Nonacosan-10-ol and *n*-Alkanes in Needles of *Pinus halepensis*

Natural Product Communications Volume 15(5): 1-4 © The Author(s) 2020 Article reuse guidelines: sagepub.com/journals-permissions DOI: 10.1177/1934578X20920970 journals.sagepub.com/home/npx

Biljana Nikolić¹, Marina Todosijević², Iris Đorđević³, Jovana Stanković⁴, Zorica S. Mitić⁵, Vele Tešević², and Petar D. Marin⁶

Abstract

In needle cuticular wax of *Pinus halepensis*, nonacosan-10-ol is high (77.08% on average). *n*-Alkanes ranged from C_{18} to C_{35} with the most dominant C_{27} and C_{29} (32.4% and 25.8%, respectively). The carbon preference index ranged from 3.2 to 5.4 (3.4 on average), while the average chain length ranged from 14.0 to 18.0 (17.2 on average). Long-chain *n*-alkanes strongly dominated (95.1%).

Keywords

Pinus halepensis, nonacosan-10-ol, n-alkanes, needles, waxes

Received: January 15th, 2020; Accepted: April 1st, 2020.

Introduction

Pinus halepensis Miller, also known as Aleppo pine or Jerusalem's oren, is a 2-needle pine which belongs to family Pinaceae, genus *Pinus*, subgenus *Pinus*, subsection *Pinus*, subsection *Pinaster* (classification of Gernandt et al).¹ It is distinctly Mediterranean species which spreads from Morocco to Tunisia and Libia as well as from Spain to France, Italy, former Yugoslavia, Greece, Israel, Jordan, and Corsica. It succeeds from sea level to altitude of 1500 m (in Morocco and Algeria).²

Cuticular waxes and *n*-alkanes have often been studied in trees³ and herbaceous plants.⁴⁻¹⁰ They are also used in chemosystematic and phylogenetic studies, hybrid detection, etc.³⁻¹⁰ Cuticular waxes and *n*-alkanes of various *Pinus* species have already been investigated,¹¹⁻¹⁴ sometimes on population level (in case of *Pinus heldreichii, Pinus peuce, Pinus nigra*, etc.).¹⁵⁻¹⁸ Sometimes, *n*-alkanes could detect varieties within conifer species.¹⁹. Other authors have already reported that pine epicuticular waxes have tube crystalloids²⁰ and that nonacosan-10 is the main component of epicuticular wax components.²¹⁻²⁵

The aim of this study is to examine for the first time amount of nonacosan-10-ol and *n*-alkane profile of *P. halepensis* in needle cuticular waxes. Besides that, the chemotaxonomy of section *Pinus* was done by comparing our results of *P. halepensis* with other pines of section *Pinus*.

Results and Discussion

Nonacosan-10-ol content of *P. halepensis* is a little bit smaller in spring needles (76.7%) than in autumn needles (77.4%). In average, nonacosan-10-ol is higher (77.1%) than in wax of

other species of subsection *Pinaster* (*P. heldreichii*, Bosnian pine, up to 73.2%, 55.5% on average).¹⁵

n-Alkane profile of spring needles of *P. halepensis* is C₂₇, C₂₉, and C₂₅ while autumn needles are abundant in C₂₉, C₂₇, and C₃₁ (Figure 1). On the species level, *n*-alkanes ranged from C₁₈ to C₃₅ with the most dominant C₂₇ and C₂₉ (32.4% and 25.8%, respectively) (Figure 1, Table 1). In *P. heldreichii*, this range is C₁₈ to C₃₃, with the most dominant C₂₃.¹⁵

The carbon preference index (CPI_{total}) was much higher in spring than in autumn (Table 1). Mean values of CPI_{total} ranged from 3.2 to 5.4 (3.4 on average) (Table 1), while in *P. heldreichii*, it ranged from 0.8 to 3.1 (1.6 on average). Almost all CPIs (from Table 1), exhibited odd/even predominance (OEP) (because CPI >1 indicates OEP, CPI <1 denotes OEP).²⁶

The average chain length (ACL _{total}) was much higher in autumn than in spring needles (Table 1). Mean ACL_{total} ranged from 14.0 to 18.0 (17.2 on average). Long-chain *n*-alkanes strongly dominated (95.1%). In *P. heldreichii*, it ranged

⁵Department of Mathematics, University of Niš, Serbia ⁶Faculty of Biology, University of Belgrade, Beograd, Serbia

Corresponding Author:

Biljana Nikolić, Institut za sumarstvo i drvnu industriju, Kneza Viseslava 3, Beograd, 11030, Serbia. Email: smikitis@gmail.com

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

 ¹Department of Genetics, Plant Breeding, Seed and Nursery Production, Institut za šumarstvo i drvnu industriju, Beograd, Serbia
 ²Faculty of Chemistry, University of Belgrade, Beograd, Serbia
 ³Faculty of Veterinary Medicine, University of Belgrade, Beograd, Serbia
 ⁴Department of Chemistry, Institute of Chemistry Technology and Metallurgy, Beograd, Serbia

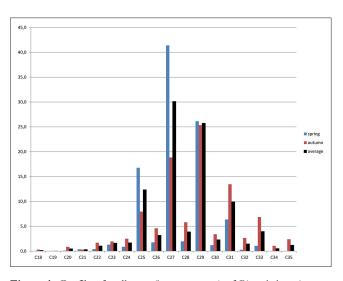
Figure 1. Profile of *n*-alkanes (in percentage) of *Pinus halepensis* needle waxes.

from 20.9 to 26.5 (24.4 on average) and long-chain *n*-alkanes did not strongly dominate (mid-chain: 37.9%, long-chain: 49.6%).¹⁵

Experimental

Plant Material

Twigs with needles from the lowest third of the full tree crown were collected in spring and autumn 2015 from Croatia, Island Korčula. The collected twigs were stored at -20° C prior to further needle analyses.


Extraction of Needle Wax for the Investigation of the Nonacosan-10-ol Content

A concentrated sample of epicuticular wax was collected from each tree by immersing 3 g of needles in 10 mL of *n*-hexane (high-performance liquid chromatography grade; Merck, Darmstadt) for 45 seconds. The samples were then dried under vacuum at 60°C, and aliquots of 1 mL of these samples were used to determine the nonacosan-10-ol content by gas chromatography (GC)–mass spectrometry (MS) analysis (Figure 2).

Extraction of Needle Wax for the Investigation of the n-Alkanes

The concentrated extracts, obtained as described above, were chromatographed on small-scale columns using a Pasteur pipette filled with silica gel 60 (SiO₂, 0.2-0.5 mm; Merck) previously activated at -20° C.²³ The wax samples were obtained by elution with 5 mL of hexane and stored at -20° C until further analysis.

Table 1.	Variability of	the Most Al	bundant <i>n</i> -Alk	kanes, CPIs, A	ACLs, and Rela	tive Proportic	ons of Short, N	lid, and Long-	Chain <i>n</i> -Alkanes	Table 1. Variability of the Most Abundant <i>n</i> -Alkanes, CPIs, ACLs, and Relative Proportions of Short, Mid, and Long-Chain <i>n</i> -Alkanes in the Needle Wax of Pinus haldpensis	of Pinus halepensis	
	$\mathbf{C}_{\mathrm{range}}$	$C_{ m max}{}^a$	$C_{nange} = C_{max}^{a} = CPI_{total}^{b} = CPI_{25,33}^{c}$	$\mathrm{CPI}_{25-33}^{\mathrm{c}}$	$\mathrm{CPI}_{20-36}^{\mathrm{d}}$	$\mathrm{CPI}_{15-21}^{\mathrm{e}}$	$\mathrm{CPI}_{25-31}^{\mathrm{f}}$	$\mathbf{ACL}_{\mathrm{total}}^{\mathrm{g}}$	ACL ₂₃₋₃₅ ^h	$m{n}$ - $m{C}_{18-20}^{i}$ Short-chain	<i>n</i>-C ₂₁₋₂₄ Mid-chain	\boldsymbol{n} - \mathbf{C}_{25-35}^{-1} i Long-chain
										In % of	In % of total <i>n</i> -alkanes (C_{18-35})	8-35)
Range	18-35	27, 29	27, 29 3.2–5.4 1.1–1.2	1.1 - 1.2	1.0	0.0-2.2	1.1-1.2	14.0-18.0	28.4-36.2	0.0-1.9	1.5-8.5	89.6-98.5
Mean		29	3.4	1.1	1.0	1.3	1.1	17.2	32.6	0.6	4.3	95.1
$\begin{array}{c} CPI, carbo \\ Cmax; the \\ {}^{A}C_{max}; the \\ {}^{b}CPI_{total} : \\ {}^{c}CPI_{25:33} = \\ {}^{c}CP1_{25:33} = \\ {}^{d}CP1_{25:34} = \\ {}^{d}CP1_{25:34} = \\ {}^{f}CP1_{25:34} = \\ {}^{f}CP1_{25:34} = \\ {}^{f}nC_{123:35} = \\ {}^{h}ACL_{23:35} = \\ {}^{h}nC_{18:20} n \\ {}^{h}nC_{$	CPI, carbon preference index; ACL, avers $^{2}C_{max}$; the 3-4 most abundant <i>n</i> -alkanes at $^{3}CPI_{total} = \Sigma odd C_{n}/\Sigma even C_{n}$; C_{n} is the $^{2}CPI_{25-33} = [\Sigma(C_{25}-C_{33})odd/\Sigma (C_{24}-C_{32})e^{4}CPI_{20-36} = [\Sigma (C_{15}-C_{24})odd/\Sigma (C_{19}-C_{23})e^{4}CPI_{15-21} = [\Sigma (C_{15}-C_{21})odd/\Sigma (C_{14}-C_{20})e^{4}CPI_{15-21} = [\Sigma (C_{25}-C_{31})odd/\Sigma (C_{24}-C_{20})e^{4}CPI_{25-31} = [\Sigma (C_{25}-C_{21})odd/\Sigma (C_{24}-C_{20})e^{4}CPI_{25-31} = [\Sigma (C_{25}-C_{21})odd/\Sigma (C_{24}-C_{20})e^{4}CPI_{25-31} = [\Sigma (C_{25}-C_{21})odd/\Sigma (C_{24}-C_{20})e^{4}CPI_{22}-2e^{4}CPI_{21} = [\Sigma (C_{25}-C_{21})odd/\Sigma (C_{24}-C_{20})e^{4}CPI_{21} = [\Sigma (C_{25}-C_{21}+C_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21} = [\Sigma (C_{25}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21} = [\Sigma (C_{15}-C_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21} = [\Sigma (C_{25}-2e^{2})e^{2}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI_{21}-2e^{4})e^{4}CPI$	index; ACL indext n -alks keven C_n ; C_n odd/ Σ (C_{24} - odd/ Σ (C_{14}) odd/ Σ (C_{14}) odd/ Σ (C_{24} C_1 C_1 C_2 C_2 n^2	CPI, carbon preference index; ACL, average chain length. C $_{max}$: the 3.4 most abundant <i>n</i> -alkanes are given in the rov. CPI _{10a1} = $\Sigma odd C_n/\Sigma even C_n$; C _n is the concentration of CPI ₂₅₋₃₃ = $[\Sigma(C_{25}-C_{33})odd/\Sigma(C_{24}-C_{32})even + \Sigma(C_{25}-C_{3}-C_{33})even + \Sigma(C_{25}-C_{33})even + \Sigma(C_{25}-C_{23})even + \Sigma(C_{25}-C_{23})ev$	in length. in the row "F in the row "F tration of alk: $C_{25} - C_{33}$) odd $C_{15} - C_{21}$) odd $C_{15} - C_{21}$) odd $C_{25} - C_{31}$) odd $C_{25} - C_{31}$) odd $C_{29} + 31 \times C_{31}$ ons (%) of shu	CPI, carbon preference index; ACL, average chain length. $^{C}_{Cmax}$: the 3.4 most abundant <i>n</i> -alkanes are given in the row "Range" and the most abundant among them in the row "Mean". $^{C}_{CPI_{125,33}} = \sum \text{odd} C_n / \Sigma \text{even} C_1; C_n \text{ is the concentration of alkane containing n C-atoms.19} ^{C}_{CPI_{125,33}} = [\Sigma(C_{25}-C_{33})\text{odd}/\Sigma (C_{24}-C_{33})\text{oven} + \Sigma (C_{25}-C_{34})\text{odd}/\Sigma (C_{26}-C_{34})\text{even}]/2.20} ^{C}_{CPI_{125,31}} = [\Sigma(C_{25}-C_{33})\text{odd}/\Sigma (C_{19}-C_{33})\text{even} + \Sigma (C_{20}-C_{30})\text{odd}/\Sigma (C_{26}-C_{34})\text{even}]/2.20} ^{C}_{CPI_{15,21}} = [\Sigma (C_{25}-C_{31})\text{odd}/\Sigma (C_{14}-C_{20})\text{even} + \Sigma (C_{15}-C_{21})\text{odd}/\Sigma (C_{16}-C_{25})\text{even}]/2.20}^{C}_{CPI_{15,21}} = [\Sigma (C_{25}-C_{31})\text{odd}/\Sigma [C_{24}-C_{30})\text{even} + \Sigma (C_{25}-C_{31})\text{odd}/\Sigma (C_{16}-C_{22})\text{even}]/2.20}^{E}_{CDI_{15,21}} = [\Sigma (C_{25}-C_{31})\text{odd}/\Sigma [C_{24}-C_{30})\text{even} + \Sigma (C_{25}-C_{31})\text{odd}/\Sigma (C_{26}-C_{32})\text{even}]/2.20}^{E}_{CDI_{15,21}} = [\Sigma (C_{25}-C_{31})\text{odd}/\Sigma [C_{24}-C_{30})\text{even} + \Sigma (C_{25}-C_{31})\text{odd}/\Sigma (C_{26}-C_{32})\text{even}]/2.20}^{E}_{CDI_{15,21}} = [\Sigma (C_{25}-C_{31})\text{odd}/\Sigma [C_{24}-C_{30})\text{even} + \Sigma (C_{25}-C_{31})\text{odd}/\Sigma (C_{26}-C_{32})\text{even}]/2.20}^{E}_{CDI_{15,21}} = [\Sigma (C_{25}-C_{31})\text{odd}/\Sigma [C_{24}-C_{30})\text{even} + \Sigma (C_{25}-C_{31})\text{odd}/\Sigma (C_{26}-C_{32})\text{even}]/2.20}^{E}_{CDI_{12,21,33}} = (23 \times C_{23} + 25 \times C_{25} + 27 \times C_{27} + 29 \times C_{29} + 31 \times C_{31} + 33 \times C_{33} + 35 \times C_{33})/(C_{23} + C_{27} + C_{29} + C_{31} + C_{33} + C_{35}).^{E}_{CI_{18,210}} n^{-C_{21,24}}, and n^{-C_{22,35}}: relative proportions (%) of short, middle, and long-chain n-alkanes, respectively, calculated accord percentage of the total n-alkanes (C18,35).$: most abunda " Catoms. ¹⁹ even]/2. ²⁰ even]/2. ²⁰ even]/2.20 even]/2. ²⁰ even]/2. ²⁰ d long-chain n	nt among then + $C_{25} + C_{27} +$	1 in the row '1 C ₂₉ + C ₃₁ + C ctively, calcula	Mean". 33 + C ₃₅). ited according to	CPI, carbon preference index; ACL, average chain length. $^{C}_{C_{max}}$: the 3-4 most abundant <i>n</i> -alkanes are given in the row "Range" and the most abundant among them in the row "Mean". $^{C}_{CPI_{25:33}} = \sum (C_{25-C_{33}}) \operatorname{odd} \sum (C_{24}-C_{33}) \operatorname{odd} \sum (C_{25}-C_{34}) \operatorname{oven} 1/2.$ $^{C}_{CPI_{25:33}} = \sum (C_{25-C_{33}}) \operatorname{odd} \sum (C_{19}-C_{35}) \operatorname{odd} \sum (C_{21}-C_{37}) \operatorname{oven} 1/2.$ $^{C}_{CPI_{25:31}} = \sum (C_{15}-C_{23}) \operatorname{odd} \sum (C_{19}-C_{23}) \operatorname{odd} \sum (C_{21}-C_{23}) \operatorname{oven} 1/2.$ $^{C}_{CPI_{25:31}} = \sum (C_{15}-C_{23}) \operatorname{odd} \sum (C_{16}-C_{23}) \operatorname{odd} \sum (C_{21}-C_{23}) \operatorname{oven} 1/2.$ $^{C}_{CPI_{25:31}} = \sum (C_{15}-C_{23}) \operatorname{odd} \sum (C_{24}-C_{23}) \operatorname{odd} \sum (C_{25}-C_{23}) \operatorname{odd} \sum (C_{25}-C$	neit ²² and expresse	d as

rator :	D DATA\2015\BILJ Tun 2015 16:05	using AcqMe		OOT VENIE VENIE	E M			
ulled : 27 d strument : (ple Name: PMA	CMS	using AcqMe	ECHOQ ADAMS	SOLVENI VENI	5.M			
c Info : 1 Number: 25	5 1							
Response_				Signal: S 1	PHA 5 1.D\FID1A.ch			
1400000								
								1
1200000								
1000000								
800000								
600000								
600000								
400000								
200000								
							1	1

Figure 2. Nonacosan-10-ol of needles of Pinus halepensis.

Nikolić et al.

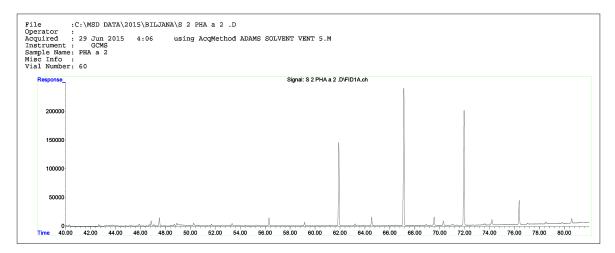


Figure 3. n-Alkanes of needles of Pinus halepensis.

GC and GC-MS Analyses of Needle Wax

GC and GC-MS analyses were performed using an Agilent 7890A GC equipped with an inert 5975C XL EI/CI mass selective detector and flame ionization detector (FID) connected by capillary flow technology 2-way splitter with make-up. An HP-5MS capillary column (30 m \times 0.25 mm \times 0.25 µm) was used. The GC oven temperature was programmed from 60°C to 315°C at a rate of 3°C/min and held for 15 minutes. Helium was used as the carrier gas at 16.255 psi (constant pressure mode). An auto-injection system (Agilent 7683B Series Injector) was employed to inject 1 µL of the sample. The sample was analyzed in the splitless mode. The injector and the detector temperature was 300°C. MS data were acquired in the EI mode with scan range 30-550 m/z, source temperature 230°C, and quadrupole temperature 150°C; the solvent delay was 3 minutes (Figure 3).

Identification of Needle Wax Components

The components were identified based on their retention indices and comparison with reference spectra (Wiley and NIST databases) as well as by the retention time locking (RTL) method and the RTL Adams database. The retention indices were experimentally determined using the standard method of Van Den Dool and Kratz²⁷ involving retention times of *n*-alkanes, injected after the sample under the same chromatographic conditions. The relative abundance of the *n*-alkanes was calculated from the signal intensities of the homologs in the GC-FID traces.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This research was supported by Grants No. 173029, 173021 and 172053 by the Ministry of Education, Science and Technological Development of the Republic of Serbia. Authors are grateful to Dr Dragan Kovačević from Serbia and Ing. Milan Vojinović from Croatia, who collected plant material.

ORCID ID

Biljana Nikolić 🕩 https://orcid.org/0000-0002-2436-8294

References

- Gernandt DS, López GG, García SO, Liston A, Gaeda López G, Ortiz García S. Phylogeny and classification of *Pinus. Taxon.* 2005;54(1):29-42. doi:10.2307/25065300
- Vidaković M. Četinjače. Morfologija i varijabilnost. Zagreb: JAZU i Sveučilišna naklada Liber; 1982:1-710.
- Maffei M, Badino S, Bossi S. Chemotaxonomic significance of leaf wax *n*-alkanes in the Pinales (Coniferales). J. Biol. Res. 2004;1:3-19.
- 4. Herbin GA, Robins PA. Studies on plant cuticular waxes II. Alkanes from members of the genus Agave (Agavaceae), the genera Kalanchoe, Echeveria, Crassula and Sedum (Crassulaceae) and the genus Eucalyptus (Myrtaceae) with an examination of Hutchinson's sub-division of the Angiosperms into Herbaceae and Lignosae. Phytochemistry. 1968a;7(2):267-268.
- Herbin GA, Robins PA. Studies on plant cuticular waxes—III. The leaf wax alkanes and ω-hydroxy acids of some members of the Cupressaceae and Pinaceae. *Phytochemistry*. 1968b;7(8):1325-1337. doi:10.1016/S0031-9422(00)85633-2
- Tin W, Vasek FC, Scora RW. Analysis of *n*-alkanes from three species of *Clarkia*. *Am J Bot*. 1971;58(3):255-256. doi:10.1002/j. 1537-2197.1971.tb09970.x
- Cameron KD, Teece MA, Bevilacqua E, Smart LB, Lawrence B. Diversity of cuticular wax among *Salix* species and *Populus* species hybrids. *Phytochemistry*. 2002;60(7):715-725. doi:10.1016/ S0031-9422(02)00198-X
- Tulloch AP, Bergter L. Epicuticular wax of *Juniperus* scopulorum. *Phytochemistry*. 1981;20(12):2711-2716. doi:10.1016/0031-9422(81) 85274-0
- Stevens JF, Hart H, Block A, Zwaving JH, Malingre TM. Epicuticular wax composition of some European *Sedum* species. *Phytochemistry*. 1994;35(2):389-399. doi:10.1016/S0031-9422(00) 94770-8
- Maffei M. Discriminant analysis of leaf wax alkanes in the Lamiaceae and four other plant families. Biochem Syst Ecol. 1994;22(7):711-728. doi:10.1016/0305-1978(94)90057-4
- Cape J, Fowler D. Changes in epicuticular wax of *Pinus sylvestris* exposed to polluted air. *Silva Fenn.* 1981;15(4):457-458. doi:10. 14214/sf.a15373
- Burkhardt J, Peters K, Crossley A. The presence of structural surface waxes on coniferous needles affects the pattern of dry deposition of fine particles. *J Exp Bot.* 1995;46(7):823-831. doi: 10.1093/jxb/46.7.823
- Nikolić B, Tešević V, Đorđević I, et al. N-Alkanes in needle waxes of *Pinus heldreichii* var. *pančići. J. Serb. Chem. Soc.*. 2010;75(10):1337-1346. doi: doi:10.2298/JSC100322089N

- Nikolić B, Todosijević M, Ratknić M, et al. Terpenes and *n*alkanes in needles of *Pinus cembra*. *Nat Prod Commun*. 2018;13(8):1 934578X1801300-1037. doi:10.1177/1934578X1801300828
- Nikolić B, Tešević V, Đorđević I, et al. Chemodiversity of nonacosan-10-ol and *n*-alkanes in the needle wax of *Pinus heldreichii*. *Chem Biodivers*. 2012;9(1):80-90. doi: doi:10.1002/cbdv.201100179
- Nikolić B, Tešević V, Dorđević I, et al. Population variability of nonacosan-10-ol and *n*-alkanes in needle cuticular waxes of Macedonian pine (*Pinus peuce* Griseb.). *Chem Biodivers*. 2012;9(6):1155-1165. doi:10.1002/cbdv.201100316
- Bojović S, Šarac Z, Nikolić B, et al. Composition of *n*-alkanes in natural populations of Pinus nigra from Serbia - chemotaxonomic implications. *Chem Biodivers*. 2012;9(12):2761-2774. doi:10. 1002/cbdv.201200051
- Mitić ZS, Zlatković BK, Jovanović SČ, et al. Diversity of needle n-alkanes, primary alcohols and diterpenes in Balkan and Carpathian native populations of *Pinus nigra* J.F. Arnold. *Biochem Syst Ecol.* 2018;80:46-54. doi: doi:10.1016/j.bse.2018.06.005
- Nikolić B, Tešević V, Đorđević I, et al. N-Alkanes in needle waxes of *Pinus heldreichii* var. *pančići. J Serb Chem Soc.* 2010;75(10):1337-1346. doi:10.2298/JSC100322089N
- Dommisse A, Wirtz J, Koch K, Barthlott W, Kolter T, et al. Synthesis of (S)-Nonacosan-10-ol, the Major Component of Tubular Plant Wax Crystals. *European J Org Chem.* 2007;2007(21):3508-3511. doi:10.1002/ejoc.200700262
- Matas AJ, Sanz MJ, Heredia A. Studies on the structure of the plant wax nonacosan-10-ol, the main component of epicuticular wax conifers. *Int J Biol Macromol.* 2003;33(1-3):31-35. doi:10.1016/ S0141-8130(03)00061-8
- Mazurek MA, Simoneit BRT. Molecular Markers in Environmental Geochemistry. In: Eganhouse RP, ed. ACS Symposium Series 671. 92. Washington DC: American Chemical Society; 1997.
- Sonibare MA, Jayeola AA, Egunyomi A. Chemotaxonomic significance of leaf alkanes in species of *Ficus* (Moraceae). *Biochem Syst Ecol.* 2005;33(1):79-86. doi:10.1016/j.bse.2004.05.010
- Poynter J, Eglinton G. Molecular composition of three sediments from Hole 717C: the Bengal Fan. 1990, Proceedings of the Ocean Drilling Program, Scientific Results. In: Cochran JR, Stow DAV, eds. *College Station TX (Ocean Drilling Program.*; 1990, :116; 155.
- Kuhn TK, Krull ES, Bowater A, Grice K, Gleixner G. The occurrence of short chain *n*-alkanes with an even over odd predominance in higher plants and soils. *Org Geochem.* 2010;41(2):88-95. doi: doi:10.1016/j.orggeochem.2009.08.003
- Mimura MRM, Salatino MLF, Salatino A, Baumgratz JFA. Alkanes from foliar epicuticular waxes of *Huberia* species: taxonomic implications. *Biochem Syst Ecol.* 1998;26(5):581-588. doi:10. 1016/S0305-1978(97)00131-2
- Van Den Dool H, Kratz PD. A generalization of the retention index system including linear temperature programmed gasliquid partition chromatography. J Chromatogr. 1963;11:463-471. doi:10.1016/S0021-9673(01)80947-X