060
https://doi.org/10.1155/2012/901842
https://doi.org/10.1007/s10008-019-04360-z
https://doi.org/10.1007/s12666-020-02015-6
https://doi.org/10.1149/2.0651915jes 
https://doi.org/10.1149/1945-7111/abbce5


For Review Only

12 

 

[35] H. Wu, Z. Li, Y. Wang, X. Li, F. Wang and W. Zhu, Experimental analysis of the 

co-deposition of metal Cu and nano-sized SiC particles with CTAB in micro via filling. J. 

Electrochem. Soc., 166, D237 (2019). https://doi.org/10.1149/2.0771906jes . 

[36] D. M. Soares, S. Wasle, K. G. Weil and K. Doblhofer, Copper ion reduction catalyzed by 

chloride ions, J. Electroanal. Chem., 532, 353 (2002). 

https://doi.org/10.1016/s0022-0728(02)01050-1. 

[37] Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtis and D. J. Zurawski, Chloride ion 

catalysis of the copper deposition reaction, J. Electrochem. Soc., 142,  L87 (1995). 

https://doi.org/10.1149/1.2044254. 

[38] W. Shao, G. Pattanaik and G. Zangari, Influence of chloride anions on the mechanism of 

copper electrodeposition from acidic sulfate electrolytes, J. Electrochem. Soc., 154, 

D201 (2007). https://doi.org/10.1149/1.2434682. 

[39] H. C. Shin, M. Liu, Copper foam structures with highly porous nanostructured walls, 

Chem. Mater., 16, 5460 (2004). https://doi.org/10.1021/cm048887b. 

[40] W. Shao and G. Zangari, Dendritic growth and morphology selection in copper 

electrodeposition from acidic sulfate solutions containing chlorides, J. Phys. Chem. C, 

113, 10097 (2009). https://doi.org/10.1021/jp8095456. 

[41] T. N. Ostanina, V. M. Rudoy, V. S. Nikitin, A. B. Darintseva and S. L. Demakov, Change 

in the physical characteristics of the dendritic zinc deposits in the stationary and 

pulsating electrolysis, J. Electroanal. Chem., 784, 13 (2017). 

https://doi.org/10.1016/j.jelechem.2016.11.063. 

[42] V. S. Nikitin, T. N. Ostanina and V. M. Rudoi, effect of parameters of pulsed potential 

mode on concentration changes in the bulk loose zinc deposit and its properties, Russ. J. 

Electrochem., 54, 665 (2018). https://doi.org/10.1134/S1023193518090070. 

[43]  N. D. Nikolić, K. I. Popov, Lj. J. Pavlović and M. G. Pavlović, The effect of hydrogen 

codeposition on the morphology of copper electrodeposits. I. The concept of effective 

overpotential, J. Electroanal. Chem., 588, 88 (2006). 

https://doi.org/10.1016/j.jelechem.2005.12.006. 

[44] F. K. T. Shafiei, K. Jafarzadeh and A. R. Madram, Copper deposits obtained by pulsating 

overpotential regime with a long pause and pulse duration from sulfated solutions, J. 

Serb. Chem. Soc., 85, 795 (2020). https://doi.org/10.2298/jsc190712128s. 

45 N. D. Nikolić, Influence of the exchange current density and overpotential for hydrogen 

evolution reaction on the shape of electrolytically produced disperse forms, J. 

Electrochem. Sci. Eng., 10, 111 (2020). https://doi.org/10.5599/jese.707. 

[46] Lj. Avramović, E. R. Ivanović, V. M. Maksimović, M. M. Pavlović, M. Vuković, J. S. 

Stevanović and N. D. Nikolić, Correlation between crystal structure and morphology of 

potentiostatically electrodeposited silver dendritic nanostructures, Trans. Nonferrous 

Met. Soc. China, 28, 1903 (2018). https://doi.org/10.1016/S1003-6326(18)64835-6. 

[47] N. D. Nikolić, P. M. Živković, J. D. Lović and G. Branković, Application of the general 

theory of disperse deposits formation in an investigation of mechanism of zinc 

Page 12 of 18

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://doi.org/10.1149/2.0771906jes
https://doi.org/10.1016/s0022-0728(02)01050-1
https://doi.org/10.1149/1.2044254
https://doi.org/10.1149/1.2434682
https://doi.org/10.1021/cm048887b
https://doi.org/10.1021/jp8095456
https://doi.org/10.1016/j.jelechem.2016.11.063
https://doi.org/10.1134/S1023193518090070
https://doi.org/10.1016/j.jelechem.2005.12.006
https://doi.org/10.2298/jsc190712128s
https://doi.org/10.5599/jese.707
https://doi.org/10.1016/S1003-6326(18)64835-6


For Review Only

13 

 

electrodeposition from the alkaline electrolytes, J. Electroanal. Chem., 785, 65 (2017). 

https://doi.org/10.1016/j.jelechem.2016.12.024. 

[48] G. Wranglen, Dendrites and growth layers in the electrocrystallization of metals, 

Electrochim. Acta., 2, 130 (1960). https://doi.org/10.1016/0013-4686(60)87010-7. 

[49] M. Kang and A. A. Gewirth, Influence of additives on copper electrodeposition on 

physical vapor Deposited (PVD) Copper Substrates, J. Electrochem. Soc., 150, C426 

(2003). https://doi.org/10.1149/1.1572152. 

[50] B. Luo and X. Li, 3D porous copper films with large specific surface prepared by 

hydrogen bubble template, Asian. J. Chem., 25, 9927 (2013).  

https://doi.org/10.14233/ajchem.2013.15640. 

[51] J. O’ M. Bockris, A. K. N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry 2A, 

Fundamentals of Electrodics, Kluwer Academic/Plenum Publishers, New York, NY, 

USA, (2000), p. 1333.  

[52] R. Bakthavatsalam, S. Ghosh, R. K. Biswas, A. Saxena, A. Raja, M. O. Thotiyl, S. 

Wadhai, A. G. Banpurkar and J. Kundu, Solution chemistry-based nano-structuring of 

copper dendrites for efficient use in catalysis and superhydrophobic surfaces, RSC Adv., 

6, 8416 (2016). https://doi.org/10.1039/c5ra22683j. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Page 13 of 18

https://mc04.manuscriptcentral.com/jes-ecs

Journal of The Electrochemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t

https://doi.org/10.1016/j.jelechem.2016.12.024
https://doi.org/10.1016/0013-4686(60)87010-7
https://doi.org/10.1149/1.1572152
https://doi.org/10.14233/ajchem.2013.15640
https://doi.org/10.1039/c5ra22683j


For Review Only

14 

 

 

Figures 

  

   

a b c 

   

d e f 

Figure 1. Morphologies of Cu deposits produced by the PO regime from 0.15 M CuSO4 in 

0.50 M H2SO4 with A of: a) and b) –1100 mV, c) and d) –1250 mV, and e) and f) –1400 mV. 
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Figure 2. Morphologies of Cu deposits produced by the PO regime from 0.15 M CuSO4 in 

0.50 M H2SO4 with A of –1100 mV and by an addition of chloride ions of: a) and b) 5 mM, c) 

and d) 15 mM, and e) and f) 30 mM HCl. 
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d e f 

Figure 3. Morphologies of Cu deposits produced by the PO regime from 0.15 M CuSO4 in 

0.50 M H2SO4 with A of –1250 mV and by an addition of chloride ions of: a) and b) 5 mM, c) 

and d) 15 mM, and e) and f) 30 mM HCl. 
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Figure 4. Morphologies of Cu deposits produced by the PO regime from 0.15 M CuSO4 in 

0.50 M H2SO4 with A of –1400 mV and by an addition of chloride ions of: a) and b) 5 mM, c) 

and d) 15 mM, and e) and f) 30 mM HCl. 

 

 

 

 
 

a b 

 

Figure 5. a) The cathodic polarization curves for copper electrodeposition from 0.15 M 

CuSO4 in 0.50 M H2SO4, and with an addition of 5, 15 and 30 mM HCl, and b) the 

dependencies of the cathodic Tafel slopes on the concentration of chloride ions. 
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Figure 6. The dependencies of the particle size defined by a length of dendrite stalk (L) on the 

concentration of chloride ions obtained at the various overpotential amplitudes. 

 

 

 

 

 

 

 

a b c 

Figure 7. The SEM micrograph and EDS spectrums obtained from the corresponding parts of 

the Cu dendrites close to their tips. 

 

 

 

Figure 8. XRD pattern of Cu dendrites produced by the PO regime with A of –1250 mV and 

by an addition of chloride ions of 5 mM. 
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