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Abstract 

In this study, development of folic acid-loaded liposomes using a basic amino acid, histidine as 

a solubilizing agent for folic acid was presented, which tackled the poor solubility of this 

vitamin. The effect of the liposomal membrane modifiers, cholesterol and SPAN 20 on the 

characteristics of the final formulations was examined. Liposomes prepared from a 

commercially available purified soybean lecithin (Phospholipon 90G) by proliposome method 

were between 503 and 877 nm in average diameter, where cholesterol induced enlargement 

and SPAN.20 reduction of vesicles. High encapsulation efficiency of 84% and drug loading of 

0.123 mg g–1 were achieved, irrespective to the composition. According to AFM images, folic 

acid-loaded liposomes of a fraction with a nano size were flattened compared to globular empty 

liposomes. FTIR analysis revealed possible interactions between phospholipids and histidine, 

while DSC study suggested interactions between folic acid and lipids during heating. Release 

study done by a Franz diffusion cell showed prolonged release of folic acid from liposomes and 

the release rate was determined by folic acid solubility. 

                                              

*Corresponding author: D. Ž. Mijin (kavur@tmf.bg.ac.rs), (tel: +381113303671, fax: 
+381113370387)  
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1. Introduction 

Folic acid (UIPAC name (2S)-2-[(4-{[(2-amino-4-hydroxypteridin-6-yl)methyl]amino}-

phenyl)formamido]pentanedioic acid) is a member of the Vitamin B family and necessary for 

the healthy function of a variety of bodily processes. The chemical structure of folic acid is 

shown in Figure 1A. Folic acid deficiency can induce variety of diseases like megaloblastic 

anemia, neural tube defects and cancer. Nowadays, the prevalence of folate deficiency has 

decreased since many countries in the western hemisphere introduced a mandatory folic acid 

food fortification program starting in the late 1990s. The recommended daily intake is 400 µg 

for an adult and an additional 800 µg for pregnant women. Currently, there are no established 

risks for adverse consequences resulting from existing mandatory folic acid fortification 

programs that have been implemented in many countries (Field and Stover, 2018). In addition, 

folic acid can be used against dermal intrinsic aging as it improves viability of UV-damaged 

skin cells by modulation of DNA repair mechanism (Ammar et al., 2016; Debowska et al., 

2005). However, there is more than one problem associated with folic acid consumption. 

Firstly, folic acid is easily oxidized by oxygen or air at a relatively high temperature and 

humidity during the processing and storage (Qin et al., 2014). Secondly, folic acid has low 

solubility, 1.6 mg l-1 in water and the biological milieu. Consequently, after administration folic 

acid can display poor absorption and poor bioavailability often below the therapeutic threshold. 

Thirdly, when administrated topically, low uptake happens due to the barrier function of the 

stratum corneum and the absorption to the systemic circulation is low. Therefore, scientists 

have been developing new formulations of folic acid to enhance its solubility and bioavailability 

and/or to overcome the skin barrier and increase drug transport across the skin (Acavedo-Fani 

et al., 2018; Ammar et al., 2016; Barat et al., 2011; Jiao et al., 2018; Kapoor et al., 2018; 

Penalva et al., 2014). Among these few formulations, liposomes based on GRAS-labeled soya 

phosphatidylcholine seem to be most promising in delivery of folic acid. This study is aimed at 

taking a further step in developing liposomal delivery systems of folic acid. As a divergence 

from previous reports, proliposome method is applied for liposomes preparation, as an 

alternative to other conventional methods (e.g. thin lipid method), since it can be easily adopted 

to large scale production. Secondly, a commercial phospholipid mixture is used as alternative 

to pure lipids since mixtures containing impurities have far lower prices thus are suitable for 

large scale productions (Jovanović et al., 2018). Thirdly, in order to overcome a problem of low 

solubility of folic acid, a basic amino acid, histidine (Figure 1B), was used to have a role of 



3 
 

solubilizing agent. Histidine is an essential amino acid used by the body for manufacturing 

histamine, which is responsible for a wide range of physiological processes. People use 

histidine as medicine for treatment of rheumatoid arthritis, allergic diseases, ulcers and 

anemia caused by kidney failure or kidney dialysis (Fawzy et al., 2014). Its deficiency can cause 

poor hearing. Doses of up to 4 grams per day have been used in research without causing 

noticeable side effects. 

 

Figure 1. Chemical structures of folic acid (A), histidine (B), cholesterol (C) and SPAN 20 (D) 

The aim of this study was to investigate possibilities for adjusting the composition of 

bilayer membrane by using cholesterol or a surfactant (SPAN 20) as a tool to control delivering 

efficiency for folic acid. Namely, cholesterol (Figure 1C) is used in liposomes to modulate 

membrane fluidity and enhance stability of phospholipids bilayer (Jovanović et al., 2018). On 

the other hand, surfactants such as SPAN 20 (Figure 1D) contribute to elasticity of liposomal 

bilayers and their transdermal delivery efficiency (Chou, 2015; Malvey et al., 2019). However, it 

should have in mind that the international use of Span is limited due to safety concerns. 

Precisely, in European Union and Switzerland Span 20 is one of commercially utilized common 

surfactants (food emulsifiers and stabilizers) with an E-number 493 and acceptable daily 

intake of up to 25 mg/kg bodyweight. However, it is banned in some parts of world (Australia), 

since surfactants do have some toxicity (they harm the enzyme activity and thus disturb the 

body's normal physiological function) and may accumulate in the human body (Yuan et al., 

2014). Therefore, it is important to investigate whether Span would enhance (and to what 

extent) liposomal delivery system of FA, or would be better to avoid it. In this study the effects 

of cholesterol and SPAN 20 on liposomes size, morphology and release properties were 

investigated. In complex systems such as liposomes containing both, folic acid and histidine, 

and modified by cholesterol or a surfactant, interactions between such many constituents may 
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have effects on the end properties. Therefore, the interactions were investigated by ATR-IR and 

DSC analysis. 

2. Materials and methods 

2.1. Materials 

Phospholipon 90G – P90G (commercial lipid mixture which contains pure 

phosphatidylcholine (PC) 94.0-102.0%; lysophosphatidylcholine 4.0%; tocopherol 0.3% 

stabilized with ascorbyl palmitate 0.1%) was purchased from the Phospholipid GmBH, 

Germany. Folic acid (FA) and phosphate salts for preparing phosphate buffer were obtained 

from the Sigma Aldrich, Germany. Acetonitrile, HPLC grade was purchased from Chem-Lab NV, 

Zedelgem, Belgium. SPAN 20 (surface active compound – SPAN 20), cholesterol (CHOL) and 

amino acid L-histidine (HIS) were obtained from Sigma Aldrich, USA.  

2.2.  Methods 

2.2.1. Preparation of liposomes  

Liposomes were prepared using proliposome method defined and developed by Perret's 

model, with few modifications (Perret et al., 1993). P90G, ethanol and water in the mass ratio 

1:1:2 were stirred at 600 rpm for five minutes at 60 �. After that, the mixture was cooled to 

room temperature (20 �). Further, the mixture was hydrated using the solution of folic acid 

(FA) dissolved in histidine (HIS) aqueous solution (8 mg ml-1) at concentration of 0.16 mg ml-1. 

The hydration step was performed by adding 4.7 ml of hydrating medium to 0.1 g of lipids at 

room temperature (20 �) with stirring at 800 rpm for 60 minutes. In this way liposomes 

containing histidine with incorporated folic acid were prepared (LIP-HIS-FA). Liposomes 

containing only histidine (LIP-HIS) and empty liposomes (LIP) were prepared by the same 

method, by using histidine aqueous solution (without folic acid) and distilled water, 

respectively, as a hydrating medium.  

For the preparation of folic-acid loaded liposomes containing cholesterol (LIP-CHOL-

HIS-FA), cholesterol was added to the initial mixture in molar ratio 1:4 (CHOL:P90G). 

For the preparation of folic-acid loaded liposomes containing SPAN 20 (LIP-SPAN 20-

HIS-FA), the surfactant was added to the initial mixture in molar ratio 1:4 (SPAN 20:P90G). 

 

2.2.2. Liposomes size and stability 

Liposomes suspensions were analyzed using Malvern Zetasizer Nano ZS (Malvern 

Instruments, Worcestershire, United Kingdom). The average size of liposomal particles, index of 

polydispersity (PDI) and zeta potential were measured immediately after the preparation of 
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liposomes. Liposomes suspensions were diluted with water fifty times before each 

measurement. Also, the liposomes suspensions stability was monitored at the 1st, 7th, 20th and 

30th day after the first measurement (Isailović et al., 2013). During the period, liposomes 

suspensions were stored at 4 �, in the refrigerator.  

2.2.3. Determination of encapsulation efficiency and loading capacity 

The encapsulation efficiency of FA loaded liposomes was determined similarly as 

described by Rawia Khalil et al. (2017). In brief, one milliliter of liposome suspension was 

transferred into Eppendorf cuvette and centrifuged in three cycles for 15 minutes (4°C, 17000 

rpm). The encapsulation efficiency was determined by measuring concentration of FA in the 

supernatant. The FA concentration was defined spectrophotometrically at a wavelength of 280 

nm. The encapsulation efficiency was calculated using the equation 1. 

 

EE �%�=
(mI – mSN)

mI
·100         (1) 

where the �� was initial amount of FA used for liposomes preparation, while the ��� was the 

amount of FA in supernatant after centrifugation [30]. The loading capacity was expressed as 

loaded drug/lipid ratio (mg g-1).  

2.2.4. ATR-IR measurements 

For the ATR-IR measurements, liposome suspension (1 ml) was placed on the glass 

plate, (76x26x1mm) and dried in nitrogen atmosphere for 1500 minutes (Krilov et al., 2014). A 

small tube was constructed which provided a constant flow of nitrogen. The glass plate, with 

the sample was fixed inside the tube, so the nitrogen could easily flow over the surface of the 

plate and directly dry the liposome suspension. When the sample was dried, a small amount of 

the sample was subjected to ATR-IR analysis (Thermo Fisher Scientific, Madison, USA, model: 

NICOLET iS10).  

2.2.5. Atomic force microscopy (AFM) 

The surface morphology was investigated by atomic force microscopy with Nano Scope 

3D (Veeco, USA) microscope operated in tapping mode under ambient conditions. Etched 

silicon probes with spring constant 20-80 Nm-1 were used. Before the morphological 

examinations, mica substrate was mechanically polished with adhesive tape. 10 µl of operated 

suspensions of liposome were deposited on polished mica substrate and dried on air for 20 

minutes.  
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2.2.6. Differential scanning calorimetry (DSC)  

DSC analysis was used in order to examine possible interactions between constituents. 

Certain amount (2-6 mg) of each lyophilized sample (pure folic acid, histidine, plain liposomes, 

liposomes containing histidine and folic acid-loaded liposomes) was weighted and put in the 

aluminum pans. Aluminum pans were hermetically sealed. DSC analysis was performed using 

DSC 131 EVO (SETARAM Instrumentation, Caluire France). As the reference sample an empty 

aluminum pan was used. The pan with sample, as well as the reference one, were placed in 

DSC chamber and heated in the temperature range from -20 to 350 °C, with the exception of 

pure folic acid and histidine which were heated from room temperature to 350 °C. The heating 

rate was constant, about 10 °C per minute, while the flow of nitrogen gas was 20 ml per 

minute. Also, the baseline was adjusted by using two empty aluminum pans, under the same 

conditions.  

2.2.7. Release studies of FA from liposomes 

The release studies were done using a Franz diffusion cell. The volume of 2 ml of liposome 

suspension (0.016 mg ml-1) was placed in donor section of the cell, and 20 ml of phosphate 

buffer (0.1 mol l-1, pH 5.5 or 7) was used to fill acceptor section of the cell. Between the 

sections, cellulose-acetate membrane was placed (the transfer area was 4.91 cm2). During the 

experiments, samples were taken in predetermined time intervals (up to 300 minutes) from the 

sampling pot connected to the acceptor section of the cell and the sample volume was 0.5 ml. 

Concentration of FA in all samples were analyzed using HPLC analysis. 

2.2.8. HPLC analysis  

The concentration of FA in samples collected during release studies was determined 

using high performance liquid chromatography (Nexera X2, LC 30 series, with RID 20A 

detector, Shimadzu) with C18 column (4.6x250 mm, 5 µm) maintained at 25 °C, UV–detector 

series at 280 nm. The mobile phase composition was consisted of acetonitrile and water (50:50) 

and 0.1% of formic acid. The mobile phase flow rate was 1.0 ml min-1 and injection volume was 

20 µl. The calibration curve was made using the series of dilution of FA in HIS. The extinction 

coefficient of FA in HIS aqueous solution (pH 7.6) at 280 nm was determined to be 28.3 mol 

dm–3 cm–1. 

3. Results and discussion 

3.1. Encapsulation efficiency and drug loading  

In this study a basic amino acid–histidine was used as a solubilizing agent for folic acid. 

Namely, folic acid is a poorly soluble drug at neutral conditions with the recorded value of 

solubility 1.6 mg l-1 in water at 298 K (ONeil, 2006). Due to this limitation some commercial 
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folic acid supplements failed in the disintegration and dissolution performance on USP 

standards and the vital reason was pH dependency of solubility of FA (Wu et al., 2010; Younis 

et al, 2008). In addition, scientists struggle to prepare liposomes and lipid nanoparticles 

incorporating FA, either by using for a hydrating medium of a lipid film a water solution of FA 

above solubility limit which brings a question of homogeneity of the final formulation or by 

using a lipid-based excipients to dissolve FA although FA is a water soluble vitamin (Ammar et 

al., 2016; Jiao et al., 2018; Kapoor et al., 2018) In this study FA was dissolved in aqueous 

solution of histidine (pH=7.6) at concentration of 160 mg l-1 which is about 20 times higher 

than the saturation point in the absence of histidine at the given pH (Younis et al., 2008). 

Similarly, Penalva et al. (2014) used an aqueous solution of lysine (8 mg ml-1) (one of three 

amino acids that have basic side chains at neutral pH) to dissolve FA at concentration as high 

as 300 mg ml-1. Our hypothesis is that FA molecules, as behave as weak acids in alkaline 

solutions, having a negative charge, develop electrostatic interactions with positively charged α-

amino group (which is in the protonated –NH3
+ form, pKa=9.17) and with a partially protonated 

imidazole side chain, (pKa=6.04), the last one present in the solution in a small fraction, since 

neutral form of histidine prevails at a given pH of 7.8 (Figure 1B). Bourassa et al. (2017) 

revealed that FA forms conjugates with human serum albumin (and other serum proteins) via 

hydrophilic, hydrophobic and H-bonding contacts and their docking results disclosed histidine 

residue as one of the binding sites. The final liposomal formulations resulted with 

encapsulation efficiency of 84% and drug loading of 0.123 mg g-1, irrespective to the 

composition. This maybe a result of two conflicting consequences of cholesterol presence; on 

the one hand cholesterol causes increased hydrophobicity, increased stability and decreased 

permeability of the bilayer which leads to more efficient trapping of a drug. Counteracting this, 

cholesterol may compete with FA for packing space within the bilayer therefore excluding the 

drug as the amphiphiles assemble into liposomes.  

 

3.2. Liposomes size and stability  

 

The results of hydrodynamic size, polydispersity index (PDI) and zeta potential of 

liposomes, are listed in Figure 2. The parameters were measured on the 1st, 7th, 20th and 30th 

day of preparation. The average size of folic acid-free liposomes was 385 nm which is nearly the 

same as the size of the liposomes prepared from the same lipid mixture by the same 

(proliposome) method using a buffer solution for hydration instead of aqueous solution of 

histidine. This is an indication that histidine per se was not embedded inside the bilayers, 

which is expected since histidine is a hydrophilic amino acid. On contrary, folic acid induced 

enlargement of vesicles with average diameter between 503 and 877 nm on the first day 

depending on the formulation. A possible explanation is that folic acid impairs the PC bilayer 
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due to the aromatic part which has an affinity for the lipid hydrophobic environment while the 

presence of carboxyl and amino groups indicates a preference for a polar environment. 

Therefore, it is likely that FA molecules are positioned closer to the lipid-aqueous interface than 

in the inner part of the bilayer. 

SPAN 20-containing liposomes were the smallest among FA-loaded liposomes. Namely, 

SPAN 20 would significantly decrease the interface tension of the membranes, so that PC might 

tend to form condensed lipid layers when the surfactant was present but cholesterol was 

absent. In addition, there was less aggregation of LIP-SPAN 20-HIS-FA liposomes due to the 

high surface hydrophilicity as evidenced by decreasing PDI values, below 0.5, which is a proof 

for a monodisperse and homogenous dispersion. One can find in literature adverse effects of 

surface-active molecules on the size and polydispersibility of vesicles, depending on the 

formulation, surfactant type and concentration and the method of liposomes preparation 

(Bnyan et al., 2018; Liu et al., 2013; Pravilović et al., 2017; Tai et al., 2017). Liu et al. (2013) 

also observed a SPAN 20-induced size reduction of PC liposomes with embedded flavonol 

(quercetin) manufactured by ethanol injection method. In another way behaved liposomes of 

Phospholipon 90G with encapsulated hydro soluble polyphenols, such that SPAN 20 caused 

2.5-fold increase in hydrodynamic radius (Pravilović et al., 2017). 

On the other hand, when cholesterol was involved in the formation of the liposomal 

membranes, the average particle size of FA-loaded liposomes was observed to increase 

dramatically. The reason is that cholesterol inserted into the bilayers played a significant role 

in the structure formation. More specifically, sterol presence provokes interactions between 

lipid chains close to the head group of phospholipids, development of inter-lipid space and 

membrane expansion (Jovanović et al., 2018; Zhao et al., 2015). 

Regarding the zeta potential, all liposome dispersions possessed a negative surface 

charge, in the range between -37 and -20 mV (Figure 2B), which is characteristic for the 

liposomes made of PC and thus can be considered as stably dispersed due to the electric 

repulsion between the particles. Cholesterol is generally known to increase the absolute zeta-

potential and electrostatic repulsion between PC liposomes, but this effect is limited at 

concentrations below 30 mol% (Jovanović et al., 2018), as also happened here (Figure 2). The 

formulation with SPAN 20 had a lower negative (in absolute) zeta potential (~-20 mV) than un-

modified liposomes (~-30 mV), which is in agreement with Liu et al. (2013) who observed such 

effect of non-ionic surfactants (and the opposite influence of anionic surfactants).  

Concerning the stability monitored during time, a decrease in size of all liposomes over 

time was observed, statistically significant after one-month storage at 4 °C (Figure 2A). This 

decrease corresponds to a rising trend of zeta potential absolute values only in case of LIP-

SPAN 20-HIS-FA liposomes. A possible reason for the size reduction could be a leakage of FA 

from observed over time from all thee formulations since loading capacity reduced for about 
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22-24 % even after one week (Figure 2C). Namely, leakage of the embedded agents is an 

undesired phenomenon frequently associated with storage of liposomes, especially MLVs (Bai et 

al., 2015). Another possible effect which could contribute to size reduction is that of ethanol 

residues present in the liposome suspensions (produced by proliposome method) (Isailović et 

al., 2013; Lopez-Pinto et al., 2005). There is a proposition that ethanol may trigger a 

modification of the net charge of the system and provide steric stabilization to some degree 

which finally leads to a decline in mean particle size (Lopez-Pinto et al., 2005). Our results 

opposed to stability evaluation of FA-loaded (soya PC, PC-oleic acid and PC-stearic acid) 

liposomes recently done by Kapoor et al. (2018) who claimed about unaltered content of FA, 

together with either agglomeration or unchanged size at the best, after 6 months at 4°C. 

However, all their liposomes were nanosized (100–200 nm) and unilamellar aimed at 

transdermal FA delivery. 
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Figure 2. Stability of liposomes: a) The average size (bars) and polydispersity index (numbers 

above bars) b) Zeta potential, c) Loading capacity.  

 

3.3. AFM measurements 

 

 The atomic force microscope poses many advantages in comparison to conventional 

optical microscopes and electron microscopes especially in studies of biological samples. First, 

preparing samples for AFM experiments do not required freezing, metal coating or exposure to 
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conditions of vacuum so there is a no disruption of samples during preparation for imaging. 

Also, the atomic force microscope is capable of operating in air as well as in liquid, so samples 

can be scanned in their physiological solutions with a very high resolution. With such a high 

level of resolution, images of single vesicles that cannot be seen by other imaging techniques 

can be obtained. The images resolve individual liposome (spherical particles) on a flat 

background, which is mica surface. 

 AFM measurements clearly revealed the difference of surface-modified FA-loaded 

vesicles compared to unmodified vesicles and FA-loaded compared to unloaded vesicles. The 

geometric diameter of the particles, measured based on tapping mode image section analysis, 

differs from one sample to another: 120 nm for unloaded liposomes, 209 nm for LIP-HIS-FA, 

216 nm for LIP-CHOL-HIS-FA and 130 nm for LIP-SPAN 20-HIS-FA liposomes (presented in 

selected figures as representative images: Figures 3 and 4). The effects of FA, SPAN 20 and 

cholesterol on liposome size are consistent with the conclusions based on dynamic light 

scattering measurements, but the values of size are obviously far lesser. The reason lies in fact 

that light scattering technique gives the average bulk values of the size distributions in a 

solution, which means that extra-large vesicles present in the solution will affect the size 

distribution severely. On the other hand, AFM measures only adsorbed the vesicles on mica 

surface, while not every vesicle–surface interaction would ended with adhesion upon 

adsorption. In addition, large liposomes may rupture upon adsorption and they are more easily 

disrupted during AFM scanning (Liang et al., 2004). Therefore, the conclusions derived from 

AFM measurements should be taken with precaution since they refer only to a fraction of small 

liposomes. The mean height was 7-12 nm for LIP-HIS-FA, 4-8 nm for LIP-CHOL-HIS-FA and 9-

11 nm for LIP-SPAN 20-HIS-FA samples, respectively. Empty liposomes exhibited a regular 

globular shape (Figure 3) while FA-loaded liposomes were flattened and collapsed (certainly, the 

LIP-CHOL-HIS-FA sample is more than other two formulations (Figure 4)).  
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Figure 3. Offline image processing of an AFM fluid-tapping mode image capturing a 

representative liposomes (control) made from Phospholipon 90G: (A) the three-dimensional 

surface plot and (B) the section analysis 

 

 

Figure 4. Surface Plot Analysis (3D) of AFM fluid-tapping mode images for FA-loaded 

liposomes: (A) LIP-HIS-FA, (B) LIP-CHOL-HIS-FA, (C) LIP-SPAN 20-HIS-FA 

3.4. ATR-IR analysis 

 

 ATR-IR spectra of liposomal formulations, including control liposomes (LIP) and FA-

loaded liposomes (LIP-HIS-FA, LIP-CHOL-HIS-FA and LIP-SPAN 20-HIS-FA) are shown in 

Figure 5. In order to establish possible interactions upon encapsulation, spectra are compared 

with that of the physical mixture of Phospholipon 90G, histidine and FA (blended in the same 
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ratio as in liposomal formulation LIP-HIS-FA), also shown in Figure 5. The FTIR spectra of the 

individual components have been provided as supplementary data (Figures 1S-5S, 

Supplementary). All spectra presented in Figure 5 contain the pair of peaks around 2800-3000 

cm-1 which represents symmetric and asymmetric stretching modes of C-H bonds in CH2 and 

CH3 groups in the alkyl chains. The absorption vibration peak at 1734 cm-1 in spectra of all 

liposomal formulations indicates C=O stretching band originates from P90G (Figure S3, 

supplementary). However, the intensity of this peak (relative to the neighboring at 1630 cm-1) 

changes from one spectrum to another (marked by circles in Figure 5) possible due to the 

formation of a hydrogen bond between -OH groups (present in all compounds) and the carbonyl 

groups of the lipid. According to the literature, the relative intensity of the C=O bands is the 

key parameter to monitor since a change in this value indicates a change in relative population 

of free and hydrogen bonded C=O groups (Arsov and Quaroni, 2007; Chen and Tripp, 2012). 

Namely, cholesterol is incorporated into phospholipid bilayers in such way that its small 

hydrophilic 3β-hydroxyl head group is located in the vicinity of the lipid ester carbonyl groups 

and the hydrophobic steroid ring orients itself parallel to the acyl chains of the lipid. The peak 

at 1630 cm-1 can be ascribed to the C=C stretching vibrations, also present in spectra of the 

raw phospholipid (Figure S3, Supplementary) and histidine (Figure S2, Supplementary), but 

also to C=N stretching in FA (Figure S1, Supplementary). Methylene deformation band (δCH2) 

at 1464 cm-1 can be ascribed to fatty acid chains of phospholipid and SPAN molecules and to 

sterol molecules as well (Figures S3-S5, Supplementary). The peak at 1416 cm-1 (control LIP-

HIS and LIP-HIS-FA) or at 1410 cm-1 (LIP-CHOL-HIS-FA and LIP-SPAN 20-HIS-FA) can be 

ascribed to NH2 bending vibrations of both, FA and histidine (Figures S1-S2, Supplementary). 

The stretching region of the PO2
− groups of phospholipids was found at 1140-1250 cm−1 

(observed also in the spectrum of raw phospholipids, Figure S3, Supplementary) and it seems 

to be insensitive to the presence of either bilayer modifiers or FA. According to Cieslik-Boczula 

et al. (2009) this particular band is most sensitive to the state of hydration of the phospholipid 

bilayer. A P-O-C stretching band was recorded at 1060 cm-1 in all spectra of liposomes (also in 

spectrum of the raw phospholipids, Figure S3, Supplementary) but the ring deformation of 

cholesterol also appeared at the same wavelength (Figure S4, Supplementary). The two peaks 

(3008 and 1338 сm-1) in all spectra in Figure 5 indicate the presence of histidine (Figure S2, 

Supplementary). When comparing the spectra of liposomes and physical mixture, the 

alterations is noticed in the region 965-919 cm-1 (marked by circles in Figure 5), assigned to C-

C=O stretching of phospholipids (Figure S3, Supplementary) and to CH2=CH2 of histidine 

(Figure S2, Supplementary). These changes suggest possible interactions between head group 

of phospholipids and histidine, likely via its imidazole ring (highly polar) or α-amino group. 

When comparing spectra of different liposomal formulations of FA, a divergence is visible 

between 623 cm-1 (assigned to O-CO-C of phospholipids) and 535 cm-1 (due to O=C=O rocking 
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(Lambert et al., 1987) in histidine), appearing as a new small peak between the two, clearly 

recognizable in spectra of LIP-CHOL-HIS-FA and LIP-SPAN 20-HIS-FA (marked by circles in 

Figure 5). At this point it is rather difficult to state with certainty about nature of these 

interactions, but they seem to be more intensive in a more tightly packed bilayer. In the 

spectrum of LIP-SPAN 20-HIS-FA there is a peak at 3300 cm-1 which indicates the N-H 

stretching characteristic for SPAN molecule (Figure S5, Supplementary).  
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Figure 5. ATR-IR spectra of the physical mixture (Phospholipon 90G, histidine and folic acid) 

and liposomal formulations – control liposomes (LIP-HIS), folic acid-loaded liposomes (LIP-HIS-

FA), folic acid-loaded liposomes modified with cholesterol (LIP-CHOL-HIS-FA) and folic acid-

loaded liposomes modified with SPAN 20 (LIP-SPAN 20-HIS-FA) 
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3.5. DSC analysis 

Figure 6. presents DSC curves of pure folic acid, histidine, plain PC liposomes, PC 

liposomes containing histidine, and FA-loaded liposomes. Thermal degradation of FA occurs in 

three steps, as shown by three endothermic events, at 154, 200 and 260 °C. According to 

literature, the first one is accounted for glutamic acid moiety breaking away, followed by the 

degradation of pterin and p-aminobenzoic acid (PABA) moieties (Gazzali et al., 2016). 

 

Figure 6. DSC thermograms for pure folic acid (FA), histidine (HIS), plain liposomes (LIP), 

liposomes containing histidine (LIP-HIS) and folic acid-loaded liposomes (LIP-HIS-FA) 

 At 200 °C, the amide and acid functionalities were totally lost and the crystalline folic 

acid became amorphous. The third DSC endotherm at 260 °C has been associated with the 

mass loss, while the first two DSC endothermic reactions occur without a mass loss (Vora et 

al., 2002). In the DSC curve of histidine, a single-sharp peak is recorded at 288 °C 

corresponding to its crystalline melting and decomposition of histidine (Neacsu et al., 2018). 

The thermograms of plain liposomes (LIP) and liposomes containing histidine (LIP-HIS) showed 
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two endothermic events, one centered at ~160 °C and degradation above 230 °C which is in 

accordance to literature data on DSC heating curve for Phospholipon 90G (Khurana et al., 

2016). Compared to that, FA-loaded liposomes containing histidine (LIP-HIS-FA) show three 

endothermic events, which can be ascribed to degradation of both, phospholipids and folic 

acid. The second thermal event is shifted toward higher temperatures compared to that of folic 

acid, which is an indication that interactions occurred between folic acid and 

phosphatidylcholine, simultaneously implicating to higher thermal stability of PABA moiety. 

Furthermore, complete absence of melting point for histidine can be observed and this is a 

proof that histidine is in an amorphous state in the liposomes. 

3.6. Release study 

 

 Folic acid release study was carried out using a Franz diffusion cell in phosphate buffer 

at two different pH values, 7 and 5.5 and the concentration of FA was measured by HPLC 

analysis. The release curves of LIP-HIS-FA, LIP-CHOL-HIS-FA and LIP-SPAN 20-HIS-FA are 

compared with the curves of free FA diffusion and presented in Figure 7. 

 The rate of FA diffusion and the extent of release from liposomes were affected by pH 

value which is expected since the vitamin solubility increases with pH (Wu et al., 2010; Younis 

et al., 2008). The release profiles indicate the sustained FA release from liposomes in a 

common drug release manner; after 300 minutes of incubation at pH 7, the amount of FA in 

the acceptor compartment was about 30% reduced due to liposomal barrier properties. 

Regarding the impact cholesterol and SPAN 20, they both contributed to a faster release 

compared to plain liposomes. Surface modified liposomes in most occasions provide higher 

diffusion resistance than un-modified liposomes and sorbitan monolaurate, as having the short 

saturated hydrophobic hydrocarbon chain, is especially effective in this role due to the small 

size of molecule and the high hydrophilic character (HLB value of 8.6). However, this kind of 

action failed to happen in our experiments. In fact, the release rate of FA was significantly 

higher from the formulation with SPAN 20. This result might arise from free surfactant 

molecules present at some concentration in the bulk solution which may enhance FA 

permeability through a hydrophilic acetate cellulose membrane of Franz diffusion cell. Ita et al. 

(2007) have dealt with statistically insignificant effect of surfactants on permeation of three 

low-soluble drug compounds (methotrexate, aciclovir and idoxuridine) from liposomes 

(Phospholipon 90G) across human epidermal membrane. Regarding the impact of cholesterol, 

it is known that it reduces permeability of phospholipid bilayer above Tm, but there are also 

experimental evidences in a number of publications showing the independence of drug release 

on cholesterol content or even the opposite phenomenon. Briuglia et al. (2015) have shown that 

cholesterol contributes to increased release rate of a hydrophilic drug from DPPC, DMPC and 
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DSPC liposomes and the opposite conclusion was derived with a hydrophobic model drug. We 

assume that upon decreasing pH to 5.5, the histidine form with the positively charged 

imidazole ring bearing two NH bonds becomes dominant which emphasizes attraction with folic 

acid, so that release of folic acid may be prompted with the leakage of histidine. 

 

 

Figure 7. The diffusion release profiles of folic acid from the solution (FA(aq)) and liposome 

formulations at pH 5.5 and 7.0 

4. Conclusions 

 Encapsulation of folic acid into liposomes was successfully done and drug loading of 

0.123 mg g-1 was accomplished. The light scattering technique shows that molecules of 

cholesterol and folic acid lead to increase the size of MLV liposomes, while the SPAN 20 

reduces their size. According to AFM measurements, folic acid loaded liposomes of a fraction 

with a nano size were flattened in contrast to globular empty liposomes. The absorption in FTIR 

spectra in the wavelength region 965-919 cm-1 and 623-535 cm-1 showed the interactions 

between histidine and liposomes. Liposomes provide the effect of prolonged release of folic acid, 

but cholesterol and SPAN 20 do not contribute to this effect. Recommendations for further 

research are modification of the liposomal systems by heteropolysaccharides, which would 

improve their performance of drug transfer through to the skin and control release in gastro-

intestinal tract.  
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Highlights  

•    Liposomes were used as a model system for encapsulation of folic acid. 

•    A basic amino acid-histidine was used as a solubilizing agent for folic 

acid. 

•    Interactions between folic acid and phospholipids were determined by DSC 

analysis. 

•    Interactions between histidine and phospholipids were analyzed by ATR-IR. 

•    Cholesterol and SPAN 20 did not contribute to the effect of prolonged 

release. 

 




