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Abstract
Iron oxide nanoparticles (IONP)with different distinctivemorphologies (spherical, cubic, flower-like
and needles)were utilized formodification of screen-printed carbon electrodes (SPCE) to be used for
synthetic organic dye degradation by an electrochemical approach. This platformwas implemented
for removal of the synthetic organic dye, Reactive Black 5 (RB5) in aqueous solution.Modified SPCE
with spherically shaped IONP (IONS) had the highest dye removal efficiency. Thus, IONSwere then
used for surface decoration of themost common carbon-basedmaterials (graphene, graphene oxide,
carboxylated graphene, graphene nanoribbons, graphene nanoplatelets, single- andmulti-wall carbon
nanotubes), and the nanocomposites formedwere deposited on the electrode surfaces. Using IONS/
graphene composite (IONS@GN) for electrodemodification resulted in the best effect. Removal of
RB5with this electrodewas 51%better in comparisonwith bare SPCE, reducing the time required for
complete dye degradation from61 to 30minUsing IONS-modified SPCE, total RB5 removal occurred
in 51min, improving the performance by 16%over that of bare SPCE. The effects determined, i.e., the
best IONPmorphology and best type of carbon-basedmaterial for nanocomposite formation to
enhance RB5 removal will provide guidelines for furthermodifications of SPCEwith nanomaterials
and nanocomposites, for application of this electrochemical approach in the degradation of organic
pollutants.

1. Introduction

Magnetic nanoparticles (MNP) are one of themost vital and fastest-growing areas of research in the field of
nanotechnology. Their properties are significantlymodified in comparisonwith their bulk counterparts and
depend on several factors such as composition, shape, size, surfacemorphology, anisotropy, inter-particle
interactions, etc [1–3]. The synthesis ofMNPwith desiredmorphology (sphere, cubic, rod, flowers, etc), size,
and size distribution has attracted significant attention. Among them, iron oxide nanoparticles (IONP) are of
growing interest in different areas of technology, and they are used often asmodel systems in theoretical
investigations. Particularly,magnetite (Fe3O4) andmaghemite (γ-Fe2O3) and their composites are widely
studied because of their potential applications inmedicine, catalysis, waste-water treatment, biosensors, etc
[1–4]. As an example, the use of IONP functionalizedwith poly(methylmethacrylate) for heavymetal removal
(Pb(II), Hg(II), Cu(II), andCo(II))has been demonstrated, where the high surface-to-volume ratio of the
nanoparticles provides high adsorption capacity, and themagnetic nature of nanoparticles enables heavymetal
removal using externalmagnetic fields [2]. The use ofmagnetic nanoparticles in organic waste treatment is
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heavily researched. Recently,magnetic iron ceriumbimetal oxides (MMIC)were used as catalyst for oxidation of
arsenite [5]. Guo et al proposedα-Fe2O3/Bi2WO6 composite for photocatalytic degradation of organic
pollutants under visible light [6], while Zhang et al presented results of Fe2O3-PillaredRectorite as a
heterogeneous catalyst for photodegradation [7]. Other than this, the use of TiO2 nanoparticles in catalysis is
well known [8–12]

On the other hand, functional, carbon-based nanomaterials are in focus because of the great diversity of
their technological and industrial applications. Among the carbon nanomaterials, graphene is the building block
of graphiticmaterials such as carbon nanotubes, carbon nanoribbons, carbon nanoplatelets, fullerenes,
graphene oxides, and graphite. Carbonaceousmaterials are highly electrically conductivematerials and,
nowadays, arewidely exploited in various electrochemistry fields [13–17]. Graphene (GN) is a single atomic
layer of sp2 carbon atoms. This configuration provides thematerial with extraordinary properties such as large
surface area, great electrical conductivity, highmechanical strength, substantial elasticity, and thermal
conductivity [18]. Functionalization and dispersion ofGN sheets are of crucial importance for their end
applications and to prevent the agglomeration of layers of GN, somaintainingGN’s inherent properties [19].

FunctionalizingGNwith carboxyl groups (-COOH) produces carboxylated graphene (cGN), which is used
in various fields [20]. Graphene oxide (GO) is synthesized using strong oxidizing agents onGN, resulting in
nonconductive hydrophilic carbon-containing oxygen functional groups [21, 22]. Reduced graphene oxide
(rGO) is produced from the reduction ofGOby thermal, chemical,microwave or electrical treatments [23–25].
Graphene nanoribbons (GNR) are narrow strips of GNor single-layer graphite and are combined to form the
structures of carbon nanotubes (CNT) andGNnanosheets (GNS) [26]. Graphene nanoplatelets (GNP) consist
of small stacks of GN that are used inmany industrial applications, includingwastewater treatment [27]. Single-
wall andmulti-wall carbon nanotubes (SWCNT andMWCNT) have attracted great interest in wastewater
treatment due to their large specific surface area, small size, and hollow and layered structure [28, 29]. In very
recent years, great effort has beenmade to treat wastewater with carbonaceousmaterials (or their composites
with IONPs) using an electrochemical approach, which has good potential to deal withmany kinds of organic
and inorganicwastewater pollutants. As an example, it is worthmentioning that IONP/graphene composites
such as Fe3O4/r-GO are extremely promising candidates for awide range of electrochemical sensing and
biosensing applications [30].

The treatment of wastewater containing aromatic dyes is difficult because the aromatic structures of the dyes
make themhighly resistant to light, heat, and oxidizing agents [31, 32]. Recently, a number of processes were
proposed in the literature formitigating dyes and other organic pollutants, andwhich are based on novel
approaches such as use of the dielectric barrier discharge ozone reaction [33], membranefiltration [34],
nanofiltration [35], biological treatment [36], and various electrochemicalmethods [37–39]. Treatments of dyes
using electrochemical approaches aremainly focused on electrocoagulation and electrochemical oxidation since
electrochemical reduction has the slowest discolouration effect [40]. They can be also combinedwith photo-
assisted degradations (known as photo electro-Fenton reaction). In some cases, electrochemical technologies are
themost adequatemachinery for dealingwithwastewaters containing these pollutant dyes. Themain problem
with this strategy can be the performance of the electrodes.However,magnetic nanomaterials, both
nanoparticles and nanocomposites, withmassive specific surface area and small diffusion resistance, have been
widely recognized as efficient adsorbents [41, 42].

Themainmotive of this studywas to investigate the influence of themorphology of differently shaped
IONPs for azo dye decolourization fromaqueous solution. Therefore, iron oxide nanospheres, cubes, flowers,
and needles were synthesized and used tomodify bare SPCE to enhance the efficiency of dye removal by
electrochemical degradation. Themorphologywith the best performance was then selected for
functionalization of themost common carbonmaterials currently used to further improve the dye removal
efficiency. Reactive Black 5was chosen as amodel dye due to its wide application in the textile industry. In line
with our goal, the factors affecting dye removal performance, i.e., dosage, pH, supporting electrolyte, applied
potential, and dye concentrationwere studied based on our previous experience. The kinetics of RB5 removal by
decorating IONPon top of SPCEwas studied. Electrochemical impedance spectroscopy (EIS), alongwith other
techniques such as transmission electronmicroscopy (TEM),field emission-scanning electronmicroscopy
(FE-SEM) andUV–vis spectroscopy elucidated the rate of RB5 degradation.

2. Experimental details

2.1. Synthesis of iron oxide nanoparticles and carbon-based nanocomposites
The synthesis route of iron oxide nanospheres (IONS)was based on our previous work [43]. Here, the procedure
was successfully applied to prepare iron oxide nanoparticles with sphericalmorphology. The nanoparticles were
prepared by a two-step procedure, co-precipitation at room temperature followed by hydrothermal treatment in
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amicrowave field at 100 °C. Briefly, iron(II) and iron(III) salts (inmolar ratio 1:2)were added to round bottom
flasks under a blanket of nitrogen and strongmechanical stirring. The nanoparticles were precipitatedwith the
addition ofNH4OHand transferred to amicrowave reactor. The power ofmicrowave irradiationwas set
between 0-1000W,with a linear heating program from room temperature to 100 °C for 20 minVessels were
quickly cooled in an airflow, and the black product was collected by an externalmagnet, washedwith
demineralizedwater several times, and dried at 60 °C.

Multicore iron oxide nanoflowers (IONF)were obtained by polyolmediated reduction of iron(III) chloride.
IONFwere prepared as described inmore detail elsewhere [44], but the experimental procedure, concentrations
of iron(III) chloride andNaAc and reaction timewere changed. In brief, 0.9 mmol of iron(III) chloridewere
ultrasonically dissolved in 109 mLof ethylene glycol. Then, 140 mmol of PVP40were slowly added to prevent
formation of lumps under vigorousmagnetic stirring (1350 rpm)withmild heating until complete dissolution.
After this, 15.8 mmol ofNaAcwas added to the solution. Themixturewas sealed in a Teflon-lined stainless-steel
autoclave of 150 ml capacity and transferred to the oven (MemmertUN55, Germany). The temperature of the
systemwasmaintained at 200 °C for 8 h for solvothermal crystallization, followed by cooling inside the oven.
The supernatant was discarded and the dark brown precipitates were washed several timeswith ethanol via
centrifugation (6163RCF, Sorenson BioSense, Inc, USA) andfinally dried overnight at 60 °C.

Synthesis procedures for iron oxide nanocubes (IONC) and iron oxide nanoneedles (IONN)were described
in references [45] and [46], respectively.

The prepared nanoparticles described abovewere dispersed in dimethylformamide (DMF) in an ultrasonic
bath and used formodification of the electrode surface. After selecting the best candidate for degradation of
Reactive Black 5, the synthesized IONSwere used to decorate various carbon-basedmaterials with different
carbon arrangements, i.e., graphene (GN), carboxylated graphene (cGN), graphene oxide (GO), graphene
nanoribbons (GNR), graphene nanoplatelets (GNP), single-wall carbon nanotubes (SWCNT), andmulti-wall
carbon nanotubes (MWCNT), bymixing nanoparticles with carbon compounds in a 3:1mass ratio and
dispersing them in (DMF) in an ultrasound bath. Typically, 3 mg of INOPweremixedwith 1 mg of carbon
materials, dispersed in 1 ml of DMF, and sonicated for 3 h at room temperature, to form a uniform suspension.
Concentration of IONP in the suspensionwas 3 mgml−1.

2.2. Electrode preparation
The screen-printed carbonelectrodeswereproduced fromcarbon ink (No.C50905DI,Gwent, Pontypool,UK) and
laserpre-etched ceramic supports (No.CLS641000396 R,CoorsCeramicsGmbH,Chattanooga,TN,USA). Thick
layers of carbon inkwere formedbybrushing the ink throughanetched stencil (thickness 100μm,electrodeprinting
area 100mm2)with the aidof a screen-printingdevice (SP-200,MPM,Franklin,MA,USA)onto the ceramic supports.
The resultingplatesweredriedovernight at roomtemperature. Eachmodified screen-printed electrodewasprepared
bydropping60μlof synthesized composite on the electrode surface andallowing it todry for 3 h.

Based on our previous experience, the experimental galvanic conditions for electrochemical removal of the
selected dye, RB5, were standardized as follows: 0.05 Mpotassium chloride (KCl) as the supporting electrolyte;
applied potential of 3 V, and; pH2 achieved by addition of 0.01 Mhydrochloric acid (HCl) [47].

2.3. Experimentalmethods
2.3.1. Characterization of thematerials
Morphologies of synthesizedmaterials and nanocomposites were examined using afield emission-scanning
electronmicroscope FE-SEMMIRA3 (Tescan, Czech Republic) coupledwith an EDS analyzer (Oxford, UK) and
transmission electronmicroscopes JEOL-TEM1010 (JEOL, Japan) operating at 100 kV and JEOL-TEM2100 F
at 200 kV.Diluted dispersions of IONP and nanocomposites were dropped on a carbon-coated copper grid and
left to dry at room temperature for FE-SEMandTEMobservations. TheTEM images were analyzed by Image J
software [48] inmanualmode, and themean particle sizes (dTEM)were obtained bymeasuring the largest
internal dimension of at least 100 particles. Afterwards, the data werefitted throughOrigin software to a log-
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Crystal structures of thepreparedmaterialswere examinedbyX-raypowder-diffraction (XRD)performedona
high-resolutionSmartLab®X-raydiffractometer (Rigaku, Japan)withCuKα radiation source andaccelerating voltage
of 40 kVandcurrent 30mA. Sampleswerepreparedbyflatteningdriedpowderswith a zero-background siliconwafer,
anddiffractionpatternswere collectedwithin10-70°2θ range.Meancrystallite size,dXRD,wasobtainedbyScherrer’s

equation ·
·

= l
b q

d ,XRD
K

cos
where constantK (assumed tobe equal 0.9) is relatedboth to the crystallite shape and to

thedefinitiononbothβ anddXRD,λ is the x-raywavelength,β is the full-width at halfmaximumof theparticular
diffractionpeak.ThedXRD valuesweredeterminedas averaged fromthemost intensive reflections.
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Magneticmeasurements were carried out in a SQUIDmagnetometerMPMS 5XL,QuantumDesignwith a
maximumfield of 30 kOe. Each sample was dried in an inox-coated oven at 50 °Covernight. Afterwards, the
samples were accurately weighed and fitted into the sample holder. A hysteresis loop of each powder sample was
measured at 295 K at a rate of 0.5 kOe·min-1. The saturationmagnetization (MS)was estimated by using the

equation ( )= - -M M 1s
a

H

b

H2 forH tending to∞.

2.3.2. Electrocatalytic activity of themodified electrodes
RB5 degradationwas studied in an undivided two-electrode cell containing 50 mLof 40 mg L−1 (ppm) of the
dye, and equippedwith unmodified (cathode) ormodified screen-printed electrodes (anode)with an active area
of 100mm2 (25×4 mm) asworking electrodes. During all experiments,mildmagnetic stirringwas used to
ensure the homogeneity of the solution. Experiments were carried out under galvanostatic conditions, with an
adjustable laboratoryDCpower supplyHyelecHY3003 (0-30 VDC, 0-3 A). UV-Visible spectrophotometer
(Evolution 200 Series, Thermo Fisher Scientific, Bremen, Germany)was used tomonitor the decolourization
rate at themaximumabsorptionwavelengthλmax=597 nm.A small amount of solutionwas taken out from the
cell every 5 min until complete discolouration occurred.

3. Results and discussion

3.1. Structural andmagnetic characterization of IONPs
Differently shaped IONPswere thoroughly characterized to determine theirmicrostructural (morphology and
particle/crystallite size) andmagnetic (saturationmagnetization and coercive field) properties, in order to
ascertainwhichwould be suitable for electrode surfacemodification.

Themorphologies of the IONPswere investigated by TEM. Figure 1(A) andfigure S1 is available online at
stacks.iop.org/MRX/7/015509/mmedia (supplementarymaterial) show representative TEMmicrographs of
IONPswith differentmorphologies (IONS, IONC, IONF and IONN). Iron oxide nanospheres (IONS)were
pseudo-spherically shaped, partially aggregatedwithmean diameter of 20 (±5)nm. Themorphology of cube-
like nanoparticles (IONC)wasmostly octahedral or cubic, and theywere aggregated forming chains and fractal
structures withmean diameter of 61 (±9)nm. Iron oxide nanoflowers (IONF)were composed of spherical, log-
normally distributedmulticore nanoparticles with amean diameter of 118 (±19)nm,withwell-defined size and
shape [47]. These flower-like nanoparticles consisted of smaller cores of approximately 15 nm. The coreswere
densely packed, forming particles of characteristic size and shape resembling aflower. Iron oxide nanoneedles
(IONN) had amean length of 183 (±33)nmwith an axial ratio of 5.5. Themean diameters of the nanoparticles
(dTEM) and polydispersity (given in percentage;σTEM) are listed in table 1. Figure 1(B) reveals the log-normal
distributions of nanoparticles with differentmorphologies.

Figure 1. (A)Transmission electronmicroscopy (TEM) images of IONPs: iron oxide nanospheres (IONS, 20 nm), iron oxide
nanocubes (IONC, 61 nm), iron oxide nanoflowers (IONF, 118 nm) and iron oxide nanoneedles (IONN, 183 nm), and; (B) Log-
normal size distributions of the respective IONPs.
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TheXRDpatternsof the IONPsare shown infigure2(A).All of the reflections for samples IONS, IONCand IONF
were assigned and indexed in agreementwith the JCPDSPDFCard#19-629 in theFd-3m (No.227) space groupof
the cubic structure, and indicated that the synthesizednanoparticles beingmagnetite (Fe3O4). In thediffractionpattern
of IONNitwasnoticed three small reflectionsof appearing at 15°, 23.9 ° and26.2°,which canbe ascribed to the (110),
(210) and (211) reflectionsofmaghemite (γ-Fe2O3)phase, and therefore it canbe concluded that IONNnanoparticles
crystallize inP4332 space group (JCPDSPDFCard#96-230-0618, [49]).However, on thenanoscale, by analysing
diffractionpatterns it is verydifficult todistinguishdifferences inmaghemite (γ-Fe2O3) andmagnetite (Fe3O4) crystal
structure. Probably, in themost synthesised samples, there is amixtureofmagnetite andmaghemitephaseswith a
different ratio. In all diffractionpatterns, itwasnoticed a small reflection at 32.8° coming fromthehematite phase
(Fe2O3), but intensities of these reflections arenegligible. The crystallite sizes determinedbySherer’s formula,dXRD,
agreewellwithdTEM in the caseof IONS (dXRD=15.5 nm) and IONC (dXRD=58.9 nm), and are comparablewith the
core size of IONF (dXRD=20.9 nm), but are significantly smaller than theparticle sizes. This reflects themulticore
natureof eachnanomaterial. In the caseof IONN,dTEMdenoted the lengthof theneedles (183 nm).

Figure 2(B)presents the hysteresis loops of the four differentmorphology types of IONP: IONS, IONC,
IONF and IONNat 295 K, and table 1 summarizes the saturationmagnetization (MS), remnantmagnetization
(MR) and coercivity (HC). All themagnetization curves pass through the origin in themagnetization graphs (Hc,
MR∼0 Oe), whichmeans the synthesized nanoparticles are superparamagnetic at room temperature. The
saturationmagnetization ranged from78.1 emu g−1 for IONC to 71.4 emu g−1 for IONN,which are common
literature values formagnetite ormaghemite nanoparticles [50].

3.2. Electrochemical impedance spectroscopymeasurements
Electrochemical impedance spectroscopy (EIS)was used to confirm the interference properties of the fabricated
electrodes before and at eachmodification step and to further characterize IONP, nanocomposites, and
electrodes (figure 3). The impedance spectra contained a semi-circular part at higher frequencies corresponding
to the electron-transfer resistance (Ret) and a linear part at lower frequencies belonging to the diffusion-limited
process [51]. EISmeasurements in the frequency range from1×105 to 0.1 Hz usingmodified SPCEwith
differently shaped IONPs (figure 3(A)) indicate thatmodifying the electrode surfacewith the synthesized IONPs

Table 1.Particle size (dTEM), polydispersity (σTEM), crystallite size (dXRD), lattice
parameter (a) and saturation (MS)magnetization of differentmorphologies
of IONP.

IONP

dTEM
(nm) σTEM(%)

dXRD
(nm) a (Å)

Ms

(emu/g)

IONS 19.8 26.1 15.5(3) 8.368(7) 77.3

IONC 59.2 26.2 58.9(1) 8.392(3) 78.1

IONF 117.7 15.7 20.9(7) 8.397(4) 75.3

IONN 185.2 21.6 27.0(2) 8.372(2) 71.4

Figure 2. (A)XRDpatterns of differently shaped IONPobtained byCuKα source and; (B)Hysteresis loops of IONP at RT.
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was followed by decrease of the semicircle diameters inNyquist plots. Here, the lowest diameter was obtained
with IONS-modified SPCE,which can be explained by the greater active surface area and better conductivity of
themodified electrode compared to the bare electrode. This is beneficial for interfacial properties between test
solutions and electrode and should enhance the transportation of electrochemically-produced charges at the
solution/electrode interface. IONSwere then selected tomodify different carbon-basedmaterials, thusmaking
nanocomposites (IONS@CBM). EIS spectra of IONS@CBM-modified SPCE electrodes (figure 3(B)) showed
that some combinations of the carbonmaterials (MWCNT,GN,GO) have impedance spectrawith semicircle
diameters that were barely observable. This suggests impedance can be ignored, becauseMWCNT,GNandGO
had outstanding electroconductivity, which should enhance the electron transfer and thus hold smaller
resistance, while the resistance values gradually increased up to that of SWCNT. Additionally, GN andMWCNT
produced thewidest range of linearmeasurements, indicating diffusion-controlled processes.

3.3. Comparative study of decolourization of Reactive Black 5 by bare SPCE and IONP-modified
screen-printed electrodes
In the above studies, it was proven that themodification procedure improved the electrochemical characteristics
of the SPCE electrode surface.However, the efficiency ofmodified and unmodified electrodes in the removal of a
dyewas not yet clear, so this was examined using 50 mg l−1 RB5. Results are summarized infigure 4(A).With
bare SPCE, after 61 min of electrolysis, colour removal was around 95%,whilemodifying the electrodewith
IONP (IONP/SPCE) increased the dye removal efficiency up to 99%after 51 min of treatment. This resulted in a
15% saving of time and energy consumption. It can be deduced the electrode efficiencywas strongly correlated
with size andmorphology of nanoparticles because IONShad the smallest diameter which resulted in the
highest surface area, followed by IONF,which are composed of smaller cores that best degrade RB5. This was
also confirmed by EIS, showing the greater active surface area achieved by electrodemodification. Figure 4(B)
shows that by increasing the reaction time, the intensity of theλ=597 nmband decreased. The reduction in the
597 nmabsorption bandwasmost likely due to hydrogenation of azo bonds and conversion of –N=N– to
–NH2 that breaks the long conjugatedπ-systemof RB5 [52] and produces the small aromatic amines and
sulfanilic acid derivatives characteristic of RB5 degradation [53]. The effect of iron oxide nanoparticles on
–N=N– bonds is well known and reported [54], so themechanismof this degradationwas not further
explored. In the next step, thematerial with the best decolourizing performance (IONS)was chosen to decorate
various carbonaceousmaterials, to further improve the electrode surface.

3.4. Comparative study of decolourization of Reactive Black 5 by bare SPCE and IONPmodified
screen-printed electrodes
Different IONS@CBMnanocomposites were used tomodify SPCE electrodes.

3.4.1. Electrocatalytic activity of the proposedmethod
A comprehensive overview of electrochemical removal of RB5measuredwithUV-Vis spectroscopy, and
improvements to the time needed for complete (∼99%) decolourization of RB5 are given infigure 5. The best

Figure 3.EIS spectra of themodified electrodeswith A) IONPswith differentmorphologies, and; B) composite IONS@carbon-based
materials.
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efficiencywas achievedwith IONS@GN/SPCE (iron oxide nanospheres on graphene/screen-printed carbon
electrode), withwhich∼99%of dyewas removed fromwater in only 31 min, a 51% improvement compared to
the bare electrode, as shown infigure 5(A). Infigure 6(B), the dye removal is depicted, showing improving
effectiveness in the order fromworst to best: bare SPCE<IONS-modified SPCE<IONS@GN-modified
SPCE. Thus, themodified electrodes significantly increased the dye degradation rate over that of bare SPCE. In
figure 5(A), the improvement of dye decolourization after decoration of different carbon-basedmaterials is
displayed. It can be noted thatmost of the carbon-based nanocomposites had a similar or better ability to
decolourize the dye as did bare SPCE.OnlyGO and SWCNTdecoratedwith IONS resulted in slower
degradation rates than the pure IONS/SPCE electrode. These results are in good agreement with the results of
EIS. Specifically, GN andMWCNThad the best EIS spectra, as described earlier (section 3.2;figure 3). Almost
complete omission of semicircle diameter in theNyquist plot was observed, indicating the larger electrode active
area and better conductivity, and greatest linear ranges occurred at lower frequencies; this would enhance
diffusion. Infigure 6(C), absorbance spectra of IONS@GN/SPCE over a 75 min period is given, showing that
complete degradation of the peak at 597 nmoccurred after only 30 min.

3.4.2. Characterisation of the IONS@CBM composite
Typical FE-SEM images of IONS decorated on carbon-basedmaterials (IONS@CBM) are shown infigure 6.
IONS are uniformly dispersed on top of the carbonaceousmaterials, increasing the surface areas of the
electrodes. This is beneficial for interfacial properties between the dye solution and electrode and enhances
transport of electrochemically produced charges at the solution/electrode interfaces, which is crucial for dye
removal.

Figure 4. (A)Electrochemical removal of RB5with IONP-modified SPCE, and; (B)Absorbance of IONS/SPCE atλ=597 nm in
5 min intervals up to 75 min.

Figure 5.Electrochemical removal of Reactive Black 5 using IONS@carbon-basedmaterials for SCPEmodification: (A) degradation
performance with different carbon-basedmaterials tomodify SPCE; (B) Improvement of degradation performance usingmodified
electrodes, and; (C)Absorbance of IONS@GN/SPCE over a period of 75 min
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Figure 7 showsTEMmicrographs of nanocomposite IONS@GN,which had the best dye removal efficiency
aftermodification of SCPE (among the examinedmaterials), revealing highly dispersed small spherical
nanoparticles decorated over thewhole surface ofGN.GN is an almost transparent thin-filmpossessing
desirable properties for anchoring small IONS. GN’s large number of wrinkles and folds provided a larger
surface area than the othermaterials, and subsequent better conductivity after it was decoratedwith the IONS.
Thisfinally resulted in the finished IONS@GN/SPCE electrode having the highest RB5 removal efficiency
among all the electrodes we constructed.

The results of our research are summarized infigure 8, schematically displaying the rates of RB5 degradation
we achieved bymodifying the SPCE surface using IONPswith differentmorphologies (figure 8(A)), and the rates
we achieved after decorating some commonly used carbon-basedmaterials (figure 8(B)). It can be concluded
that the performance of SPCE in degrading the organic dyewas significantly improved by this electrochemical
approach. Specifically, a 51%performance increase over the other carbon-basedmaterials usedwas achieved
using the combination of IONS decorated on graphene tomodify SPCE.

Figure 6. FE-SEMmicroscopy of: (A) IONSdecorated on carboxylated graphene (ION@cGN); (B) IONS decorated on graphene
(ION@GN); (C) IONS on graphene oxide (ION@GO); (D) IONS on graphene nanoribbons (ION@GNR); (E) IONS on graphene
nanoplatelets (ION@GNP), and; (F) IONS onmulti-wall carbon nanotubes (ION@MWCNT).

Figure 7.TEMmicrographs of IONS@GN (A)Dark-field; (B)Bright-fieldmicroscopy recorded by JEOL-TEM2100 F.
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4. Summary

It was demonstrated that using different synthesismethods, the desiredmorphology of nanoparticles can be
fine-tuned. The ability of SPCE to degrade the organic dye RB5 is significantly improved by deposition of IONP
on the electrode surface. Among the electrodes constructed, the best results were achieved bymodifying SPCE
with spherical IONP (IONS), as this electrode removes 99%of the dye in 51 min, a performance improvement
of 16%over bare SPCE. After selecting the best IONP (i.e., spherical) for SPCEmodification, the synthesized
IONSwere decorated onto various carbon-basedmaterials with different carbon arrangements: graphene (GN),
carboxylated graphene (cGR), graphene oxide (GO), graphene nanoribbons (GNR), graphene nanoplatelets
(GNP), single-wall carbon nanotubes (SWCNT) andmulti-wall carbon nanotubes (MWCNT). The
nanocomposites formedwere then used tomodify SPCE in order to enhance the efficiency of electrochemical
degradation of the azo dye, RB5.Using the same, standard galvanic conditions, results show the combination of
IONS@GN/SPCEprovides the best outcome, effecting complete removal of the dye in just over 30 min, so this
electrode is 51%more efficient than the bare electrode. These results were very consistent with EIS and electron
microscopy results. Overall, the performance improvement can be explained by the greater active surface area
and better conductivity of themodified electrode,making itmore conducive for the transportation of
electrochemically produced charges at the solution/electrode interface.
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