8th IAPC Meeting

Eighth World Conference on Physico-Chemical Methods in Drug Discovery &

Fifth World Conference on ADMET and DMPK

Book of Abstracts

Split, Croatia, September 9-11, 2019

8th IAPC Meeting

Eighth World Conference on Physico-Chemical Methods in Drug Discovery & Fifth World Conference on ADMET and DMPK Split, Croatia, September 9-11, 2019

Book of Abstracts

Published by International Association of Physical Chemists E-mail: office@iapchem.org, URL: http://www.iapchem.org

For Publisher **Zoran Mandić**

Editor **Zoran Mandić**

Design, Page Making and Computer Layout Aleksandar Dekanski

On Line version only

The Scientific and Organizing Committee:

Alex Avdeef, In-ADME Research, USA Christel Bergström, Uppsala University, Sweden Biserka Cetina-Čižmek, PLIVA, Croatia Zoran Mandić, University of Zagreb, Croatia - conference chair Abu Serajuddin, St. John's University, USA Kiyohiko Sugano, Ritsumeikan University, Japan Kin Tam, University of Macau, Macau - conference co-chair Klara Valko, Bio-Mimetic Chromatography, UK Tatjana Verbić, University of Belgrade, Serbia

Organization of IAPC-8 Meeting is supported by

Sponsors and Exhibitors

INSPIRION

016

Desipramine solubility studies: enhanced solubility due to drug-buffer aggregates

Olivera S. Marković, Miloš P. Pešić¹, Ankita V. Shah^{2,3}, Abu T.M. Serajuddin², Alex Avdeef⁴, <u>Tatjana Ž. Verbić</u>^{1,⊠}

Department of Chemistry, IChTM, University of Belgrade, Belgrade, Serbia ¹University of Belgrade – Faculty of Chemistry, Belgrade, Serbia ²St. John's University, College of Pharmacy and Health Sciences, NY, USA ³Current address: Freund-Vector Corporation, IA, USA ⁴in-ADME Research, New York, USA <u>Statjanad@chem.bg.ac.rs</u>

Optimal experimental design to measure the aqueous equilibrium solubility of an ionizable substance requires a number of critical considerations. The aqueous medium to which the substance is added usually contains a buffer to help control the pH.

The solution behavior of desipramine hydrochloride (DsHCl) in phosphate-buffered and unbuffered solutions is evidently complicated and only tentatively understood. The computer program *p*DISOL-X was used to design the structured pH-ramp shake flask experiments (pH-RSF method), to process the data, and to refine the equilibrium constants. Specifically, solubility was measured: a) using *state-of-the-art* experimental design, as recommended in a recently published *white paper* on solubility [1], b) performing solubility titrations in two directions, pH 11.6 \rightarrow 1.3 as well as 1.3 \rightarrow 11.6, c) using both DsHCl and Ds (free base), as starting solids, d) performing titrations in chloride-containing media, without any phosphate, e) performing the converse measurements (phosphate-containing, chloride-free media), f) isolating solids at critical log *S*-pH points and performing solid state characterizations using elemental, thermogravimetric, differential scanning calorimetric, and powder X-ray diffraction analyses. Concentration was measured using HPLC with UV/VIS detection.

Under the assay conditions, only the phosphate free solutions showed some supersaturation near pH_{max} 8.0. In phosphate-containing solutions, pH_{max} was indicated at higher pH (8.8– 9.6). Oils mixed with solids were observed to form in alkaline solutions (pH>11). Notably, soluble drug-phosphate *complexes* appeared to form below pH 3.9 and above pH_{max} in saturated phosphate-containing saline solutions. This was indicated by the systematic pH shift to higher values in the log S-pH curve in alkaline solution than expected from the Henderson-Hasselbalch equation. For pH<3.9, saturated phosphate-containing saline solutions exhibited elevated solubility, with drug-*hydrochloride* as the sole precipitate. Salt solubility products, intrinsic solubility, and complexation constants, which rationalized the data, were determined [2].

Acknowledgement: Ministry of Education, Science and Technological Development of Serbia supported this work (Grant No. 172008 and 172035).

References:

- 1. A. Avdeef, E. Fuguet, A. Llinas, C. Rafols, E. Bosch, G. Volgyi, T. Verbić, E. Boldyreva, K. Takacs-Novak, *ADMET&DMPK* **4** (2016) 117–178.
- 2. O.S. Marković, M.P. Pešić, A.V. Shah, A.T.M. Serajuddin, T.Ž. Verbić, A. Avdeef, *Eur. J. Pharm. Sci.* **133** (2019) 264–274.