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Abstract 

Zinc–ferrite, nickel–ferrite and mixed nickel–zinc ferrites were successfully synthesized via 

the thermal decomposition method from acetylacetonate complexes. To control the particle 

size and enhance dispersibility in an aqueous medium, starch, a natural and biocompatible 

compound, was used for the first time for coating such magnetic powders. X-ray powder 

diffraction (XRPD) was performed to study the structural properties of all samples. The 

presence of a single-phase spinel structure as well as the cation distribution in both sites of all 

investigated magnetic powders was confirmed. The values of unit cell parameters obtained 

from the results of the Rietveld analysis decreased, while the average crystallite size 

increased with increasing Ni
2+

 content. The average microstrain parameters unambiguously 

showed a change in the spinel structure with cation distribution. Scanning electron 
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microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and Fourier transform 

infrared spectroscopy (FTIR) analyses were also utilized to characterize the synthesized 

materials, corroborating the XRPD data. The obtained results indicated that functionalization 

by starch was successfully achieved. 
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1. Introduction 

Ferrimagnetic oxides, or ferrites, are very attractive materials due to their outstanding 

physical properties and high applicability in nanotechnology [1]. For example, they are 

widely utilized as industrial ceramics where nanomaterials with improved performances are 

required. Nickel ferrite (NiFe2O4) finds numerous technological applications, such as gas-

sensor [2,3], magnetic fluids [4], catalysts [5–7], photomagnetic materials [8] and microwave 

devices [9]. Zinc ferrite (ZnFe2O4) has more specific applications, including as a promising 

semiconductor photocatalyst [10,11], photo-induced electron transfer [12], 

photoelectrochemical cells [13] and photochemical hydrogen production [14,15]. Mixed 

nickel–zinc ferrites are widely used in electromagnetic applications where a high 

permeability is required, such as inductors [16] and electromagnetic wave absorbers [17–20]. 

Currently, besides technical usage, there is a growing interest in the medical application of 

these materials in diagnostics and therapy, encompassing magnetic resonance imaging (MRI) 

[21–23], hyperthermia [24–27], and so forth [28–32].  

The magnetic properties of ferrites are tightly bound to the position of the divalent 

cations in the crystal structure. Ferrites crystallize in a spinel structure (cubic space group

_

3Fm d ), where divalent and trivalent cations are arranged among tetrahedral and octahedral 
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sites. Magnetic divalent cations (Ni
2+

) have strong preference for the octahedral sites, and 

thus, NiFe2O4 is an inverse spinel. In contrast, diamagnetic divalent cations, such as Zn
2+

, 

occupy tetrahedral sites. Therefore, the structure of ZnFe2O4 is a normal spinel. Due to the 

opposite path of crystallization, the properties of NiFe2O4 and ZnFe2O4 are diametrically 

different, i.e., NiFe2O4 is ferrimagnetic with a Curie temperature ≈ 858 K, while ZnFe2O4 

shows antiferromagnetic ordering below 9 K. The composition of a ferrite can be modified, 

while the basic crystalline structure remains the same, meaning that the properties of 

materials can be easily tuned just by varying the ratio of the divalent cations. Mixed nickel–

zinc ferrites has the general site occupancy (ZnxFe1–x)TET[Ni1–xFe1+x]OCTO4, where the 

composition varies from NiFe2O4 (x = 0) to ZnFe2O4 (x = 1), resulting in the redistribution of 

metal ions over the tetrahedral and octahedral sites and modification of the properties.  

Preparation methodology is essential for controlling the physical properties of the 

materials, such as magnetic, electrical and optical properties [33]. In other words, the 

synthesis procedure determines the structural and microstructural characteristics of the 

materials, such as cation distribution, particle size, microstrain and kinds of defects [34–36]. 

Different methods for the synthesis of nanocrystalline ferrites have been developed in order 

to optimize low-cost synthesis/material with the desired characteristics ratio [33,37]. The 

preparation methods can be divided in two main categories, solid state and wet chemistry. 

One of the interesting solid state synthetic routes for the preparation of ultrafine powders is 

by thermal decomposition of complexes with acetylacetone ligands [38,39]. Most metals 

form complexes with β-diketonato ligands and the prepared complexes have relatively low 

temperatures of thermal decomposition (below 500 °C), although solid phase reactions 

mainly require high temperature sintering (1200 – 1300 °C) [40]. 

The biomedical application of ferrites requires controllable particle size and enhanced 

dispersibility in a physiological medium. Surface coating of ferrites with a layer of 
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hydrophilic molecules or polymers improves biocompatibility and the stability of the colloid. 

Moreover, interaction with various biological entities, such as polypeptide, antibodies, 

enzymes and DNA, becomes more effective. Besides for example citric and oleic acid [41–

43], starch has become a popular surfactant in the preparation of magnetic particles for 

biomedical applications due to its high availability, low cost and non-toxic effects [44].  

In this work, surface coating of NiFe2O4, ZnFe2O4 and mixed Ni–Zn ferrites obtained 

from acetylacetone complexes was achieved using starch for the first time. Investigation of 

their structural and microstructural properties by X-ray powder diffraction (XRPD) was 

performed. The determination of structure parameters, especially cation distribution, is an 

important prerequisite in understanding and controlling the properties of ferrite nanoparticles.  

2. Materials and Methods 

2.1 Synthesis of ZnFe2O4, NiFe2O4, and Ni–Zn ferrites  

All of the chemicals were of reagent grade, obtained from Sigma–Aldrich, and used 

without further purification. ZnFe2O4, NiFe2O4, and Ni–Zn ferrites were synthesized by 

thermal decomposition of the appropriate complexes [M(AA)x], where M denotes the 

corresponding cation: Zn
2+

, Ni
2+

, or Fe
3+

 [38–40], and AA represents acetylacetone (2,4-

pentanedione) ligand. The complexes [M(AA)x] were synthesized according to a slightly 

modified standard method by reaction of metal ions with ammonium acetylacetonate. The 

thermal decomposition of the mixture of basic complexes in stoichiometric ratio suspended in 

toluene was performed in an electrical furnace with a heating rate of 10 °C/min at T = 500 °C 

for 1 hour, followed by pulverization in an agate mortar. To obtain ferrofluids, 5 g of starch 

was dissolved in 100 ml of boiling water. Then, 1 g of ferrite powder was added, and the 

mixture was ultrasonically treated for 1 hour at 80 °C. The starch-coated ferrite particles were 

dialyzed at 37 °C for 24 hours under continuous stirring to remove the excess unreacted 

starch. The pore sizes of dialysis tubing were 10 mm flat-width (50 kD MWCO). 
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2.2 Characterizations 

XRPD patterns for all of the samples were collected using a Rigaku SmartLab automated 

powder X-ray diffractometer with Cu Kα1,2 (λ = 1.54059 Å) radiation (U = 40 kV, I = 30 mA) 

equipped with D/teX Ultra 250 stripped 1D detector in the XRF reduction mode. The 

diffraction angle range was 15 – 80 °2θ with a step of 0.01 ° at a scan speed of 2 °/min. 

Structural and microstructural investigation of all samples (ferrites and ferrites coated with 

starch) was conducted by the Rietveld method. 

Scanning electron microscopy (SEM) and Energy-dispersive X-ray spectroscopy (EDS) 

analyses of the samples were performed with a JEOL JSM-6610LV scanning electron 

microscope. EDS analyses were conducted in the area of 1x10
4
 μm

2
 per sample. 

The IR spectra were recorded on a Nicolet 6700 FT-IR instrument (Thermo Scientific), 

in the ranges of 4000 – 400 and 700 – 240 cm
–1

 using the ATR technique with a Smart Orbit 

accessory (diamond crystal). 

3. Results and Discussion  

The obtained XRPD results were analyzed by the Rietveld method to gain deeper insight 

into the structural and microstructural parameters, by the fundamental parameters approach 

[45], as implemented in PDXL2 Rigaku software.  

The powder XRD patterns for synthesized ferrites, as well as for nanoparticles coated 

with starch, are shown in Figure 1. The powder XRD patterns for both groups of samples 

showed the characteristic peaks for the spinel structure. The d-values and intensities of the 

diffraction maxima match the literature data of ZnFe2O4 (ICDD PDF 22-1012) and NiFe2O4 

(10-0325). The X-ray diffraction patterns show broad peaks indicating the ultrafine nature 

and small crystallite size of the particles. It is important to note that no other phases were 

detected. The most intensive diffraction peaks that correspond to the characteristic 
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crystallographic planes of the spinel structure of ferrites [(111), (220), (311), (400), (511), 

(440)] can be seen in Figure 1. 

The lattice parameters were refined for all of the compositions and are listed in Table 1. 

According to the results, the lattice parameters increase with increasing Zn
2+

 content. The 

lattice parameter of these nanoparticles depends on the radius of Zn
2+ 

and Ni
2+

 ions. The 

radius of Zn
2+

 (0.82 Å) is larger than that of Ni
2+

 (0.78 Å). The increase in lattice parameter 

with decreasing Ni
2+

 content is due to the replacement of the smaller Ni
2 + 

cation by the larger 

Zn
2+ 

cation [46,47]. 

The values of average crystallite size and microstrain obtained by the Rietveld method 

are listed in Table 1, while the cation occupancy distribution is listed in Table 2. It can be 

noticed that the crystallite size increases with increasing concentration of Ni
2+

 ions. Coating 

with starch led to an increase in the crystallite size, supporting the fact that the synthesized 

nanoparticles were functionalized. On the other hand, the microstrain increased in both the 

coated and uncoated samples, until the composition of Zn0.5Ni0.5Fe2O4. Furthermore, with 

further increase in the content of Ni
2+

 ions in the structure, the microstrain parameter 

decreased. This could be explained by the change of the structure from normal (ZnFe2O4) to 

inverse (NiFe2O4) spinel. The distribution of divalent metal cations at specific tetrahedral and 

octahedral positions shown in Table 2 is responsible for the relaxation of the structure.  

 

Table 1. Unit cell parameters (Å), volumes (Å
3
) and microstructural parameters for the 

investigated ferrites 

 a (Å) V (Å
3
) Crystallite size (Å) Strain (%) 

ZnFe2O4 8.4390(4) 601.00(5) 141(2) 0.21(6) 

ZnFe2O4* 8.4371(5) 600.60(6) 202(2) 0.251(8) 

Zn0.75Ni0.25Fe2O4 8.4140(6) 595.68(8) 173(2) 0.366(8) 

Zn0.75Ni0.25Fe2O4* 8.4138(6) 595.62(7) 295(5) 0.469(5) 
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Zn0.5Ni0.5Fe2O4 8.3959(6) 591.84(8) 180(2) 0.426(8) 

Zn0.5Ni0.5Fe2O4* 8.3989(6) 592.47(7) 309(3) 0.423(6) 

Zn0.25Ni0.75Fe2O4 8.3594(6) 584.15(7) 206(2) 0.153(7) 

Zn0.25Ni0.75Fe2O4* 8.3580(3) 583.85(4) 313(3) 0.137(6) 

NiFe2O4 8.3412(4) 580.35(5) 224(2) 0.134(10) 

NiFe2O4* 8.3404(3) 580.18(4) 341(4) 0.109(7) 

*
coated with starch 

 

 

 

 

Table 2. Refined occupancies (N)and cation distributions in tetrahedral (8a) and octahedral 

(16d) positions of the crystal structures of the investigated ferrites, obtained by the Rietveld 

method. 

 N(Zn)8a N(Ni)8a N(Fe)8a N(Zn)16d N(Ni)16d N(Fe)16d 

ZnFe2O4 0.2455(7) 0.0000(7) 0.0045(7) 0.0045(7) 0.0000(7) 0.4955(7) 

ZnFe2O4* 0.2475(6) 0.0000(6) 0.0037(6) 0.0045(6) 0.0000(6) 0.4932(6) 

Zn0.75Ni0.25Fe2O4 0.1831(6) 0.0066(6) 0.0603(6) 0.0085(6) 0.0618(6) 0.4297(6) 

Zn0.75Ni0.25Fe2O4* 0.1823(7) 0.0059(7) 0.0598(7) 0.0080(7) 0.0623(7) 0.4289(7) 

Zn0.5Ni0.5Fe2O4 0.1201(7) 0.0185(7) 0.1115(7) 0.0050(7) 0.1132(7) 0.3859(7) 

Zn0.5Ni0.5Fe2O4* 0.1193(6) 0.0179(6) 0.1133(6) 0.0063(6) 0.1107(6) 0.3863(6) 

Zn0.25Ni0.75Fe2O4 0.0598(7) 0.0047(7) 0.1913(7) 0.0021(7) 0.1903(7) 0.3087(7) 

Zn0.25Ni0.75Fe2O4* 0.0601(6) 0.0044(6) 0.1901(6) 0.0017(6) 0.1899(6) 0.3069(6) 

NiFe2O4 0.0000(5)  0.0000(5) 0.2498(5) 0.0000(5) 0.2498(5) 0.2502(5) 

NiFe2O4* 0.0000(5) 0.0000(5) 0.2504(5) 0.0000(5) 0.2498(5) 0.2496(5) 

*
coated with starch 

Furthermore, the structural composition of the investigated ferrites was calculated from 

the results presented in Table 2 and is presented in Table 3, which confirms the agreement 

between predicted and obtained stoichiometric ratios. 
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Table 3. Chemical composition of synthesized ferrites deduced from Rietveld refinement and 

EDS analyses. 

 Rietveld method EDS analysis 

 Zn
2+

 Ni
2+

 Fe
3+

 Zn
2+

 Ni
2+

 Fe
3+

 

ZnFe2O4 1.01 0.00 1.99 1.01 0.00 1.99 

ZnFe2O4* 1.00 0.00 2.00 0.97 0.02 2.01 

Zn0.75Ni0.25Fe2O4 0.76 0.27 1.95 0.76 0.26 2.01 

Zn0.75Ni0.25Fe2O4* 0.77 0.27 1.96 0.74 0.25 1.98 

Zn0.5Ni0.5Fe2O4 0.50 0.51 2.00 0.48 0.54 1.99 

Zn0.5Ni0.5Fe2O4* 0.50 0.53 1.99 0.50 0.46 2.04 

Zn0.25Ni0.75Fe2O4 0.25 0.78 1.99 0.22 0.79 2.01 

Zn0.25Ni0.75Fe2O4* 0.25 0.78 2.00 0.23 0.77 2.02 

NiFe2O4 0.00 1.00 2.00 0.00 0.98 2.02 

NiFe2O4* 0.00 1.00 2.00 0.02 0.99 1.99 

*
coated with starch 

EDS (Table 3) and SEM (Figure 2) analyses were performed to visualize the morphology 

and nature of the chemical composition of the synthesized magnetic nanoparticles. The 

results from EDS analyses were in perfect agreement with the chemical composition obtained 

from XRPD. The slight stoichiometric inconsistencies obtained from the EDS results are due 

to the sample preparation method. Disagreements in the chemical composition determined by 

EDS analysis are higher if the investigated samples are not ideally flat, as was the case with 

the investigated coated powders. From the obtained SEM results (Figure 2), it was clear that 

the synthesized particles were slightly agglomerated due to their ferrimagnetic nature. 

However, it is possible to observe particle composition consistency for all of the samples.  

 

According to a group theory consideration, there are 42 vibrational modes that 

correspond to the spinel structure: A1g (R) + Eg (R) + T1g (in) + 3 T2g (R) + 2 A2u (in) + 2Eu 

(in) + 4 T1u (IR) + 2 T2u (in), where R and IR represent Raman and infrared active modes, 

respectively, while in represents inactive modes. Thus, there are four internal IR active bands 
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that can be found in the following infrared spectral regions: ν1(630–560 cm
−1

), ν2(525–390 

cm
−1

), ν3(380–335 cm
−1

), and ν4(300–200 cm
−1

) [48,49]. The band, ν1, corresponds to 

intrinsic stretching vibrations of the metal at a tetrahedral site (Mtetra–O), whereas the ν2 band 

is attributed to octahedral metal stretching vibrations (Mocta–O). The other two bands can be 

found in the far-infrared region and are assigned to complex vibrations including both 

octahedral and tetrahedral sites. A strong band is located at 534 cm
−1 

for the normal spinel 

structure of ZnFe2O4, while for the inverse spinel structure of NiFe2O4, this band lies at 569 

cm
−1

 (Figure 3). An increasing trend of the vibrational energy was observed with increasing 

amount of Ni
2+

 ions in the structure (Figure 3). However, the positions and intensities of the 

bands depend strongly on the methods and conditions of preparation. A band of weaker 

intensity that originates from Mocta–O vibrations could be found at approximately 450 cm
−1

 

for all of the examined species (Figure 3). The band, ν3, appears close to 350 cm
−1

 in all 

cases, while ν4 is present at a wavenumber lower than 270 cm
−1

, although sometimes it is 

difficult to record (Figure 3).  

In the spectra of both, pure starch [50, 51] and previously studied coated samples [52], a 

broad peak approximately 3400 cm
−1

 represents the symmetric vibrations of –O–H groups 

(Figure 3). The band observed approximately 1100 cm
−1

 can be assigned to O–H bending 

vibrations. However, the spectra of the coated nanoparticles revealed that this peak split into 

three close-lying bands (Figure 3).  A band observed about 1650 cm
-1

 in the spectra of 

uncoated ferrites can be attributed to bending vibration of water. At almost the same 

wavenumber, in the spectra of starch-coated samples the mode of –CH components of starch 

and ro-vibrational water gas signature are superimposed. An additional band at approximately 

2900 cm
−1

, presenting the C–H stretching modes, appeared in the spectra of the ferrites 

coated with starch. Moreover, the –CH and –CH2 bending in plane modes of pure starch and 

starch-coated samples could be found at approximately 1375 and 1455 cm
-1

. Thus, the 
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Fourier transform IR (FTIR) spectra confirmed the functionalization by starch of all 

examined ferrites. 

 

4. Conclusions 

Zn-ferrite, Ni
2+

 substituted zinc ferrites and Ni-ferrite magnetic nanoparticles were 

synthesized via the thermal decomposition method and coated with starch.  

The XRPD results confirmed the crystalline nature and presence of single phase spinel 

structure. The unit cell parameter decreased, while the crystallite size increased with 

decreasing zinc content in the structure. The change of the structure from the normal spinel of 

ZnFe2O4 to the inverse spinel of NiFe2O4 was followed by the microstrain parameter that 

increased until the composition Zn0.5Ni0.5Fe2O4 was reached. Further substitution of Zn
2+

 by 

Ni
2+

 resulted in a reduction in microstrain and relaxation of the structure. According to the 

SEM and EDS results, the morphology and composition were uniform throughout the 

samples, corroborating the XRPD data. The FTIR analyses clearly showed the existence of 

metal oxygen bonds, confirming the presence of the spinel structure. According to the FTIR 

spectra of the coated samples, additional bands originating from starch appeared, indicating 

successful functionalization.  

The starch coating of nanocrystalline ferrites obtained from acetylacetone complexes 

presents a very simple and fast way to obtain ferrofluids, opening a broad range of 

applications.  
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Figure 1. Collected XRPD patterns of synthesized a) uncoated and b) starch-coated Zn-

ferrite, Ni-ferrite and mixed Ni–Zn ferrites. 

Figure 2. SEM analysis of the synthesized ferrites; *samples coated with starch. 

Figure 3. FTIR spectra of the synthesized ferrites.  
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Figure 2. SEM analysis of the synthesized ferrites; *samples coated with starch.
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