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Abstract 

Nonlinear frequency response (NFR) method, which is an analytical, fast and easy method for evaluating the 
performance of forced periodically operated chemical reactors is used in this, two-part paper, for investigation 
of possible improvements of a non-isothermal continuous stirred tank reactor (CSTR) with simple reaction 
mechanism, when inlet concentration and flow-rate are periodically modulated, separately or simultaneously. 
Product yield corresponding to periodic operations is defined, expressions for its estimation, based on the NFR 
method, are derived for each investigated case and it is used for evaluating the performance improvements 
achieved through periodic operation. In Part I the general non-isothermal case is considered and in Part II, 
these results are applied to the case of an adiabatic CSTR and implemented for evaluation of possible 
improvements for the case of acetic acid anhydride hydrolysis reaction. 
Keywords: Non-isothermal CSTR, Non-linear frequency response, Periodic operation, Product yield increase, 
Two-input modulation  

1. Introduction 

In the last 50 years many theoretical and experimental investigations of periodic operations in 
chemical engineering showed that periodic operations can, in some cases, lead to better average 
performance compared to the optimal steady-state operation [1-17]. The source of the possible 
improvement lies in the process nonlinearity. Chemical reactors have been seen as especially good 
candidates for periodic operations considering their significant nonlinearity [1-17]. A comprehensive 
up-to-date review of investigations on periodic operations of chemical reactors can be found in a 
book edited by Silveston and Hudgins [18]. 

“(Figure 1)” 

In Fig. 1, a schematic representation of forced periodically operated reactor is given in order to 
explain the possible improvements of reactor performance through periodic operations. When one 
or more inputs into the reactor are periodically modulated around their steady-state values, owing to 
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system nonlinearity, the mean values of the outlet reactant and product concentrations can be 
different from their steady-state values. In Fig.1, cA and cP are used to denote the outlet reactant and 
product concentration, respectively. The superscript m is used to denote the mean value and 
subcsript s for steady-state value. The steady-state and periodic operation of a chemical reactor for a 
simple reaction mechanism A→P is presented, for a case when the mean outlet concentration of the 
reactant is lower than its steady-state value and the mean outlet concentration of the product is 
higher (the situation corresponding to higher reactant conversion and product yield). The differences 
between the mean and the steady-state concentrations ΔA and ΔP, shown in Fig. 1, are measures of 
the process improvement. Experimental and numerical simulation approaches for investigations of 
periodically operated processes, which are most commonly used, are rather time consuming and 
costly, considering the fact that the forcing parameters and forcing strategy which should be used 
are completely unknown. A number of theoretical approaches have also been established, but they 
have not been widely applied in practice. Some details about them can be found in [17, 19]. 

In this work, a theoretical, simple and reliable general method for analysis of forced periodically 
operated chemical reactors will be presented, which enables quantitative evaluation of the 
possibility of process improvements through periodic operations, quickly and in early development 
stages [19]. This method is based on the frequency response analysis of weakly nonlinear systems, 
and it is named Nonlinear Frequency Response (NFR) method. 

The first published applications of the NFR method were to evaluate the performance of forced 
periodically operated isothermal CSTRs, isothermal plug flow reactors (PFRs) and isothermal 
dispersed flow tubular reactors (DFTRs) with simple isothermal nth order reaction [20] and for 
isothermal CSTRs with a simple nth order heterogeneous reaction [21], for modulation of the inlet 
reactant concentration. The NFR method was also used for evaluation of forced periodically operated 
isothermal CSTRs with simultaneous modulations of inlet concentration and flow-rate [22], as well as 
non-isothermal CSTRs with single input modulations of inlet concentration and flow-rate [23], inlet 
temperature and temperature of the heating/cooling fluid [24] and simultaneous modulation of inlet 
concentration and inlet temperature [25]. 

The NFR method is meant to be used as a first step for fast screening of possible periodic operations, 
in order to detect processes which should further be investigated experimentally [19]. Unlike 
numerical integrations, the NFR method gives a complete overview of the investigated periodic 
operation, with defined ranges of the forcing parameters (input frequency, amplitude(s) and phase 
differences for two input modulation) which should be used in order to obtain a reactor performance 
improvement [25]. 

In this work, the NFR method is used to investigate the periodic operations of non-isothermal CSTRs 
with modulation of inlet reactant concentration and flow-rate. In this, Part I, the general non-
isothermal case is considered, while in Part II [26] these results are applied to the adiabatic case, with 
illustration on the reaction of acetic anhydride hydrolysis. 

The mathematical foundations and the explanation of the NFR method can be found in our previous 
publications (e.g. in [20] and [19]). Very short recapitulation of the method is given in the next 
section. 

2. The nonlinear frequency response method for fast estimation of the time-
average performance of periodically operated chemical reactors 

First, let us remind that frequency response is actually the periodic steady-state obtained when one 
or more inputs into the system are modulated in a sinusoidal or co-sinusoidal way and that 
frequency response of a weakly nonlinear system (such as a chemical reactor) is a complex periodic 
function [27], which is a sum of the basic harmonic, higher harmonics and a non-periodic (the so-
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called DC) component [4, 27, 19]. The nonlinear model of a weakly nonlinear system can, in the 
frequency domain, be replaced by a set of linear frequency response functions (FRFs) of different 
orders [27], which are directly related to the DC component and different harmonics of the response 
[27, 28]. On the other hand, although the system response contains periodic components, only the 
DC component of the output is responsible for the time-average performance of the periodic 
process. Thus, in order to estimate the time-average behavior of a weakly nonlinear system and 
decide whether the periodic operation is favorable or not, it is enough to evaluate the DC 
component. 

For a single input x which is defined as a single harmonic periodic function with forcing amplitude Ax 
and forcing frequency ω, which is modulated around a previously established steady-state value 
defined with xs: 

𝑥(𝑡) = 𝑥𝑠 + 𝐴𝑥𝑐𝑜𝑠(𝜔𝑡) = 𝑥𝑠 +
𝐴𝑥

2
𝑒𝑗𝜔𝑡 +

𝐴𝑥

2
𝑒−𝑗𝜔𝑡     (1) 

the DC component of the output y can be approximately calculated from the asymmetrical second 
order (ASO) FRF correlating the output and the input x, which we will denote as G2,xx(ω,-ω), in the 
following way [27, 20] 

𝑦𝐷𝐶 ≈ 2(
𝐴𝑥

2
)
2
𝐺2,𝑥𝑥(𝜔,−𝜔)        (2) 

If, besides the input x(t) (Eq. (1)), another  input z(t) is also modulated in a co-sinusoidal way around 
a previously established steady-state value zs, with a forcing amplitude Az, with the same forcing 
frequency ω and a phase difference φ: 

𝑧(𝑡) = 𝑧𝑠 + 𝐴𝑧cos⁡(𝜔𝑡 + 𝜑)        (3) 

the DC component of the output y is given as a sum of contributions of the modulations of inputs x 
and z separately and the cross-effect of both inputs [22, 25]: 

𝑦𝐷𝐶 ≈ 2(
𝐴𝑥

2
)
2
𝐺2,𝑥𝑥(𝜔,−𝜔) + 2 (

𝐴𝑧

2
)
2
𝐺2,𝑧𝑧(𝜔,−𝜔) + 2 (

𝐴𝑥

2
) (

𝐴𝑧

2
)𝐺2,𝑥𝑧

∗ (𝜔, 𝜑)  (4) 

where G2,zz(ω,-ω) is the ASO FRF which correlates the output y to the input z and G*
2,xz(ω,φ) is the 

cross ASO term defined with the following expression, 

𝐺2,𝑥𝑧
∗ (𝜔, 𝜑) = (cos(𝜑) 𝑅𝑒 (𝐺2,𝑥𝑧(𝜔, −𝜔)) + sin⁡(𝜑)𝐼𝑚(𝐺2,𝑥𝑧(𝜔,−𝜔)))   (5) 

The cross ASO term G*
2,xz(ω,φ) is a function of the phase difference and the cross asymmetrical 

second order frequency response function G2,xz(ω,-ω) which correlates the output with both 
modulated inputs [22, 25]. 

Thus, for a weakly nonlinear system with two modulated inputs (x(t) and z(t)) and one output (y(t)), 
the DC component of the output is approximately calculated from the ASO FRFs G2,xx(ω,-ω), G2,zz(ω,-
ω) and G2,xz(ω,-ω), the input amplitudes and the phase difference between the inputs [19, 22, 25]. 
The sign of this DC component shows whether the periodic operation results with process 
improvement or deterioration, and its magnitude is a quantitative measure of the improvement. 

It was shown [22] that interaction of two modulated inputs gives highest contribution and best 
results regarding process improvement when the two inputs are modulated with equal frequencies 
[22]. 

It is also important to notice that the cross-effect of the modulation of two synchronized inputs 
strongly depends on the phase difference between them and its appropriate choice may result in 
significant modifications in the behaviour of the system under forced periodic operation [17, 22 and 
25]. 
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The procedure for applying the NFR method for estimating the time-average performance of a forced 
periodically operated chemical reactor is rather standard and it has been defined in our previous 
publications [19-25]. Here, we apply it to analysis of non-isothermal CSTRs with periodic modlation of 
the reactant feed concentration and flow-rate. Unlike our previous publications in which the analysis 
was based on the mean outlet concentration, here we will focuse on estimating the product yield 
and its possible increase owing to periodic operation. 

For theoretical analysis and derivation of the necessary FRFs it is best to use co-sinusoidal input 
modulations. Nevertheless, the NFR method can be used for any shape of periodic input modulation 
and the derived ASO FRFs can also be used to estimate the output DC component for a general shape 
of the periodic input modulation. From mathematical point of view, the derivation of the ASO FRFs is 
much easier for single harmonic input modulation. 

3. Application of the NFR method on a non-isothermal CSTR with periodic 
modulation of inlet concentration and flow-rate 

In our previous investigations, we used the difference between the mean outlet reactant or product 
concentration and the corresponding steady-state value, as a measure of the process improvement. 
Nevertheless, in the cases when the flow-rate of the reaction stream is modulated, the mean outlet 
molar flow-rate needs to be analyzed in order to get proper information about the performance 
improvement. Therefore, in this section we are going to derive and analyze the ASO FRFs 
corresponding to the outlet molar flow-rate of the product, as well as the corresponding DC 
components. Further, we will define the product yield corresponding to the periodic operations, 
which will be used for evaluating of the reactor performance improvement. 

3.1. Derivation of the ASO FRFs 
The starting point of the derivation procedure is setting up the model equations. A general case of a 
non-isothermal CSTR is considered, with a simple, irreversible, homogeneous nth order chemical 
reaction, A→νPP with a rate law 

𝑟 = 𝑘𝑜𝑒
−⁡
𝐸𝐴
𝑅𝑇𝑐𝐴

𝑛          (6) 

In this work we start from the dimensionless form of the mathematical model, which has been 
developed in our previous publications [23, 24 and 25]. The model consists of the reactant and 
product material balances and energy balance and, for the case when the only modulated inputs are 
the inlet concentration and flow-rate it is reduced to the following equations: 

𝑑𝐶𝐴
𝑑𝜏

= (1 + 𝛼)𝐶𝐴𝑖 + (1 + 𝛼)Φ𝐶𝐴,𝑖 − (1 + 𝑛𝛼)𝐶𝐴 − 𝛼𝛾𝜃 + 𝛼Φ −Φ𝐶𝐴

− 𝛼 (𝑛𝛾𝐶𝐴𝜃 + (
𝛾2

2
− 𝛾) 𝜃2 +

1

2
𝑛(𝑛 − 1)𝐶𝐴

2 +⋯) 

           (7) 

𝑑𝐶𝑃
𝑑𝜏

= 𝑛𝐶𝐴 − 𝐶𝑃 + 𝛾𝜃 − Φ−Φ𝐶𝑃 + (𝑛𝛾𝐶𝐴𝜃 + (
𝛾2

2
− 𝛾) 𝜃2 +

1

2
𝑛(𝑛 − 1)𝐶𝐴

2 +⋯) 

           (8) 

𝑑𝜃

𝑑𝜏
= −(1 + 𝑆𝑡 + 𝛽𝛾)𝜃 − 𝑛𝛽𝐶𝐴 + (𝛽 + 𝑆𝑡 − 𝛿)Φ −Φθ

− 𝛽 (𝑛𝛾𝐶𝐴𝜃 + (
𝛾2

2
− 𝛾)𝜃2 +

1

2
𝑛(𝑛 − 1)𝐶𝐴

2 +⋯) 

           (9) 
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The dimensionless variables used in Eqs. (7-9) are defined in Tab. 1. 

“(Table 1)” 

In Eqs. (7, 8 and 9) all nonlinear terms have been replaced by their Taylor series expansions (only the 
first and second order terms are shown), and a set of auxiliary parameters: 

𝛼 =⁡𝑘𝑜𝑒
−
𝐸𝐴
𝑅𝑇𝑠𝑐𝐴,𝑠

𝑛−1 𝑉

𝐹𝑠
, 𝛽 =

∆𝐻𝑅𝑘𝑜𝑒
−
𝐸𝐴
𝑅𝑇𝑠𝑐𝐴,𝑠

𝑛

𝜌𝑐𝑝̅̅ ̅𝑇𝑠

𝑉

𝐹𝑠
, ⁡𝛿 =

𝑈𝐴𝑤𝑇𝐽

𝐹𝑠𝜌𝑐𝑝̅̅ ̅𝑇𝑠
, ⁡𝛾 =

𝐸𝐴

𝑅𝑇𝑠
, S𝑡 =

𝑈𝐴𝑤

𝐹𝑠𝜌𝑐𝑝̅̅ ̅
 (10) 

have been introduced. The meanings of the notations used in Tab. 1,Eqs.(6) and (10) are: t is time, ωd 
the dimensional frequency of modulated input(s), cAi, cA and cP are the inlet and outlet reactant 
concentrations and the outlet product concentration, respectively, T is temperature in the reactor, TJ 
temperature of the cooling/heating fluid in the jacket, F the flow-rate of reaction stream, V the 
reactor volume, ΔHR is the heat of reaction, where ko the pre-exponential factor in the Arrhenius 
equation, EA activation energy and R the universal gas constant, U the overall heat transfer 
coefficient, Aw the heat transfer area, ρ density and 𝑐𝑝̅ heat capacity. Subscript s denotes the steady-

state values. 

The nonlinear frequency response method is applicable only for stable systems, so stability analysis 
needs to be performed before applying it. Some details of the stability analysis for a general case of a 
non-isothermal reactor can be found in our previous publications [23-25], and here only the final 
results are given. The non-isothermal CSTR will be stable if the following conditions are met:  

𝐴𝑝𝑠 = −
(2+𝑛𝛼+𝑆𝑡+𝛽𝛾)

2
< 0        (11) 

𝐵𝑝𝑠 = (1 + 𝑛𝛼 + 𝛽𝛾 + 𝑛𝛼𝑆𝑡 + 𝑆𝑡) > 0      (12) 

The investigated non-isothermal CSTR represents the system with two inputs (inlet reactant 
concentration and flow-rate) and three outputs (outlet reactant and product concentrations and 
outlet temperature). The derivation procedure of the ASO FRFs is rather standard [19-25] and for the 
current case it is very similar to the procedure used in [25]. As a result, several sets of FRFs are 
obtained, relating the outlet reactant and product concentrations and outlet temperature to the inlet 
reactant concentration and flow-rate.  

In order to analyze the outlet molar flow-rate of the product and its DC component, it is necessary to 
derive the ASO FRFs corresponding to this output, as well. Using the dimensionless variables defined 
in Tab. 1, the dimensionless outlet product molar flow-rate can be easily related to the dimensionless 
outlet product concentration and flow-rate, in the following way: 

𝑁𝑃 = Φ+ 𝐶𝑃 +Φ𝐶𝑃         (13) 

Starting from this equation, it easy to establish the relations between the ASO FRFs corresponding to 
the product molar flow-rate (which will be denoted as HP-functions) and to the product 
concentration (which will be denoted as GP-functions, as in our previous publications): 

𝐻𝑃2,𝐶𝐶(𝜔,−𝜔) = 𝐺𝑃2,𝐶𝐶(𝜔,−𝜔)       (14) 

𝐻𝑃2,𝐹𝐹(𝜔,−𝜔) = 𝐺𝑃2,𝐹𝐹(𝜔,−𝜔) +
1

2
(𝐺𝑃1,𝐹(𝜔) + 𝐺𝑃1,𝐹(−𝜔))   (15) 

𝐻𝑃2,𝐶𝐹(𝜔,−𝜔) = 𝐺𝑃2,𝐶𝐹(𝜔,−𝜔) + 𝐺𝑃1,𝐶(𝜔)     (16) 

In Eqs. (14-16) the subscript CC corresponds to inlet concentration modulation, FF to flow-rate 
modulation, CF to the cross-effect of both inputs and 1 for the first order FRFs. 

Owing to space limitations, here we give only these final ASO FRFs:  



www.cet-journal.com  Page 6 Chemical Engineering & Technology 
 

 
This article is protected by copyright. All rights reserved. 

 
 

𝐻𝑃2,𝐶𝐶(𝜔,−𝜔) = 𝐺𝑃2,𝐶𝐶(𝜔,−𝜔) =
(1 + 𝛼)2(1 + 𝑆𝑡)

2𝐵𝑝𝑠
×

Λ1𝜔
2 + Λ2

(𝐵𝑝𝑠 −𝜔2)
2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (17) 

where Λ1 and Λ2 are auxiliary functions defined as: 

Λ1 = 𝑛(𝑛 − 1)         (18) 

Λ2 = 𝑛2((1 + 𝑆𝑡)2 − 2𝛽2𝛾) − 𝑛(1 + 𝑆𝑡 + 𝛽𝛾)2     (19) 

𝐻𝑃2,𝐹𝐹(𝜔,−𝜔) =
1

2𝐵𝑝𝑠
×

Ω1𝐻𝜔
2 + Ω2𝐻

(𝐵𝑝𝑠 −𝜔2)
2
+ 4𝐴𝑝𝑠

2 𝜔2
 

           (20) 

with the auxiliary functions Ω1H and Ω2H which are defined as follows  

Ω1𝐻 = −𝑛𝛼2(𝑛 + 1)(1 + 𝑆𝑡) − 2𝑛𝛼(1 + 𝑆𝑡 + 𝛽𝛾) + 𝛾(𝛾 − 2)(1 + 𝑆𝑡)(𝛽 + 𝑆𝑡 − 𝛿)2 − 2𝛾(1 + 𝑆𝑡
+ 𝛽𝛾)(𝛽 + 𝑆𝑡 − 𝛿) 

           (21) 

Ω2𝐻 = (1 + 𝑆𝑡) (𝑛𝛼(1 + 𝑆𝑡 − 𝛾(𝑆𝑡 − 𝛿)) + 𝛾(𝛽 + (1 + 𝑛𝛼)(𝑆𝑡 − 𝛿)))
2

− 2𝐵𝑝𝑠 (𝑛𝛼(1 + 𝑆𝑡 − 𝛾(𝑆𝑡 − 𝛿)) + 𝛾(𝛽 + (1 + 𝑛𝛼)(𝑆𝑡 − 𝛿)))

− 𝑛𝛼2(1 + 𝑆𝑡)(1 + 𝑆𝑡 − 𝛾(𝑆𝑡 − 𝛿))
2
− 2𝛾(1 + 𝑆𝑡)(𝛽 + (𝑆𝑡 − 𝛿)(1 + 𝑛𝛼))

2
 

           (22) 

𝐻𝑃2,𝐶𝐹(𝜔,−𝜔) =
𝑛(1 + 𝛼)

𝐵𝑝𝑠
×

Γ𝑅𝐻+𝑗𝜔Γ𝐼𝐻

((𝐵𝑝𝑠 −𝜔2)
2
+ 4𝐴𝑝𝑠

2 𝜔2)
 

           (23) 

with the auxiliary functions ΓRH and ΓIH defined as 

Γ𝑅𝐻 = (1 + 𝑆𝑡) ((𝐵𝑝𝑠 −𝜔2)
2
+ 4𝐴𝑝𝑠

2 𝜔2) − (1 + 𝑆𝑡) ((1 + 𝑆𝑡 + 𝛽𝛾)(𝐵𝑝𝑠 −𝜔2) − 2𝐴𝑝𝑠𝜔
2)

+ 𝛽𝛾(𝐵𝑝𝑠 −𝜔2)

+ (1 + 𝑆𝑡) (𝜔2(𝛾(𝛽 + 𝑆𝑡 − 𝛿) + 𝛼(𝑛 − 1)) + 𝑛𝛼((1 + 𝑆𝑡)2 + 2𝛽𝛾(𝑆𝑡 − 𝛿))

− 𝛼(1 + 𝛽𝛾 + 𝑆𝑡)(1 + 𝑆𝑡 − 𝛾(𝑆𝑡 − 𝛿)) + 𝛾(𝛽 + 𝑆𝑡 − 𝛿)(1 + 𝑆𝑡 + 2𝛽)) 

           (24) 

Γ𝐼𝐻 = (1 + 𝑆𝑡)𝜔2 + 𝑛𝛼𝛽𝛾𝑆𝑡 + (1 + 𝑆𝑡)2 + 𝛽𝛾𝑆𝑡 + 𝛾(1 + 𝑆𝑡)(𝛽 + 𝑆𝑡 − 𝛿)(𝛼 − 𝑆𝑡 − 2𝛽) 

           (25) 

3.2. The DC component of the outlet molar flow-rate of the product 
The DC component of the dimensionless product molar flow-rate is defined as 

𝑁𝑃,𝐷𝐶 =
(𝐹(𝑡)𝑐𝑃(𝑡))

𝑚−𝐹𝑠𝑐𝑃,𝑠

𝐹𝑠𝑐𝑃,𝑠
        (26) 

where the superscript m is used to denote the mean value. The approximations of the DC component 
of the product molar flow-rate, based on the second order approximation are: 

For modulation of the inlet reactant concentration: 
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𝑁𝑃,𝐷𝐶 ≈ 2(
𝐴𝐶

2
)
2
𝐻𝑃2,𝐶𝐶(𝜔, −𝜔) = 2 (

𝐴𝐶

2
)
2
𝐺𝑃2,𝐶𝐶(𝜔,−𝜔)    (27) 

For modulation of the flow-rate: 

𝑁𝑃,𝐷𝐶 ≈ 2(
𝐴𝐹

2
)
2
𝐻𝑃2,𝐹𝐹(𝜔,−𝜔)       (28) 

For simultaneous modulation of the inlet concentration and flow-rate: 

𝑁𝑃,𝐷𝐶 ≈ 2(
𝐴𝐶

2
)
2
𝐺𝑃2,𝐶𝐶(𝜔,−𝜔) + 2 (

𝐴𝐹

2
)
2
𝐻𝑃2,𝐹𝐹(𝜔,−𝜔) + 2 (

𝐴𝐶

2
) (

𝐴𝐹

2
)𝐻𝑃2,𝐶𝐹

∗ (𝜑,𝜔) (29) 

where the cross ASO term H*
P2,CF(φ,ω) is defined as 

𝐻𝑃2,𝐶𝐹
∗ (𝜑,𝜔) = cos(𝜑)𝑅𝑒(𝐻𝑃2,𝐶𝐹(𝜔, −𝜔)) + sin⁡(𝜑)⁡𝐼𝑚(𝐻𝑃2,𝐶𝐹(𝜔,−𝜔)) (30) 

 

3.3. Product yield for a periodic process with modulation of the inlet concentration 
and flow rate 
One of the best measures of a reactor performance is the product yield. In general, the product yield 
for a chemical reaction of the type A→νPP, corresponding to a periodic operation, can be defined in 
the following way: 

𝑌𝑃,𝑝𝑜 =
1

𝜈𝑃

(𝐹(𝑡)𝑐𝑃(𝑡))
𝑚

(𝐹(𝑡)𝑐𝐴𝑖(𝑡))
𝑚         (31) 

For periodic operations without flow-rate modulation, this expression reduces to: 

𝑌𝑃,𝑝𝑜 =
1

𝜈𝑃

𝑐𝑃
𝑚

𝑐𝐴𝑖,𝑠
          (32) 

while for cases when the flow-rate is the only modulated input, it becomes: 

𝑌𝑃,𝑝𝑜 =
1

𝜈𝑃

(𝐹(𝑡)𝑐𝑃(𝑡))
𝑚

𝐹𝑠𝑐𝐴𝑖,𝑠
         (33) 

For simultaneous modulation of the inlet concentration and flow-rate the general expression (Eq. 
(31)) needs to be used, as the mean value of the inlet molar flow rate of the reactant can be different 
than its steady-state value.  

The product yield corresponding to a periodic operation can expressed as a function of the yield 
corresponding to the steady-state operation (YP,s) and the DC component of the dimensionless 
product molar flow-rate. For the cases of modulations of single inputs, inlet concentration or flow-
rate, the following relation can easily be derived: 

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠(1 + 𝑁𝑃,𝐷𝐶)        (34) 

For single input modulation of inlet concentration or flow-rate, the increase of the product yield will 
be achieved if the DC components of the product molar flow-rates are positive, i.e. if the 
corresponding ASO FRF has a positive sign [19].  

Nevertheless, when the inlet concentration and flow-rate are modulated simultaneously, the 
dimensionless inlet molar flow-rate of the reactant 

𝑁𝐴𝑖 =
𝐹(𝑡)𝑐𝐴,𝑖(𝑡)−𝐹𝑠𝑐𝐴𝑖,𝑠

𝐹𝑠𝑐𝐴𝑖,𝑠
         (35) 

is also a periodic function, with a mean value which is, in principle, different from 0: 

(𝑁𝐴𝑖)
𝑚 = 2(

𝐴𝐶

2
) (

𝐴𝐹

2
) cos⁡(𝜑)       (36)  
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and depends on the phase difference φ. In that case, the product yield of the periodic process can be 
evaluated in the following way: 

𝑌𝑃,𝑝𝑜 = 𝑌𝑃,𝑠
(1+𝑁𝑃,𝐷𝐶)

(1+2(
𝐴𝐶
2
)(

𝐴𝐹
2
)cos⁡(𝜑))

       (16) 

For simultaneous modulation of any two inputs, it is possible to find the optimal phase difference 
which maximizes or minimizes the DC component of interest, which is a function of frequency [22, 
25]. Nevertheless, if the product yield would be maximized for the case with simultaneous 
modulation of inlet concentration and flow-rate, this optimal phase difference would depend on the 
chosen input amplitudes. In this case, it is possible to find a set of optimal forcing parameters (both 
input amplitudes and the phase difference) that maximizes the product yield. 

4. Numerical example 

As illustration, we show some simulation results, for an exothermal reactor with a first-order 
reaction, taken from of a textbook by Douglas [4]. This example was already used in [25]. The model 
parameters are: νP=1, V=1.439 m3, ko =4.3177 105 min-1, EA=50242 kJ kmol-1, 𝜌𝑐𝑝̅̅ ̅̅ ̅=4186.8 kJm-3K-1, 

ΔHR=-50242 kJ kmol-1, Fs=0.0238 m3 min-1,cAi,s=5 kmol m-3, 

Ti,s =300 K, TJ,s=400 K, U=101.8 kJm-2K-1min-1,Aw=1.073 m2. 

In Fig. 2, the ASO FRFs GP2,CC(ω,-ω) and HP2,FF(ω,-ω) corresponding to the single input modulation of 
inlet concentration and flow-rate, are graphically presented as functions of the dimensionless forcing 
frequency. 

“(Figure 2)” 

It is expected to achieve improvement of the reactor performance for the inlet concentration 
modulation (GP2,CC(ω,-ω)>0), which is most significant for the low-frequency modulation. Single input 
modulation of the flow-rate will deteriorate the reactor performance 

(HP2,FF(ω,-ω)>0). From Fig. 2, it can be also seen that both ASO FRFs tend to asymptotic values for the 
low-frequency modulation and tend to zero for high-frequency modulation. 

The real and imaginary parts of the cross ASO FRF HP2,CF(ω,-ω) are graphically presented in Fig. 3 (a) 
and (b), respectively, as functions of dimensionless forcing frequency. 

“(Figure 3)” 

The optimal forcing amplitudes and optimal phase difference which maximize the product yield for 
simultaneous modulation of inlet concentration and flow-rate (Eq. 37) are graphically presented in 
Fig. 4 (a) and (b), respectively, as functions of dimensionless forcing frequency. 

“(Figure 4)” 

As illustration, for optimal forcing parameters, the product yields for separate and simultaneous 
modulation of inlet concentration and flow-rate are given in Fig. 5 as functions of the dimensionless 
forcing frequency. Let us remind that the product yield for steady-state is 0.70 (YP,s=0.70). 

“(Figure 5)” 

The reactor can be improved by simultaneous modulation of inlet concentration and flow-rate when 
optimal forcing parameters are used in the whole frequency range. The increase of product yield for 
low-frequency simultaneous modulation of these two-inputs and for single input modulation of inlet 
concentration is practically identical. On the other hand, for high-forcing frequency, the increase of 
product yield is obtainable in spite the fact that high-frequency single input modulations have no 
effect on the reactor performance. 
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The approximate product yields owing to simultaneous modulation of the inlet concentration and 
flow-rate with optimal forcing parameters are compared with the results of numerical simulation for 
forcing frequencies ω=0.1, 1 and 10 and given in Tab. 2. The product yields together with their 
relative changes (ΔYP,po) owing to periodic operation are given in Tab. 2 as well as the relative errors 
(δY) of the NFR method. 

“(Table 2)” 

It can be concluded that the NFR method gives excellent predictions, considering the values of the 
relative errors (Tab.2). 

5. Conclusions 

The possibility of improvement of a general non-isothermal CSTR with homogeneous, irreversible, 
simple nth order reaction A→νPP when inlet concentration and flow-rate are separately or 
simultaneously modulated can be evaluated from the derived ASO FRFs corresponding to the outlet 
molar flow rate of the product (HP2,CC(ω,-ω) and HP2,FF(ω,-ω)) and cross ASO FRF (HP2,CF(ω,-ω)).  

In this work, the product yield is used as a measure of the reactor performance improvement 
through periodic operation. When the flow-rate is one of the modulated inputs the yield has to be 
defined as a ratio of the molar flow rates, instead of concentrations. For the case of simultaneous 
modulation of the inlet concentration and flow-rate, the mean value of the inlet molar flow rate of 
the reactant is different from its steady-state and depends on the input amplitudes and the phase 
difference between the inputs. As a consequence, the optimal phase difference depends on the input 
amplitudes, i.e., an optimal set of forcing parameters (the amplitudes of both inputs and the phase 
difference) can be found. 

The analytical results derived in this work were illustrated using a numerical example of an 
exothermal reactor, taken from literature. Comparison of the approximate product yields estimated 
by the NFR method with the values obtained by numerical integration showed excellent agreement.  
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List of symbols 

Latin symbols 
A input amplitude 

Aps stability parameter 

Aw [m2] heat transfer area 

Bps stability parameter 

c [kmol m-3] concentration 

C dimensionless concentration 

𝑐𝑃̅̅ ̅ [kJ kg-1K-1] heat capacity 

EA [kJ kmol-1] activation energy 

F [m3 min-1] volumetric flow-rate 

ko [min-1] pre-exponential factor in Arrenius equation 

n reaction order 
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N dimensionless molar flow-rate  

R [kJ mol-1K-1] universal gas constant 

St Stanton number 

t [min] time 

T [K] temperature 

U [kJ K-1min-1m-2] overall heat transfer coefficient 

V [m3] volume of the reactor 

x input 

y output 

YP [%, -] yield of product 

z input 

Greek symbols 
Φ dimensionless volumetric flow-rate 

α auxiliary parameter 

β auxiliary parameter 

γ auxiliary parameter 

δ auxiliary parameter 

δY [%] relative error 

θ dimensionless temperature 

νP stoichiometric coefficient of the product P 

ρ [kg m-3] density 

τ dimensionless time 

τres [min] residence time 

φ [rad] phase difference 

ω dimensionless forcing frequency 

ωd [rad s-1] dimensional forcing frequency 

ΔHR [kJ kmol-1] heat of reaction 

Subscripts 
A reactant 

C, CC corresponding to modulation of the inlet concentration 

CF corresponding to modulation of the inlet concentration and flow-rate 

DC non-periodic term 

F, FF corresponding to modulation of flow-rate 

i inlet 

J heating/cooling fluid in the jacket 
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opt corresponding to optimal forcing variable 

P product 

s steady-state 

x, xx corresponding to input x 

z, zz corresponding to input z 

xz corresponding to inputs x and z 

Superscripts 
m mean 

Abbreviations 
ASO asymmetrical second order 

CSTR continuous stirred tank reactor 

FRF frequency response functions 

NFR nonlinear frequency response 

num numerical 
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Tables with headings 

Table 1 Definition of dimensionless variables 

Dimensionless variable Definition 

Inlet reactant concentration 𝐶𝐴𝑖 =
𝑐𝐴𝑖(𝑡) − 𝑐𝐴𝑖𝑠

𝑐𝐴𝑖𝑠
 

Flow-rate Φ =
𝐹(𝑡) − 𝐹𝑠

𝐹𝑠
 

Outlet reactant concentration 𝐶𝐴 =
𝑐𝐴(𝑡) − 𝑐𝐴,𝑠

𝑐𝐴,𝑠
 

Outlet product concentration 𝐶𝑃 =
𝑐𝑃(𝑡) − 𝑐𝑃,𝑠

𝑐𝑃,𝑠
 

Outlet molar flow-rate of the product 𝑁𝑃 =
𝐹(𝑡)𝑐𝑃(𝑡) − 𝐹𝑠𝑐𝑃,𝑠

𝐹𝑠𝑐𝑃,𝑠
 

Temperature θ =
𝑇(𝑡) − 𝑇𝑠

𝑇𝑠
 

Time 𝜏 =
𝑡

𝑉/𝐹𝑠
 

Frequency 𝜔 = 𝜔𝑑

𝑉

𝐹𝑠
 

 

Table 2 Product yields for simultaneous modulation of the inlet concentration and flow-rate with 
optimal forcing parameters estimated by numerical simulation and by the NFR method and the 
relative errors of the NFR method 

ω AC(%) AF (%) φopt (rad) 
YP,po (%) 

δY (%) 
ΔYP,po (%) 

num NFRM num NFRM 

0.1 

100 

2.05 0 79.92 81.63 +2.14 +14.17 +16.61 

1 0 0 78.38 80.23 +2.36 +11.97 +14.61 

10 100 0.6151 79.13 77.35 -2.25 +13.04 +10.5 
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Figure legends 

 

Figure 1 Illustration of a forced periodically operated reactor 
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Figure 2 The ASO FRFs GP2,CC(ω,-ω) and HP2,FF(ω,-ω) as functions of the dimensionless forcing 
frequency 

 

Figure 3 The real (a) and imaginary (b) parts of the cross ASO FRF HP2,CF(ω,-ω) as functions of the 
dimensionless forcing frequency 
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Figure 4 The optimal forcing amplitudes (a) and optimal phase difference (b) for simultaneous 
modulation of inlet concentration and flow-rate vs. dimensionless forcing frequency 
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Figure 5 Yields of the product for the steady-state operation and for separate and simultaneous 
modulation of inlet concentration and flow-rate with optimal forcing parameters as functions of the 
dimensionless forcing frequency 
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TOC 

The nonlinear frequency response method is used for evaluation of possible improvement of a non-
isothermal CSTR, through forced periodic operation. It is shown that simultaneous modulation of 
inlet concentration and flow-rate can lead to significant improvement. Optimal forcing parameters 
(input amplitudes and phase difference) maximizing the product yield are defined. Significant 
increase of the product yield for low and high frequencies is obtained. 

 

 

 

 

 

 

 

 

 


