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Abstract 

Ceramic pigments based on cerium oxide were synthesized by self–propagating room 

temperature method and their color properties were assessed from the viewpoint of potential 

environmentally nontoxic pink pigments. Thermal stabilities of the pigments were examined at 

600, 900 and 1200 ºC. According to X–ray powder diffraction and Raman spectroscopy results, 

all obtained pigments were single–phase solid solutions of cerium oxide, independent of the 

concentration of dopants. The X–ray analysis showed that the crystallites were of nanometric 

dimensions, as recorded and by transmission electron microscopy analysis. Color characteristics 

of solid solutions, which depended on concentracion erbium ions and calcination temperature, 
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and their position in the chromaticity diagram were studied by ultraviolet–visible 

spectrophotometry, which confirmed potential application of environmentally friendly pigments 

of desired color. The color efficiency of pigments was also evaluated by colorimetric analysis. 

 

Keywords: Rare earth pigments, Non–toxic pigments, Optical properties, Band gap, 

Colorimetric 

 

1. Introduction 

In past few years lanthanide ions have attracted great attention due to their unique optical 

properties and specific functions make them useful in a wide range of industrial applications. The 

areas of application included tunable lasers, amplifiers for optical communications, organic light–

emitting diodes and inorganic pigments [1–5]. Inorganic pigments are also used for various 

applications such as paints, ceramics, inks, plastics, rubbers and glasses [6, 7]. The use of 

pigments is not only due to their coloristic properties. They also protect the coating from the 

effects of solar light (UV, VIS and IC light). In order to be suitable in a wide variety of 

applications, they need to possess high thermal and color stability. The majority of inorganic 

pigments, which are currently employed on an industrial scale, generally, comprise toxic metals, 

such as Cr, Co, Ni, Se, Cd, and Pb [8, 9], which are harmful not only to human health but also to 

the environment. Because of their high toxicity, the use of the above pigments in many countries 

has increasingly been becoming the subject of strict control regulated by government legislation 

and regulations. At present, the following classical pigments used on a large scale are: iron oxide 

(Fe2O3) encapsulated in zircon (ZrSiO4) matrix and lead oxide (Pb3O4) in tin oxide (SnO2) matrix 

give pale red or pink colors [10]. The red–orange pigments in the Cd(SxSe1−x)–ZrSiO4 system, 

and sodium urinate are toxic and unstable above 900 ºC [11]. 
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Today, in order to solve the problems of toxicity and instability of pigments, there is a great 

interest in the development of nanosized ceramic pigments based on CeO2. Namely, CeO2 and its 

related pigments have been attracting much attention recently because of their high thermal and 

chemical stability [12, 13], as well as their ability to filter ultraviolet (UV) radiation [14, 15]. The 

study on the production of red ceramic pigments with high thermal stability is of great 

importance to the industry [16]. One way to obtain red pigments is the doping of ceria (CeO2) 

with praseodymium (Pr4+) ions, which is the method that yields a stable dye [17–19]. The 

production of ceramics pigments is focused towards obtaining high surface area pigments in the 

form of powder, since this feature influences the color intensities. Furthermore, there are a 

number of processes to prepare and modify CeO2 fine particles [20, 21]. It is reported that one 

can control the color hue of pigments by the incorporation of another element into the CeO2 

lattice, because the coloring mechanism is based on the charge transfer transition from O2p to Ce4f 

in the CeO2 band structure, which can be modified by the introduction of an additional electronic 

level between the anionic O2p valence band and the cationic Ce4f conduction band [9].  

Different chemical methods can be used for the synthesis of pure or doped CeO2. Among 

them, the electrochemical deposition method [22], hydrothermal synthesis [23–25], pyrrolidone 

solution route [26, 27], sol–gel method [28, 29], soft solution method [30–32], co–precipitation 

technique [33, 34], modified glycine–nitrate procedure [35] and self–propagating reaction at 

room temperature [35] can all be listed.  

Among the above mentioned processes available for the synthesis of nanometric ceramic 

powders, the self–propagating reaction at room temperature (SPRT method) is the most 

promising because of a number of advantages over conventional methods [36–38]. Therefore, the 

SPRT method was applied in this work for the synthesis of Er3+ doped ceria powders (Ce1-xErxO2-

δ; x = 0.05–0.20), where δ denotes oxygen deficiency, i.e., departure from stoichiometry, both due 
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to introduction of dopant cations (x), and due to intrinsic nonstoichiometry. The SPRT procedure 

is based on the self–propagating room temperature reaction between metal nitrates and sodium 

hydroxide, wherein the reaction is spontaneous and terminates extremely fast. The method is 

known to assure very precise stoichiometry of the final product in comparison with a tailored 

composition. Moreover, the SPRT method is very fast and reliable, whereby the required 

equipment is extremely simple and inexpensive. 

As a good candidate for obtaining ceramic pigments based on CeO2 the various shades of 

pink color was chosen erbium ion (Er3+), because of its lower valence state than ceria and pink 

color, which enables the coloring of the different oxides and glass [39–42]. Furthermore, there is 

a lack of literature data about Er3+ as a dopant ion in ceria solid solution. CeO2 doped with 

different ions and in different concentrations [12–21, 43], as a novel class of potential 

environment–friendly pigments, enables obtaining of ceramic pigments with different colors and 

shades. 

Thus, the present paper is focused on the synthesis of Er3+ doped CeO2 (Ce1-xErxO2-δ; x = 

0.05–0.20), as a novel class of potential environment–friendly ceramic pink pigment, by using the 

self–propagating reaction at room temperature. Apart from the interest to get more fundamental 

knowledge on the characteristics of solid solutions under study, of great interest is the study of 

their structural, morphological and optical properties after thermal treatment at 600, 900 and 1200 

ºC for 4 h in air (for the potential application in industrial production), which is also presented in 

this work. 

 

2. Experimental procedure 

 

2.1. Materials and method  
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SPRT procedure is based on the self–propagating room temperature reaction between metal 

nitrates and sodium hydroxide, wherein the reaction is spontaneous and terminates extremely fast 

[35]. Starting reactants for the synthesis of powders of doped ceria Ce1-xErxO2-δ (x = 0.05–0.20) 

were Ce and Er nitrates (Aldrich, USA), and NaOH (Vetprom–Chemicals). The quantities of 

reactants needed for the synthesis of doped CeO2 nanopowders were calculated via reaction (1): 

 

(1-x)Ce(NO3)3·6H2O + xEr(NO3)3·5H2O + 3NaOH + (1/2-δ)O2 → 

→ Ce1-xErxO2-δ + 3NaNO3 + yH2O                (1) 

 

Mechanochemical synthesis of doped CeO2 nanopowders was carried out in an alumina 

mortar by mixing reactants for 15 minutes. The presence of air in the period of 3 hours provided 

total termination of reaction according to the reaction (1). Entire quantity of powder was 

dispersed in water and centrifuged for 10 minutes in a Centurion 102 D 3000 rpm centrifuge. 

Powder washing was repeated four times with distilled water and two times with ethanol. After 

this process NaNO3 from the synthesized powder was completely removed. This was confirmed 

after the analysis of the powder on Na content by titration with EDTA. The obtained 

nanopowders were dried at 100 ºC. In this manner ethanol was removed by evaporation. After 

drying, a part of powder was heat treated at 600, 900 and 1200 ºC for 4 h in air.  

 

2.2. Instruments 

With the aim to compare properties of synthesized nanopowders Ce1-xErxO2-δ (x = 0.05–0.20), 

the characterization of powders obtained at room temperature (25 ºC) [44], and those calcined at 

600, 900 and 1200 ºC was performed. The characterization techniques included X–ray powder 
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diffraction (XRPD), transmission electron microscopy (TEM), scanning electron microscopy 

(SEM), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, and diffuse 

reflectance (DR) spectroscopy in the ultraviolet (UV) and visible (VIS) region.  

All powders were characterized at room temperature by X–ray powder diffraction 

(XRPD) using an Ultima IV Rigaku diffractometer, equipped with Cu Kα1,2 radiation, applying 

generator voltage of 40.0 kV and generator current of 40.0 mA. The range of 20–80 º 2θ was 

used for all samples in a continuous scan mode with the step of 0.02 º and at the scan rate of 2 

º/min. Before measurement, the angular correction was performed by means of a high quality Si 

standard. Lattice parameters (aXRPD) were refined using the least square procedure. Standard 

deviation was about 1 %. The microstrain (eXRPD=∆d/d) was estimated from the Williamson–Hall 

plots based on the following equation [45]: 

 

βtotal ⋅ cosθ = 0.9λ/DXRPD + 4(∆d/d)⋅ sinθ                   (2) 

 

where βtotal is the full width half maximum of the XRPD peak, λ is the incident X–ray 

wavelength, θ is the diffraction angle, DXRPD is the crystallite size and ∆d is the difference of the 

d spacing corresponding to a typical peak. 

Raman spectra were collected on a DXR Raman microscope (Thermo Scientific, USA), 

equipped with a diode pumped solid state high–brightness laser (λ=532 nm) as the source of 

incident light, an Olympus optical microscope and a CCD detector. The measurements were 

made at room temperature in the spectral range from 200–800 cm-1. The powdered sample was 

placed on X–Y motorized sample stage. Laser beam was focused on the sample using the 
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objective magnification of 10×. Scattered light was analyzed by a spectrograph with a diffraction 

grating 900 lines/mm. Laser power was kept at 1 mW.  

Transmission electron microscopy (TEM) analysis of obtained powders and their particles 

size was measured by TEM–ZEISS EM 912 Omega. Particle size was measured on micrographs 

directly after they had been taken using the existing computer Digital Micrograph software. The 

micrographs with as much as possible isolated particles were chosen for measurements. Diameter 

of the particles was measured manually, on computer, and this result was recalculated by Digital 

micrograph software into particles size. Approximately 40 particles were measured for each 

sample. The mean value was taken as the particle size of the relevant powder. 

Microstructures of the synthesized samples were observed using the scanning electron 

microscopy (SEM) analysis (TESCAN Vega TS5130MM). The samples were pre–coated with a 

several nanometers thick layer of gold before observation. A Fine Coat JFC–1100 ION 

SPUTTER Company JEOL device was used for the coating procedure. The EDS analysis was 

carried out at the invasive electron energy of 30 keV by means of QX 2000S device by Oxford 

Microanalysis Group. The maximum resolution was 0.4 nm.  

Fourier transform infrared (FTIR) spectra of the samples before and after the calcination were 

collected using a PerkinElmer Spectrum Two FT–IR spectrometer in the transmission mode 

using pressed KBr pellets (1:100) technique in the 450–4000 cm-1 range with the resolution of 4 

cm-1. 

The optical properties of all samples were analyzed by diffuse reflectance (DR) spectroscopy 

in ultraviolet (UV) and visible (VIS) region. Spectra were recorded using a Thermo Electron 

Nicolet Evolution 500 UV–VIS spectrophotometer equipped with an RSA–UC–40 diffuse 

reflectance accessory. A Labsphere USRS–99–010 was used as a reflectance standard. 
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The color characteristics of specimens were calculated according to the CIE L* a* b*  (1976) 

standard, using illuminant C spectral energy distribution. In this system, L*  is the color lightness 

(L*  = 0 for black and L*  = 100 for white), a* is the green (–)/red (+) axis, and b* is the blue (–

)/yellow (+) axis. 

 

3. Results and discussion 

Typical X–ray diffraction patterns for the Er3+ doped CeO2 nanoparticles, heat treated at 600, 

900 and 1200 ºC for 4 h in air are shown in Fig. 1. All synthesized nanopowders were single–

phased and exhibited the fluorite crystal structure, independent of dopant concentration in the 

investigated concentration range. High solubility may be attributed to nanometric nature of 

powders.  

Besides, the calcined powders are depicted by sharper diffraction lines (Fig. 1) resulting from 

the increased crystallite size (DXRPD), which is the consequence of increased temperature (Table 

1). On the other hand, the lattice parameter (aXRPD) and the microstrain (eXRPD) values decreased 

with increasing of temperature (Table 1). The results presented in Table 1 also indicate that the 

lattice parameters Er3+ doped CeO2 (independent of dopant concentration) were lower comparing 

to the lattice parameter of pure CeO2 [35]. According to Shannon’s compilation [46], the ionic 

radii of Ce4+ and Er3+ for the coordination number (CN) 8, are 0.970 and 1.004 Å respectively, 

which should result in the dilation of the lattice. However, with the increasing concentration of 

Er3+ ion the cubic lattice of ceria shrinks, which is in agreement with the theoretical results, 

obtained by ion–packing model [47], as well as the literature data [48, 49]. Namely, it is known 

that crystal lattice CeO2 contains Ce4+ and Ce3+ ions (core–shell model) [50, 51], which in doping 

process may lead to the substitution of Ce3+ and Ce4+ ions with ions of Er3+ (confirmed by Raman 

spectroscopy shown below). Basically, it can be said that since the ionic radius of Er3+ is smaller 
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than the ionic radius of Ce3+ (1.143 Å) and larger than the ionic radius of Ce4+, the result of above 

mentioned process is the reduction of the lattice parameter. In addition, heating at elevated 

temperature resulted in further reduction of the values of lattice parameters (Table 1), indicating 

the valence change from Ce3+ to Ce4+ due to higher thermodynamic stability of Ce4+ at higher 

temperature in air. All values of lattice parameters, crystallite size and microstrain obtained by 

XRPD analysis of the Ce1-xErxO2-δ nanopowders (x = 0.05–0.20) heat treated at 600, 900 and 

1200 ºC for 4 h in air, are shown in Table 1. 

Raman spectroscopy revealed the presence of only one phase in all the synthesized powders, 

which was also found by XRPD. Raman spectra of all nanometric single–phase solid solutions 

Ce1-xErxO2-δ (x = 0.05–0.20), calcined at 600, 900 and 1200 ºC are presented in Fig. 2. For the 

comparison, Raman spectra of the Ce1-xErxO2-δ (x = 0.05–0.20) at room temperature (25 ºC) were 

already reported in our previous work [44].The main feature of the first order Raman spectrum of 

pure CeO2 is an F2g mode located at 465 cm-1 [35]. In pure and doped CeO2 powders obtained by 

SPRT method this mode is shifted to lower energies (458 cm−1), with increased line width and 

pronounced asymmetry at low energy side [35]. Nanosize effects like phonon confinement, strain 

and nonstoichiometry can contribute to the observed changes in Raman peak profile [52]. After 

calcination at 600, 900 and 1200 ºC, this Raman mode was shifted to higher frequencies. Its line 

width was reduced and became more symmetrical, especially in the spectra of the samples heat 

treated at 1200 ºC (Fig. 2). This confirmed that thermal treatment led to grain growth and better–

ordered structures. 

Moreover, in the spectrum of Er3+ doped CeO2 obtained before thermal treatment additional 

modes can be observed at around 550 and 600 cm−1 [44]. The Raman mode of the second order at 

around 600 cm−1 is also related to the particle size. Namely, with decreasing of particle size in 

undoped ceria the overall free surface of powder increases enabling in that way the easier release 
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of oxygen from the lattice, thus leaving the vacancy and two electrons localized on cerium atoms. 

This causes the lowering of cerium ion valence due to electroneutrality demands. On the other 

hand, the Raman mode positioned at around 550 cm−1 is related to oxygen vacancies formed due 

to the presence of dopant ions. With increasing of calcination temperature the intensity of these 

modes becomes weaker and at 1200 ºC completely disappears. The reason for the absence of 

above mentioned modes can also be valence change from Ce3+ to Ce4+ due to higher 

thermodynamic stability of Ce4+ at higher temperature in ambient atmosphere. In this way it was 

confirmed again that the thermally treated samples had better–ordered structure. Besides, the 

presence, i.e., absence of above mentioned Raman modes (Fig. 2) for all samples Ce1-xErxO2-δ (x 

= 0.05–0.20) confirmed the influence of concentration of Er3+ ions and temperature on 

microstructure properties, and it is in accordance with XRPD data. All these effects for all 

samples can be seen in Fig. 2. 

The TEM images of all powders CeO2 doped with different concentration Er3+ ions (x = 0.05–

0.20) heat treated at 600, 900 and 1200 ºC for 4 h in air, are presented in Fig. 3. For the 

comparison, TEM images of the Ce1-xErxO2-δ (x = 0.05–0.20) at room temperature (25 ºC) were 

already reported in our previous work [44]. All images show that the crystallites tended to 

agglomerate and form aggregates. Such finding has also been reported in literature [27]. Namely, 

nanoparticles have a natural tendency to agglomerate for two main reasons. First, the 

agglomeration is a more stable configuration from the energetic point of view. Furthermore, 

nanoparticles tend to agglomerate to allow the crystallite growth. It is noteworthy that the mean 

crystallite size, calculated from TEM images (Fig. 3) shows tended decrease with increasing of 

concentration of the Er3+ ions for each temperature (Table 1). Generally, the mean crystallite size 

for the 5 % Er3+ doped sample was larger than the one for 20 % Er3+ doped sample for each 

temperature. On the other hand, with increasing of temperature, the values of mean crystallite 
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size shows tended increase. Thus, the obtained results indicate that the mean crystallite sizes 

measured from the TEM images differs at most by 1 nm from those obtained by XRPD, 

confirming its consistence with the results obtained by XRPD. 

Additional information about the morphology and composition of the Ce0.95Er0.05O2-δ and 

Ce0.80Er0.20O2-δ nanopowders heat treated at 1200 ºC for 4h in air, as the representative ones, were 

obtained by SEM observation (Figs. 4a and 4b) and EDS analysis (Figs. 4a and 4b–inset). As 

shown in the SEM images (Figs. 4a and 4b), these two samples exhibited homogeneous structure 

and no obvious difference between the two samples in the morphology was found, implying that 

the samples have good thermal stability. The average grain size was smaller than 40 nm, which is 

again in good agreement with particle size obtained by XRPD analysis. The corresponding EDS 

images (Figs. 4a and 4b–inset) and mean value of the Ce/Er chemical ratio confirmed that the 

Er3+ ions in the concentrations of 5 (Ce/Er = 95.18/4.82) and 20 % (Ce/Er = 81.45/18.55) 

successfully doped into the host matrix. 

Fig. 5 shows the FTIR spectra of sample Ce0.90Er0.10O2-δ, as the representative of all samples, 

before and after heat treatment at 900 ºC for 4 h in the ambient atmosphere. Both spectra present 

a large absorption band located at around 500 cm-1, which can be attributed to the Ce–O 

stretching vibration [22, 53, 54], and corresponds to the F1u IR active mode of the CeO2 fluorite 

structure. In addition, the bands located at around 725, 840, and 1063 cm-1 can been attributed to 

the CO2 asymmetric stretching vibration, CO3
2- bending vibration, and C–O stretching vibration, 

respectively [55]. These bands are linked to the presence of atmospheric CO2 adsorbed on the 

cations [27] and the formation of "carbonate–like" species on the particle surfaces [53] as a 

consequence of the reaction of atmospheric CO2 with water and sodium hydroxide during the 

synthesis. The bands located at around 1340 and 1500 cm-1 could be attributed to carbonate 

species vibrations [53, 55] or to nitrate spices. However, these clearly attenuated bands after heat 
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treatment indicating that the carbonate species were decomposed by heat treatment. The band 

located at around 1640 cm-1 is attributed to the H–O–H bending vibration [27], and indicates the 

presence of water. Both spectra contain a large band with the maximum located at around 3400 

cm-1, which can be attributed to the O–H stretching vibration [22]. It confirms the presence of 

moisture and structural water in the sample before its exposure to elevated temperature. Since the 

band is attenuated in the spectrum collected after heat treatment at 900 ºC for 4 h in air, it can be 

concluded that some moisture was absorbed after calcination. 

The influence of temperature on the optical properties of the ceramic samples Ce1-xErxO2-δ (x 

= 0.05–0.20), obtained both at room temperature (25 ºC) and heat treated at 600, 900 and 1200 ºC 

for 4 h in air, was investigated (Fig. 6). Particularly, the absorbance and the band gap energy 

were examined by UV–VIS diffuse reflectance spectroscopy. Diffuse reflectance spectra of the 

Ce1-xErxO2-δ samples, are separately presented for each mole fraction x in Fig. 6. 

As can be seen in Figs. 6a, 6c, 6e and 6g, the incorporation of Er3+ in CeO2 lattice results 

in the reflectance minimum at around 360–390 nm (which means that complementary absorption 

band is in the same region) while the reflectance maximum is centered in the blue region (460–

480 nm). Absorption edge around 380 nm is ascribed to the charge transfer of O2p→Ce4f [56]. It 

is noticeable that increasing temperature results in increasing absorption, especially for the 

samples treated at 1200 ºC (Figs. 6a, 6c, 6e and 6g). On the reflectance plateau the intensive 

absorption peaks at 490 nm, 520 nm, 546 nm, 652 nm and 677 nm can be found. The intensity of 

mentioned peaks increases correspondingly with the change of Er3+ mole fraction from 0.05 to 

0.2. Due to these findings, the intensive absorption peaks at 520 nm and 652 nm are assigned to 

4I15/2 → F11/2 and 4I15/2 → F9/2 of Er3+ ions, respectively. Peaks around 550 nm and 670 nm are 

assigned to the transition of 4S3/2 → 4I15/2 and 4F9/2→ 4I15/2 of Er3+ ions [56]. 
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The changes of pick intensity (∆R) at 520 nm (the intensive absorption peak on the 

reflectance plateau) with Er3+ mole fraction x at room temperature (25 ºC) and heat treated at 

temperatures 600, 900 and 1200 ºC are represented on Fig. 7. The change of peak intensity 

(∆R520nm) is defined as the difference between plateau reflectance (Rplateau) and reflectance at 520 

nm (R520nm), for each reflectance spectrum: ∆R520nm=Rplateau–R520nm. 

The peak intensity at 520 nm increases with the increasing content of Er3+ ions in Ce1-

xErxO2-δ, which is not surprising since the peak originates from the absorption of Er3+ ions. As 

shown in Figs. 6a, 6c, 6e and 6g, the intensity of absorption peak at 520 nm should reach 

saturation for the samples with erbium mole fraction greater than 0.15. It can be concluded that 

with increasing of erbium mole fraction above 0.15, a stronger interaction (which resulted in the 

saturation of absorption) between Er3+–Er3+ dopants occurred in the Ce1-xErxO2-δ samples. 

Besides that, the heating at the elevated temperature resulted in a better absorption of Er3+ ions. 

As it can be seen in Fig. 7., the peak intensity rise is larger for the samples treated at 900 and 

1200 ºC than for samples annealed at 600 ºC. This might be attributed to the difference in 

crystallite size, which is three times smaller for the ceramic samples obtained at 600 ºC in 

comparison to the samples heat treated at 1200 ºC (Table 1).  

In addition, from presented reflectance curves (Figs. 6a, 6c, 6e and 6g), the direct band 

gap energies (Eg) of the Ce1-xErxO2-δ (x = 0.05–0.20) nanopowders at 25 ºC and heat treated at 

600, 900 and 1200 ºC for 4 h in air were calculated from the Tauc plot [57], using the Kubelka–

Munk function [58]. The diffuse reflectance R is related to the Kubelka–Munk function F(R) by 

Eq. (3): 

 

2(1 )
( )

2

R
F R

R

−=                   (3) 
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where R is the reflectance. After calculating the F(R) value from the Eq. (3), [F(R)×E]2 was 

plotted versus energy E in electron volts. The direct band gap energies (Eg) of the Ce1-xErxO2-δ 

nanopowders (x = 0.05–0.20) at room temperature and treated at different temperatures, were 

determined by the extrapolation of the linear part of the curves to [F(R)×E]2 = 0, and presented in 

Table 2. 

Thus, from Figs. 6a, 6c, 6e and 6g was evident that Ce1-xErxO2-δ (x = 0.05–0.20) samples 

obtained at 25 ºC and heat treated at 600, 900 and 1200 ºC for 4 h in air, have different 

reflectance spectrum with dissimilar reflectance plateaus due to absorption. The reflectance of the 

all above mentioned samples Er3+ doped CeO2 also, at mentioned temperatures, exhibits different 

slopes with wavelength below 400 nm (Figs. 6a, 6c, 6e and 6g). It can be said that these slopes 

are in relation with the temperature. For example, using Kubelka–Munk method the calculated 

band gap energies (and consequently absorption edge) for Ce0.95Er0.05O2-δ samples at different 

temperature is within the limits from 3.25 eV at 25 ºC to 3.08 eV at 1200 ºC (Table 2.). These 

energy values correspond to 381 nm and 402 nm, respectively. Therefore, the increasing of 

temperature results in slightly shift (about 20 nm) of reflectance curve towards longer 

wavelengths and this small shift can be observed on reflectance spectrum below 400 nm in Fig. 

6a. Generally, the increase of the mole fraction of Er3+ ions and temperature decreased the band 

gap, which is obvious when band gap values for x=0.05 and x=0.2 at different temperatures are 

compared (Table 2). It can be said that the introduction of Er3+ into ceria (CeO2) lattice resulted 

in the thermodynamic stability of the lattice, which reduced the band gap energy. The highest 

value of band gap was detected for the sample that was not submitted to the thermal treatment 

(Table 2). This is in a good agreement with literature data [59]. It is interesting that the sample 

annealed at 600 ºC exhibited a small reduction of band gap, while the greatest observed band gap 
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energy drop was between the samples thermally treated at 900 and 1200 ºC. Therefore, it is 

obvious that the increasing of temperature and mole fraction of Er3+ ions increased the absorption 

and slightly shifted the absorption edge towards lower energies (Table 2). So, increase of 

temperature, as well as concentration of Er3+ leads to a decreased the band gap width. 

In accordance with registered changes of band gap width and color characteristics of the 

Ce1-xErxO2-δ (x = 0.05–0.20) samples (Fig. 6), the values of chromatic coordinates of the pigments 

together with the band gap calculated values are presented in Table 2. Chromatic diagrams of 

CeO2 nanopowders doped with different concentration of Er3+ (Ce1-xErxO2-δ, x = 0.05–0.20) 

obtained at room temperature (25 ºC), and heat treated at 600, 900 and 1200 ºC for 4 h in air are 

illustrated in Figs. 6b, 6d, 6f and 6h [60]. Generally, for prepared samples Ce1-xErxO2-δ (x = 0.05–

0.20) the progressive decrease (from 86.036 to 61.122) of luminosity (L* ), i.e. further increase in 

the color intensity with increase of concentration Er3+ ions and temperature, may support the 

thesis about the incorporation of Er3+ ions in the lattice of CeO2. With increasing of concentration 

of Er3+ ions and temperature of heat treatments, the values of L*  decrease and the color shifted 

from white–pink toward light–pink hue (increasing a*). The highest pink component (the highest 

value of coordinates a*) is reached in the pigment corresponding to the highest concentration of 

Er3+ ions (Ce0.80Er0.20O2- δ) heat treated at the highest temperature (1200 ºC). Thus, as it could be 

seen (Figs. 6b, 6d, 6f and 6h; insets–visual appearance at 900 ºC), the color of pigments depend 

on the composition and temperature, and with increasing of Er3+ ions content varies from white–

pink to light–pink hue. 

 

4. Conclusion 

New inorganic pigments Ce1-xErxO2-δ (x = 0.05–0.20) as solid solutions were prepared by the 

self–propagating room temperature method (SPRT), which is easy to handle and low cost. The 
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ceria powders containing all investigated Er3+ dopant concentrations at 25 ºC and calcined at all 

investigated temperatures (600, 900 and 1200 ºC), were solid solutions with fluorite structure. All 

the obtained Ce1-xErxO2-δ pigments were found to be thermally stable and with particle sizes 

within the nanometric range. Their color depended on the composition and temperature, and with 

increasing Er3+ content varied from white–pink to light–pink hue. Increasing calcinations 

temperature resulted in the increase of crystallite size, which led to increasing absorption and 

shifting of the edge of absorption of visible light towards lower energies. As a consequence, 

dominant wavelength of the color shifted towards pink hue, becoming more saturated with 

temperature. Therefore, the obtained pigments might find potential alternative to the classical 

toxic pink inorganic pigments for various applications such as paints, coatings, ceramics, 

cosmetics, plastics and glass enamels. 
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Figure captions: 

 

Fig. 1. X–ray diffraction patterns of: a) Ce0.95Er0.05O2-δ, b) Ce0.90Er0.10O2-δ, c) Ce0.85Er0.15O2-δ and 

d) Ce0.80Er0.20O2-δ nanopowders, heat treated at 600, 900 and 1200 ºC for 4 h in air. 

 

Fig. 2. Raman spectra of: a) Ce0.95Er0.05O2-δ, b) Ce0.90Er0.10O2-δ, c) Ce0.85Er0.15O2-δ and d) 

Ce0.80Er0.20O2-δ nanopowders, heat treated at 600, 900 and 1200 ºC for 4 h in air. 

 

Fig. 3. TEM images of Ce1-xErxO2-δ (x = 0.05–0.20) nanopowders heat treated at: a) 600 ºC, b) 

900 ºC and c) 1200 ºC, for 4 h in air. 

 

Fig. 4. SEM images of: a) Ce0.95Er0.05O2-δ and b) Ce0.80Er0.20O2-δ nanopowders, heat treated at 

1200 ºC for 4 h in air, with corresponding EDS spectra. 

 

Fig. 5. FTIR spectra of the Ce0.90Er0.10O2-δ nanopowders: a) at room temperature (25 ºC) and b) 

heat treated at 900 ºC for 4 h in air. 

 

Fig. 6. The reflectance spectra and chromatic diagrams of the Ce1-xErxO2-δ nanopowders (x = 

0.05–0.20) obtained without thermal treatment (25 ºC) and heat treated at 600, 900 and 1200 ºC 

for 4 h in air (insets–visual appearance at 900 ºC). 

 

Fig. 7. The peak intensity changes at 520 nm of the Ce1-xErxO2-δ nanopowders (x = 0.05–0.20) 

obtained without thermal treatment (25 ºC) and heat treated at 600, 900 and 1200 ºC for 4h in air. 
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Tables: 

 

Table 1 

Lattice parameters (aXRPD), crystallite size (DXRPD) and microstrain (eXRPD) obtained by XRPD 

analysis, and particle size obtained by TEM method of the Ce1-xErxO2-δ nanopowders (x = 0.05–

0.20) heat treated at 600, 900 and 1200 ºC for 4 h in air. 

Composition aXRPD. 

(Å) 
DXRPD 

(nm) 
eXRPD 

(%) 
Particle size 
(TEM) /nm 

600 ºC 

1. Ce0.95Er0.05O2-δ 5.3895 12.92 0.36 12.23 
2. Ce0.90Er0.10O2-δ 5.3882 11.17 0.29 11.02 
3. Ce0.85Er0.15O2-δ 5.3871 11.14 0.27 10.98 
4. Ce0.80Er0.20O2-δ 5.3844 10.46 0.23 10.22 

900 ºC 

1. Ce0.95Er0.05O2-δ 5.3799 32.44 0.10 31.87 
2. Ce0.90Er0.10O2-δ 5.3748 27.33 0.09 26.66 
3. Ce0.85Er0.15O2-δ 5.3726 26.23 0.09 26.12 
4. Ce0.80Er0.20O2-δ 5.3715 23.70 0.08 23.24 

1200 ºC 

1. Ce0.95Er0.05O2-δ 5.3751 38.83 0.06 38.07 
2. Ce0.90Er0.10O2-δ 5.3745 37.62 0.03 37.15 
3. Ce0.85Er0.15O2-δ 5.3708 36.52 0.02 36.01 
4. Ce0.80Er0.20O2-δ 5.3696 36.09 0.02 35.78 
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Table 2 

Calculated band gap energy (Eg) and color coordinates (L* a* b*) for the Ce1-xErxO2-δ (x = 0.05–

0.20) nanopowders at 25 ºC and heat treated at 600, 900 and 1200 ºC for 4 h in air.  

Composition Band gap Color measurement 
Eg (eV) L* a* b* 

25 ºC   
1. Ce0.95Er0.05O2-δ 3.25 78.880 -1.560 10.683 
2. Ce0.90Er0.10O2-δ 3.22 84.646 1.189 23.033 
3. Ce0.85Er0.15O2-δ 3.20 86.036 -10.048 16.143 
4. Ce0.80Er0.20O2-δ 3.16 79.290 1.843 24.578 
600 ºC 
1. Ce0.95Er0.05O2-δ 3.21 78.129 -1.253 9.042 
2. Ce0.90Er0.10O2-δ 3.19 75.017 1.673 20.578 
3. Ce0.85Er0.15O2-δ 3.18 75.742 2.425 20.006 
4. Ce0.80Er0.20O2-δ 3.13 73.364 3.355 18.858 
900 ºC 
1. Ce0.95Er0.05O2-δ 3.18 75.110 1.566 2.303 
2. Ce0.90Er0.10O2-δ 3.17 75.251 3.903 16.199 
3. Ce0.85Er0.15O2-δ 3.11 74.785 4.994 14.355 
4. Ce0.80Er0.20O2-δ 3.05 70.486 5.243 13.663 
1200 ºC 
1. Ce0.95Er0.05O2-δ 3.08 62.650 1.273 2.936 
2. Ce0.90Er0.10O2-δ 3.05 62.688 4.274 15.405 
3. Ce0.85Er0.15O2-δ 3.01 61.122 2.060 12.424 
4. Ce0.80Er0.20O2-δ 2.96 61.515 6.139 13.367 
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Highlights 

1. New inorganic pigments Ce1-xErxO2-δ (x = 0.05–0.20) were prepared by SPRT method. 

2. Single–phase form was evidenced for each pigment by XRPD and Raman spectroscopy. 

3. The XRPD and TEM analysis showed that the crystallites of nanometric dimensions. 

4. The synthesized pigments shows great thermal stability and various pink shades. 

5. Pigments may be a potential alternative to the classical toxic pink pigments. 

 


