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ABSTRACT 

A series of eighteen derivatives of marine sesquiterpene quinone avarone and its model system 

tert-butylquinone with amino acids has been synthesized by nucleophilic addition of amino acids 

to the quinones. In vitro cytotoxic activity toward human cancer cell lines (HeLa, A549, Fem-X, 

K562, MDA-MB-453) and normal MRC-5 cell line was determined. Several compounds showed 

very strong inhibitory activity with IC50 values less than 10 μM. Avarone derivatives were more 

active than the corresponding tert-butylquinone derivatives. The results of the cytofluorimetric 

analysis of cell cycle of HeLa cells showed that apoptosis might be one of possible mechanism 

of action of these compounds in cancer cells. In order to examine the influence of caspases on 

cell death, the apoptotic mechanisms induced by the tested compounds were determined using 

specific caspases 3, 8 and 9 inhibitors. For all compounds antibacterial activities against six 

strains of Gram-positive and four strains of Gram-negative bacteria were determined, as well as 

antifungal activity against three fungal species.  
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1. Introduction 

Marine organisms represent a rich source of metabolites with a high pharmacological 

potential and exceptionally different structures [1-4]. Many natural products with a decalin-type 

system and a quinoid moiety are important compounds with powerful and diverse biological 

properties [5-7]. 

Sponges of the order Dictyoceratida are a rich source of bioactive secondary metabolites, 

sesquiterpene quinones and hydroquinones such as avarol, avarone, illimaquinone, nakijiquinone 

and bolinaquinone. These compounds have attracted considerable interest due to their 

remarkable biological activities - antiproliferative, cytotoxic, antiviral and antimicrobial 

properties. All the above features of marine products provide the possibility for the further 

development of new agents which can be successfully identified as new drugs and/or factors 

which participate in clarifying intracellular events. 

The hydroquinone avarol and its quinone derivative, avarone, were isolated from the 

marine sponge Dysidea avara [8,9]. This redox couple has a large range of pharmacological 

properties including antitumor [10-12], antiinflammatory [13-15], antibacterial [16,17], antiviral 

[18,19], antioxidant [20,21], antipsoriatic [22,23] and antibiofouling [24] activities. Also, the 

compounds induced DNA damage [5,25-27] as a result of reactive oxygen radicals generation, as 

well as enzyme inhibitory [28-30] activities incurred as a consequence of modification of 

biomolecules by nucleophilic addition. 

During the search for new metabolites from marine organisms, nakijiquinones have been 

isolated. Nakijiquinones have identical sesquiterpene skeleton as avarone, including the position 

of the double bond, and additional hydroxyl and either amino acid or amine substituents at the 

quinone moiety. Kobayashi et al. have isolated a great number of these bioactive metabolites 

from the Okinawan marine sponge extracts (family Spongiidae). Nakijiquinones A and B (which 

possess glycine and valine residue attached to the quinone ring, respectively, as shown in Fig. 1) 

were the first isolated sesquiterpenoid quinones with a normal amino acid residue from natural 

origin [31]. It should be emphasized that the presence of aminoquinone compounds is not very 

rare in natural sources [32-34]. Nakijiquinone A and B show a noticeable cytotoxicity against L 

1210 murine leukemia cells and KB human epidermoid carcinoma cells, as well as antifungal 



  

activity against fungi Candida albicans and Aspergillus niger [31]. Nakijiquinones C and D (Fig. 

1), containing serine and threonine residue, respectively, were isolated from the same sponge 

family and display similar cytotoxicity [35]. Further research resulted in the isolation of two 

dimeric sesquiterpenoid quinones, nakijiquinones E and F, which did not show cytotoxicity 

against murine leukemia P388 and L1210, and KB human epidermoid carcinoma cell [36]. 

Unlike these, sesquiterpenoid quinones containing a different amine residue derived from amino 

acids, nakijiquinones G-I, showed a modest cytotoxicity against the forementioned cancer cells 

and an inhibitory activity against HER2 kinase [37]. Additionally, nakijiquinone H demonstrated 

a good antibacterial and antifungal activity [37]. Some of the nakijiquinones J-R, with amine 

residue attached to quinone ring, showed inhibitory activities against EGFR and HER2 tyrosine 

kinases [38]. Biologically active smenospongines (Fig. 1), isomeric to nakijiquinones, were 

isolated from the marine sponge Dactylospongia elegans [39] and showed a cytotoxic activity 

against a panel of tumor cell lines. 

 

 Fig. 1. Sesquiterpene quinones with an amino acid in side chain (nakijiquinones A–D; 

smenospongines B and C) 

Considering all of the above, the rationale of this work was to obtain avarone derivatives 

with amino acids, which could be considered mimics of nakijiquinones. Possible advantage of 

this approach would be to afford derivatives with better solubility in water, and a better 



  

selectivity than avarone, since it is expected that the electronic and steric effects of the amino 

acid substituent would decrease the reactivity of the quinone moiety with cellular nucleophiles. 

Different tautomeric forms of the products could have different binding properties with putative 

targets compared to avarone. Although avarone is the major constituent of the sponge Dysidea 

avara, which has been a subject of cultivation and cell culture projects, availability of large 

amounts of the compound remains a problem, so it seemed reasonable to investigate whether a 

simplification of the structure would lead to satisfactory biological activity. Therefore, a very 

simple model, tert-butylquinone was selected as target for modification, with the same amino 

acids. The model quinone is readily available.  

Thus, in this paper, the synthesis and characterization of eighteen new amino acid 

derivatives of avarone and tert-butylquinone are reported. The results of cytotoxic activity 

investigation of synthesized compounds, against five cancer cell lines and a non-cancerous cell 

line are also presented. Furthermore, effects of the derivatives on cell cycle analysis of HeLa 

cells and the caspases activity were analysed. The antibacterial activities of all the compounds 

against six strains of Gram-positive and four strains of Gram-negative bacteria were determined, 

as well as the antifungal activity against three fungal species. The biological activity of all 

derivatives was also examined by the brine shrimp test, i.e. toxicity to Artemia salina. 

Electrochemical parameters of all compounds were also determined in order to better understand 

structure–activity relationships. 

2. Results and discussion 

2.1. Chemistry 

The preparation of the derivatives is shown in Fig. 2. The synthesis started with 

commercially available tert-butylhydroquinone or avarol isolated from D. avara. The 

hydroquinones were oxidized using silver oxide to the corresponding quinones. All of the 

derivatives were obtained by slowly adding an amino acid dissolved in saturated sodium 

bicarbonate solution, to the ethanol solution of the appropriate quinone, and stirring at room 

temperature for several hours. Using all amino acids only products arising from substitution in 

position 3’ were obtained. The exception was L-proline which afforded only 4’-derivatives. In 

our previous publication [40], it was shown that good nucleophiles preferentially add in position 



  

4’ and weaker nucleophiles in position 3’. Proline is much more nucleophilic than the other 

amino acids [41].  

                      

 Fig. 2. Chemical structure of avarone and tert–butylquinone derivatives 

IR spectra, recorded as KBr discs show that the derivatives are in the form of zwitter-

ions, based on the absence of carboxylic carbonyl absorption (except for both glycine 

derivatives), and the presence of the strong carboxylate ion band at 1600–1580 cm
-1

. The 

presence of form III (Fig. 3) in solid state can be evidenced by a strong C–O vibration band at 

1150–1100 cm
-1

, and a strong broad absorption at 3600–2600 cm
-1 

from superimposed O–H and 

N–H stretching bands. There are two types of carbonyl stretching vibrations, a stronger band at 

ca. 1630 cm
-1

 from hydrogen bonded carbonyl group, and a weaker band at 1670 cm
-1

 from a 

non-hydrogen bonded conjugated carbonyl. The tautomeric equilibrium could be inferred from 

the severe broadening of signals in NMR spectra taken in CDCl3. However, in CD3OD the 

signals are sharp and indicate the dominant presence of quinone tautomeric forms. These forms 

are now favored since there is no need for formation of a tautomer with a hydroxylic group, 

because the protic solvent plays the role of the hydrogen bond donor. 



  

 

Fig. 3. Tautomeric forms of avarone and tert-butylquinone derivatives 

The position of the substituent on the benzoquinone ring was determined using 
1
H-NMR 

and 
13

C-NMR spectroscopy. In the proton spectra, recorded in methanol, of 3’-substituted 

derivatives signals of quinone protons are doublets with J= 2.2 Hz, while in the spectra of 4’-

substituted they are singlets. In 
13

C NMR spectra the positions of the signals are in accordance 

with the calculated values [42].  

Cyclic voltammetry was used for examination of electrochemical properties in order to 

correlate structure and bioactivity. Cyclic voltammetry measurements of avarone and amino acid 

derivatives in dimethyl sulfoxide gave two waves corresponding to reversible or quasi-reversible 

one-electron processes (Fig. 4). Such behavior is typical for redox couple quinone/semiquinone 

anion radical and semiquinone anion radical/hydroquinone dianion, respectively. Amino acid 

derivatization of avarone led to dramatic shift in potential of the first peak towards more negative 

potentials (more than 300 mV, Table 1). Consequently, the second peak is also shifted 

cathodically, but less. Generally, derivatization did not alter the reversible behavior of 

quinone/semiquinone anion radical redox system with peak separation close to ideal values. 

However, the second peak tended to be broader and/or less pronounced. As a result, semiquinone 

anion radical/hydroquinone dianion redox system resembles quasi-reversible process with peak 

separation of more than 80 mV. Destabilization of aminohydroquinone anion radical even led to 

disappearance of the second reoxidation peak in some cases. Influence of tert-butyl substituent 

followed a trend in which peak potentials were shifted negatively for around 20 mV with respect 



  

to avarone analogues. Such behavior can be easily explained by more positive inductive effect of 

tert-butyl group, and by steric congestion. This effect was more pronounced for the second peak 

with shift ranging from 30 to 90 mV. 

 

Fig. 4. Cyclic voltammogram of compounds 1, 1i, 2 and 2i 

 

Table 1. The first peak standard potential vs Fc
+
/Fc couple 

 

 

 

 

 

 

2.2. Pharmacology 

Cytotoxic activities of investigated compounds against five cancer cell lines: human 

cervix adenocarcinoma cell line (HeLa), non-small cell lung carcinoma (A549), human 

melanoma cell (Fem-X), chronic myelogenous leukemia (K562), human breast cancer (MDA-

Comp. E0 (V) Comp. E0 (V) 

1 -0.910 2 -0.933 

1a -1.187 2a -1.239 

1b -1.244 2b -1.267 

1c -1.226 2c -1.243 

1d -1.261 2d -1.252 

1e -1.265 2e -1.283 

1f -1.362 2f -1.389 

1g -1.239 2g -1.260 

1h -1.256 2h -1.255 

1i -1.256 2i -1.290 



  

MB-453) and a non-cancerous cell line, human embryonic lung fibroblast (MRC-5), were 

determined by MTT assay. The obtained results were expressed as IC50 values determined from 

cell survival diagrams and compared with a widely used anticancer drug cisplatin as positive 

control. The results are given in Table 2. Most compounds showed activity to all five cancer cell 

lines. The avarone derivatives showed a good cytotoxic activity against all the tested cancer cells 

lines, and a very weak cytotoxicity to the normal cell line. Derivatives 1c, 1d and 1e were more 

active than the parent compound against all tested cancer cell lines, with some IC50 values in the 

lower micromolar range. On the other hand, compound 1f was always less or equally active as 

avarone. Fem-X cell line was more sensitive for all avarone derivatives (exception is 1f with a 

similar value) than avarone. 

Table 2. Concentrations of compounds 1-1i and 2-2i that induced a 50 % decrease in HeLa, 

A549, Fem-X, K562, MDA-MB-453 and MRC-5 (expressed as IC50 (μM)). All compounds were 

incubated with cells for 72 h. 

 

Comp. HeLa A549 Fem-X K562 MDA-MB-453 MRC-5 

1 18.12 ± 0.68 30.03 ± 2.88 40.33 ± 2.88 17.08 ± 0.35 16.71 ± 1.74 >200 

1a 19.87 ± 1.15 46.71 ± 2.53 17.84 ± 1.34 15.63 ± 1.08 5.84 ± 0.92 183.29 ± 1.15 

1b 11.66 ± 1.74 54.29 ± 1.01 10.29 ± 1.15 15.75 ± 0.19 14.65 ± 1.62 157.38 ± 2.14 

1c 8.87 ± 1.08 26.91 ± 0.25 20.24 ± 2.89 15.47 ± 1.86 3.31 ± 0.71 80.76 ± 1.54 

1d 10.92 ± 1.33 23.77 ± 1.21 11.43 ± 0.61 7.78 ± 0.20 8.01 ± 0.57 85.42 ± 1.88 

1e 7.72 ± 0.89 19.72 ± 2.83 10.87 ± 0.16 11.17 ± 2.83 10.93 ± 0.51 73.39 ± 1.86 

1f 36.23 ± 0.09 49.21 ± 0.75 39.63 ± 1.13 35.44 ± 1.76 60.63 ± 0.06 96.02 ± 2.24 

1g 13.91 ± 1.98 47.31 ± 2.86 19.43 ± 1.03 13.58 ± 1.72 25.58 ± 1.20 >200 

1h 14.64 ± 1.16 40.08 ± 3.43 17.26 ± 1.59 20.46 ± 0.87 16.55 ± 0.93 >200 

1i 16.24 ± 2.29 39.56 ± 2.21 14.82 ± 2.22 16.12 ± 0.29 22.94 ± 1.82 157.39 ± 2.19 

2 44.08 ± 2.11 47.02 ± 1.27 41.64 ± 2.55 15.54 ± 1.48 56.83 ± 2.07 >200 

2a 131.67 ± 2.76 >200 34.33 ± 0.84 85.02 ± 1.61 171.26 ± 2.35 >200 

2b 89.12 ± 4.09 >200 20.11 ± 1.53 77.63 ± 2.38 112.24 ± 1.73 >200 

2c 47.11 ± 3.22 171.21 ± 3.27 28.42 ± 0.95 66.96 ± 2.42 94.09 ± 1.23 >200 

2d 96.55 ± 1.08 154.47 ± 0.75 24.55 ± 0.34 57.84 ± 1.57 133.25 ± 0.55 >200 

2e 57.22 ± 0.34 97.93 ± 0.42 39.37 ± 2.32 76.54 ± 1.91 84.89 ± 0.43 >200 

2f 44.94 ± 0.69 186.03 ± 2.47 87.30 ± 1.31 49.24 ± 2.69 67.17 ± 1.04 >200 

2g 77.41 ± 0.24 >200 34.82 ± 1.73 88.51 ± 1.33 150.95 ± 2.57 >200 

2h 66.31 ± 1.52 164.17 ± 3.51 67.29 ± 1.11 82.26 ± 2.36 68.01 ± 1.18 >200 

2i 106.31 ± 1.77 198.04 ± 1.21 34.71 ± 1.12 25.04 ± 3.23 119.86 ± 1.27 >200 

Cisplatin 2.1 ± 0.20 11.92 ± 2.19 4.71 ± 0.20 6.89 ± 0.21 3.48 ± 0.22 14.21 ± 1.54 



  

 

Compound 1c showed the highest activity against the human breast cancer cell line, 

MDA-MB-453, with IC50 value similar to that for cisplatin. It should be pointed out that 1c 

unlike cisplatin showed a significantly lower cytotoxicity against MRC-5 cell line. The best 

selectivity was observed for 1a against the MDA-MB-453 cell line. Compound 1a was almost 

thirteen times less active against the non-tumor cell line than the positive control.  

Only some structure-activity relations could be established. The activity was generally 

enhanced by introducing both small (including β-alanine) and voluminous amino acids with 

aliphatic hydrocarbon side chain.  

Aromatic side chain did not improve the activity and proline residue decreased both the 

activity and the selectivity. Glycine and β-alanine derivatives were selective for the breast cancer 

cell line, while alanine, valine, leucine and isoleucine derivatives showed a high activity, but 

without a pronounced specificity among the tumor cell lines, although they displayed an 

excellent selectivity for tumor cell lines compared to the normal MRC-5 cell line. 

Electrochemical results have shown that introduction of amino acid substituents did not 

significantly change redox properties, i.e. the quinones still underwent two one–electron 

reduction processes, with semiquinone intermediates. The reduction potentials for all derivatives 

are more negative than for the parent compound, indicating a more favourable reoxidation of 

semiquinone radicals with oxygen, generating reactive superoxide radical which can 

subsequently produce other reactive oxygen species. However, the differences in activity cannot 

be ascribed to redox properties, since the redox potentials do not differ within this series of 

compounds. Even the lower activity of the proline derivative is probably not a consequence of its 

more negative redox potential, since the whole set of compounds have a lower redox potential 

and mostly a higher cytotoxicity than the parent compound. 

The derivatives of the avarone mimic, tert-butylquinone, although non-cytotoxic to 

normal cells showed a much lower activity than the corresponding avarone derivatives. 

Structure–activity relationships could not be established within this series of compounds. 



  

The results can be compared with those of some 4’-amino acid avarone derivatives. 4’-

Alanino, 4’-phenylalanino and 4’-leucino avarone derivatives showed a strong activity to L1210 

mouse leukemia cells (IC50 ca.10 μM), however without selectivity in comparison to normal cells 

[43]. Cytotoxic activity of 4’-leucinoavarone was recently studied in more details [44,45]. The 

panel of seven tumor cell lines and one normal cell line was used, and the IC50 values from 4 to 

17 μM were obtained for tumor cells and >100 μM for normal cell line MRC-5. The results for 

three cell lines can be compared to those of the regioisomeric 3’-leucino derivative presented in 

this paper. The activities were similar – 4’-derivative was slightly more active to A549 cells, and 

3’-derivative to HeLa cells. In another recent publication cytotoxicity of amino acid derivatives 

of 1,4–naphthoquinone was assayed against a panel of tumor cells, and normal PBMC 

(peripheral blood mononuclear cells) [46]. For this type of compounds, glycine, alanine and 

phenylalanine derivatives showed a better activity than β-alanine and proline ones. The best 

selectivity with respect to normal cells was attained with phenylalanine derivatives. 

Given that compounds 1c-e and 1g showed the highest cytotoxicity towards HeLa cells, 

these compounds were selected for examination of the mechanism of action by cytofluorimetric 

analysis, using propidium iodide to label DNA. Based on the results of MTT test, the IC50 and 

2IC50 concentrations of compounds were used to verify cell cycle arrest. Figs 5 and 6 show the 

cell-cycle distribution of HeLa cells incubated in the absence or presence of compounds for 24 

hours, the approximate doubling time of this cell line. The results indicate an alteration in the 

percentage of cells in each stage of the cell cycle: sub-G1, G1, S and G2/M, as compared to the 

control. For 1d and 1e at applied concentrations a significant increase in the number of cells in 

the sub-G1 phase and a corresponding decrease in the G1 phase were observed as compared to 

the control cells. In contrast, compounds 1c and 1g caused G2/M arrest after 24 h of treatment. 

For compound 1d sub-G1 accumulation was accompanied by a slightly heightened G2/M cell 

cycle blockade. In addition, as shown in Figs 5 and 6, the sub-G1 and G2/M arrest was detected 

in a concentration-dependent manner. The present study suggests that the cell cycle arrest and 

induction of apoptosis might be one possible mechanism of action of these compounds in human 

cancer cells. The greatest effect, both in cytotoxicity and in cell cycle perturbation and induction 

of apoptosis was achieved with avarone derivatives with branched amino acid chains.  



  

 

Fig. 5. Cell cycle distribution after 24 h continuous action of investigated compounds. 

Concentration corresponded to IC50. 

  

Fig. 6. Cell cycle distribution after 24 h continuous action of investigated compounds. 

Concentration corresponded to 2IC50. 

To examine the mechanism of apoptosis induced by the investigated compounds in HeLa 

cells, caspase activities for two most active compounds 1c and 1e were measured using specific 

caspase inhibitors. The activity of caspases 3, 8 and 9, was evaluated after 24 h of incubation 

with 1c or 1e (Fig. 7).  



  
 

Fig. 7. Influence of compounds 1c (A) and 1e (B) alone or in combination with inhibitors of 

caspase-3 (Z-DEVD-FMK), caspase-8 (Z-IETD-FMK) or caspase-9 (Z-LEHD-FMK) on the 

fraction of HeLa cells in sub-G1 phase. 

The results show that the apoptosis induced by compounds 1c and 1e was mediated by 

stimulating caspase-3, -8 and -9 activities. It is evident that specific inhibitors significantly 

suppressed the caspase activities and increased the cell viability. In addition, the inhibitor of 

caspase-3 shows a much weaker influence on the activity of the investigated compounds, 

suggesting the induction of apoptotic cell death mainly via mitochondrial pathway through 

activation of caspases 8 and 9 in HeLa cells. Generally, the activation of caspases 3, 8 and 9 

might be involved in apoptosis induced by compounds in HeLa cells. 

Antibacterial activities of all the compounds against six strains Gram-positive and four 

Gram-negative bacteria were determined as MIC values (µM) (Table 3). Generally, avarone 

compounds demonstrated significantly stronger activities than tert-butylquinone derivatives. All 

avarone derivatives had MIC values below or similar to 100 µM against Staphylococcus aureus, 

Micrococcus luteus and Escherichia coli. The weakest activity was shown against the Gram-

positive bacteria Kocuria rhizophila. Antibacterial effect of the compound 1e to S. aureus and E. 

coli was the most pronounced. Its MIC values indicate a remarkably stronger antibacterial 

activity than amikacin, antibiotic used as positive control. Bacterial strain M. luteus was also 

more sensitive to 1e than amikacin. The results for compounds 1h and 1i showed a good activity 

against Bacillus subtilis and Pseudomonas aeruginosa, better than amikacin. The compound 1h 

showed an excellent activity against S. aureus and M. luteus, and again higher than that of 

amikacin. In comparison with avarone, all derivatives showed a stronger activity against M. 



  

luteus and E. coli. The structure–activity relationships are different from those for cytotoxicity to 

tumor cells, since the best activity was shown by derivatives with voluminous and aromatic side 

chains, while small amino acid moieties decreased the activity in comparison to avarone.  

Table 3. Antibacterial activity of avarone and tert-butylquinone derivatives (MIC values in μM) 

 

Antifungal activity was evaluated against three fungal species (Table 4). All of the 

avarone derivatives were significantly more active against Candida albicans and Saccharomyces 

cerevisiae than the positive control nystatin. Also, almost all of the derivatives showed 

substantial activity against Aspergillus brasiliensis, better than nystatin. The compounds 1d and 

1g showed more than a thousand times stronger activity against C. albicans in comparison to 

nystatin. Similar effects were produced with 1b and 1e. The species S. cerevisiae was extremely 

sensitive to the compound 1i. tert-Butylquinone derivatives were also more active against C. 

albicans and S. cerevisiae than the positive control nystatin. However, their activity was again 

Comp. S. aureus K. rhizophila B. subtilis M. luteus M. flavus C. sporogenes E. coli P. hauseri S.enterica P. aeruginosa 

1 40.06 20.03 80.13 2000.38 20.03 20.03 440.96 27.56 55.12 13.78 

1a 101.04 810.88 406.74 101.04 406.74 406.74 101.04 810.88 406.74 406.74 

1b 49.10 1566.42 195.49 97.74 195.49 195.04 49.10 393.48 195.49 195.49 

1c 24.53 392.97 392.97 48.81 783.44 392.97 48.81 392.97 783.44 783.44 

1d 22.95 1463.70 91.33 22.95 91.33 91.33 22.95 182.67 182.67 91.33 

1e 5.55 708.79 88.32 11.10 88.32 44.16 5.55 44.16 88.32 88.32 

1f 91.55 734.74 183.10 91.55 183.10 368.54 91.55 183.10 183.10 183.10 

1g 42.39 1358.70 169.57 42.39 169.57 169.57 42.39 341.30 169.57 169.57 

1h 10.32 330.53 20.63 10.32 82.11 82.11 10.32 82.11 20.63 20.63 

1i 19.07 305.45 37.94 19.07 37.94 37.94 19.07 37.94 19.07 37.94 

2 237.51 475.03 237.51 237.51 475.03 475.03 237.51 475.03 475.03 475.03 

2a 662.45 2637.13 1320.68 662.45 2637.13 2637.13 662.45 2637.13 2637.13 662.45 

2b 1247.01 4980.08 2490.04 1247.02 2490.04 2490.04 1247.01 4980.08 2490.04 2490.04 

2c 624.80 2487.27 2487.27 1245.62 2487.27 1245.62 1245.62 2487.27 2487.27 2487.27 

2d 1121.86 4480.29 2240.14 1121.86 2240.14 2240.14 1121.86 4480.28 4480.28 2240.14 

2e 265.88 2130.49 2130.49 265.88 2130.49 2130.49 265.88 2130.49 2130.49 4260.98 

2f 566.79 2256.32 1129.96 566.79 2256.32 2256.32 566.79 2256.32 2256.32 2256.32 

2g 1006.43 2009.64 2009.65 504.82 2009.64 2009.65 1006.43 2009.65 2009.65 2009.64 

2h 480.12 1911.32 1911.32 480.12 1911.32 1911.32 480.12 1911.32 1911.32 1911.32 

2i 855.19 1707.65 1707.65 1707.65 1707.65 1707.65 1707.65 1707.65 1707.65 1707.65 

Amikacin 18.78 3.42 71.72 13.65 3.42 25.61 8.54 11.95 13.66 85.38 



  

much weaker than that of avarone derivatives. Besides the effect of the alkyl group bound to the 

quinone nucleus, no structure–activity correlation could be established. 

Table 4. Antifungal activity of avarone and tert-butylquinone derivatives (MIC values in μM) 

 

 

 

 

 

 

 

 

 

 

 

a Not active. 

 

The biological activity of all compounds was examined by the brine shrimp test, i.e. 

toxicity to Artemia salina (Table 5). The results of this test are reported to show a good 

qualitative correlation with cancer cell-line cytotoxicity. The avarone derivatives showed a good 

correlation with antileukemic activity, the most effective compound being 1d, while 1f 

demonstrated the lowest activity. tert-Butylquinone compounds, except the parent quinone, were 

less active in this test, too. 

 

Compound C. albicans S.cerevisiae A. brasiliensis 

1 n.aa n.aa n.aa 

1a 12.60 100.26 403.60 

1b 6.13 195.00 1562.50 

1c 195.00 12.25 782.50 

1d < 2.88 367.68 164.13 

1e < 5.54 176.47 1414.03 

1f 23.01 45.77 734.74 

1g < 2.67 87.78 341.30 

1h 164.21 10.32 1315.79 

1i 305.45 < 2.39 1215.95 

2 121.80 237.51 121.80 

2a 662.45 662.45 2637.13 

2b 625.50 625.50 1240.01 

2c 625.50 310.76 2490.04 

2d 562.72 562.72 2240.14 

2e 535.84 133.11 1068.26 

2f 566.79 566.79 2256.32 

2g 504.82 504.82 2009.65 

2h 480.12 119.27 957.19 

2i 213.11 213.11 1407.65 

Nystatin 2700.00 1350.00 1350.00 



  

Table 5. Brine shrimp test results of avarone and tert-butylquinone derivatives 

 

 

 

 

 

 

 

 

 

 

 

3. Conclusion 

In summary, nine amino acid derivatives of marine quinone avarone (1) and the same 

number of derivatives of model system tert-butylquinone (2) were obtained. Cytotoxic activities 

of synthesized compounds towards five cancer cell lines: HeLa, A549, Fem-X, K562, MDA-

MB-453 and a non-cancerous cell line MRC-5 were determined by MTT assay. Most tested 

avarone derivatives had a good antitumor activity with IC50 values lower than for parent 

compound. The strongest cytotoxic activity, similar to widely used drug cisplatin, was displayed 

by derivative 1c (IC50 3.31 µM against MDA-MB-453). Towards HeLa cells, compounds 1b-e 

and 1g showed the highest cytotoxicity. These derivatives were chosen for investigation of cell 

cycle by cytofluorimetric analysis. The tested compounds showed different effects on cell cycle. 

Compounds 1d and 1e led to an increase in a number of cells in the sub-G1 phase while 

derivatives 1c and 1g caused G2/M arrest. The obtained results show that apoptosis might be the 

most likely mechanism of action of investigated compounds. Further research of the mechanism 

Compound LC50 (ppm) 

1 170.00 

1a 487.10 

1b 129.40 

1c 84.30 

1d 50.50 

1e 117.00 

1f 706.60 

1g 147.70 

1h 96.70 

1i 227.40 

2 27.40 

2a 197.40 

2b 393.80 

2c 833.20 

2d 574.90 

2e 104.80 

2f 883.40 

2g 360.20 

2h 196.80 

2i 334.10 



  

of apoptosis was evaluated using specific caspase inhibitors. The results suggested that 

derivatives 1c and 1e activated caspases 8 and 9, and that cell death occurred via mitochondrial 

pathway. 

The synthesized compounds were tested toward a panel of Gram positive and Gram 

negative bacteria, as well as several fungi strains. Some of derivatives showed a significant 

antimicrobial activity, especially avarone agents against C. albicans and S. cerevisiae, while 

parent compound was not active.  

4. Experimental protocols 

4. 1. Chemistry   

Melting points (°C, uncorrected) were determined on a Boetius PHMK apparatus (VEB 

Analytic, Dresden, Germany). 
1
H and 

13
C NMR spectra were recorded at 200 MHz and 50 MHz, 

respectively on Varian YH 200 instrument, in deuterated methanol using tetramethylsilane as an 

internal standard. Numeration scheme is given in the Supplementary material. High resolution 

mass spectra were taken on Mass Spectrometer 6210 Time of Fligth LC-MS system, Agilent 

Technologies. UV/Vis spectra were recorded on a Cintra 40 UV-Visible spectrometer. 

Polarimetric measurements were performed on a Rudolph research analytical polarimeter, 

Autopol IV, in methanol. IR spectra were recorded on Thermo Scientific Nicolet 6700 FT-IR 

(Smart orbit).  

Cyclic voltammetry experiments were performed at room temperature under nitrogen 

atmosphere in a three-electrode cell at 25 ºC and using a CHI760B workstation (CH Instruments, 

Austin TX, USA). The working electrode was glassy carbon disk (3 mm diameter). The counter 

electrode was a platinum wire, and a silver wire immersed in electrolyte solution containing 0.01 

M silver ions was used as the reference electrode. The quinone derivatives were used as 2 mM 

solution in dimethyl sulfoxide, with 0.1 M tetraethylammonium perchlorate as an electrolyte.  

Avarol was isolated from the sponge Dysidea avara collected in the Bay of Kotor, 

Montenegro, and oxidized with silver oxide in order to obtain avarone as described above. 

All reagents used were commercial products purchased from Merck and Sigma-Aldrich. 

Column chromatography was carried out on silica gel (0.063-0.200 mm, Merck). Analytical thin-



  

layer chromatography (TLC) was performed on precoated aluminum-backed plates (silica gel 60 

F254, Fluka). 

4.1.1. Synthesis of derivatives, general procedure 

4.1.1.1. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2.5-dioxo-1,4-cyclohexadien-1-yl]glycine (1a) 

 Glycine (240 mg) was dissolved in 100 ml of saturated solution of NaHCO3, and a few 

drops of aqueous solution of NaOH until pH 10 was added. Solution was added in portions to the 

100 ml of ethanol solution of avarone (200 mg) and the color changed from yellow to red. The 

reaction mixture was stirred for 4.5 h at room temperature. After ethanol was eliminated, the 

remaining aqueous solution was extracted with ethyl acetate and the solution was dried over 

anhydrous Na2SO4. After the evaporation of ethyl acetate, the product was purified by 

preparative TLC (silica gel GF254, 1 mm) using chloroform/methanol (9:1) as the eluent, and re-

chromatographed with the same eluent. Compound 1a was obtained after recrystallization in 

dichlormethane overnight as red crystals (107 mg; yield 43 %). Mp: 86–88 ºC; [α]D
20 

= –16 (c 

0.250, CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 6.33 (d, J= 1.6 Hz, 1H, C6’-H), 5.32 (d, J= 1.6 

Hz, 1H, C4’-H), 5.09 (brs, 1H, C3-H), 3.62 (s, 2H, C7’-H), 2.57 (d, J= 13.4 Hz, 1H, C11- Ha), 

2.45 (d, J= 13.4 Hz, 1H, C11- Hb), 1.49 (s, 3H, C12-H), 0.98 (s, 3H, C13-H), 0.93 (d, J=6.2 Hz, 

3H, C14-H), 0.82 (s, 3H, C15-H); 
13

C NMR (50 MHz, CD3OD): δ 187.1 (C5’), 184.5 (C2’), 

174.6 (C8’), 148.6 (C3’), 144.9 (C4), 143.8 (C1’), 140.8 (C6’), 121.6 (C3), 97.6 (C4’), signal 

overlapped with solvent signal (C10), 47.0 (C7’), 43.0 (C9), 39.4 (C5), 38.0 (C8), 37.3 (C6), 

36.1 (C11), 28.6 (C7), 27.3 (C2), 20.5 (C1), 20.3 (C13), 18.4 (C14), 18.1 (C12), 17.2 (C15); IR 

(KBr, cm
-1

): 3456.7, 3330.3, 2959.4, 2930.5, 2860.9, 1725.4, 1673.9, 1636.4, 1593.8, 1457.8, 

1382.0, 1352.7, 1262.6, 1125.8, 1073.6, 739.1; CIMS (MeOH): 386.23150 [M+1]
+
; UV/Vis 

(MeOH): λmax (log ε) 286 (4.73), 482 (4.20).  

4.1.1.2. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]-(S)alanine (1b) 

Obtained by the same procedure as 1a, using 200 mg avarone and 179 mg L-alanine, but 

without addition of aqueous solution of NaOH. The reaction time was shortened to 3.5 h and 

reaction mixture was extracted with chloroform. The crude product was chromatographed on a 



  

silica gel 60 column, using chloroform/methanol (8:2) as the eluent, and rechromatographed by 

preparative TLC (silica gel GF254, 1 mm, eluent chloroform/methanol (8:2)), affording 1b as red 

crystals (65 mg; yield 25 %). Mp: 168–171 ºC (dec.); [α]D
20 

= 56 (c 0.125, CH3OH); 
1
H NMR 

(200 MHz, CD3OD): δ 6.24 (d, J= 2.4 Hz, 1H, C6’-H), 5.27 (d, J=2.4 Hz, 1H, C4’-H), 5.02 (brs, 

1H, C3-H), 3.71 (q, J=6.8 Hz, 1H, C7’-H), 2.48 (d, J= 6.2Hz, 1H, C11- Ha), 2.41 (d, J= 6.2 Hz, 

1H, C11- Hb), 1.42 (s, 3H, C12-H), 1.33 (d, J= 6.8 Hz, 3H, C9’-H), 0.92 (s, 3H, C13-H), 0.86 

(d, J= 6.0 Hz, 3H, C14-H), 0.76 (s, 3H, C15-H); 
13

C NMR (50 MHz, CD3OD): δ 187.2 (C5’), 

184.7 (C2’), 178.7 (C8’), 148.1 (C3’), 145.2 (C4), 144.0 (C1’), 140.7 (C6’), 121.6 (C3), 97.7 

(C4’), 54.1 (C7’), signal overlapped with solvent signal (C10), 43.1 (C9), 39.6 (C5), 38.0 (C8), 

37.4 (C6), 36.1 (C11), 28.6 (C7), 27.4 (C2), 20.5 (C1), 20.4 (C13), 18.3 (C14), 18.1 (C12), 17.3 

(C9’), 17.2 (C15); IR (KBr, cm
-1

): 3363.9, 2960.8, 2931.4, 2855.5, 1670.7, 1633.0, 1583.0, 

1498.8, 1455.0, 1416.4, 1358.7, 1335.0; CIMS (MeOH): 400.24715 [M+1]
+
; UV/Vis (MeOH): 

λmax (log ε) 290 (4.65), 492 (4.26).  

4.1.1.3. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]β-alanine (1c) 

Obtained by the same procedure as 1a, using 100 mg avarone and 143 mg β-alanine. The 

reaction time was shortened to 3 h. Rechromatography was not necessary. 1c: red crystals; 43 mg 

(yield 34 %). Mp: 120–122 ºC; [α]D
20 

= 64 (c 0.250, CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 

6.32 (d, J= 2.8 Hz, 1H, C6’-H), 5.46 (d, J= 2.8Hz, 1H, C4’-H), 5.11 (brs, 1H, C3-H), 3.34 (t, J= 

5.2 Hz, 2H, C7’-H), 2.60 (d, J= 5 Hz, 1H, C11- Ha), 2.53 (d, J= 5 Hz, 1H, C11- Hb), 2.45 (t, J= 

6.6 Hz, 2H, C8’-H), 1.51 (s, 3H, C12-H), 1.00 (s, 3H, C13-H), 0.93 (d, J=6.2 Hz, 3H, C14-H), 

0.83 (s, 3H, C15-H); 
13

C NMR (50 MHz, CD3OD): δ 187.1 (C5’), 184.7 (C2’), 179.5 (C9’), 

149.4 (C3’), 145.0 (C4), 143.9 (C1’), 140.7 (C6’), 121.6 (C3), 97.0 (C4’), signal overlapped 

with solvent signal (C10), 43.0 (C9), 40.8 (C7’), 39.5 (C5), 38.1 (C8), 37.4 (C6), 36.7 (C8’), 

36.1 (C11), 28.6 (C7), 27.4 (C2), 20.5 (C1), 20.3 (C13), 18.3 (C14), 18.1 (C12), 17.2 (C15); IR 

(KBr, cm
-1

): 3386.4, 2960.3, 2858.0, 1671.2, 1633.3, 1583.1, 1513.4, 1451.4, 1382.3, 1254.3, 

1143.6, 1030.4; CIMS (MeOH): 400.24846 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 290 (4.75), 

490 (4.33).  

4.1.1.4. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-

1-naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]-(R)valine (1d) 



  

Obtained by the same procedure as 1a, using 100 mg avarone and 113 mg D-valine. The 

reaction time was shortened to 3 h and after evaporation of ethyl acetate the product was purified 

by preparative TLC (silica gel GF254, 1 mm, eluent toluene/ethyl acetate (9:1)). 1d: red crystals; 

55 mg (yield 40 %). Mp: 197–200 ºC; [α]D
20 

= –36 (c 0.250, CH3OH); 
1
H NMR (200 MHz, 

CD3OD): δ 6.33 (d, J= 2.8 Hz, 1H, C6’-H), 5.42 (d, J= 2.8 Hz, 1H, C4’-H), 5.11 (brs, 1H, C3-

H), 3.60 (d, J= 4.6 Hz, 1H, C7’-H), 2.59 (d, J= 14 Hz, 1H, C11- Ha), 2.48 (d, J= 14 Hz, 1H, 

C11- Hb), 2.19 (m, 1H, C9’-H), 1.51 (s, 3H, C12-H), 1.07 (d, J= 1.6 Hz, 3H, C10’-H), 1.01 (s, 

3H, C13-H), 0.99 (d, J= 1.6 Hz, 3H, C11’-H), 0.96 (d, J=  2.2 Hz, 3H, C14-H), 0.85 (s, 3H, 

C15-H); 
13

C NMR (50 MHz, CD3OD): δ 187.3 (C5’), 184.7 (C2’), 177.6 (C8’), 148.7 (C3’), 

145.0 (C4), 143.9 (C1’), 140.7 (C6’), 121.7 (C3), 97.7 (C4’), 64.7 (C7’), signal overlapped with 

solvent signal (C10), 43.1 (C9), 39.6 (C5), 38.3 (C8), 37.4 (C6), 36.3 (C11), 32.4 (C9’), 28.6 

(C7), 27.4 (C2), 20.5 (C1, C11’), 19.8 (C13), 19.2 (C14), 18.3 (C10’), 18.0 (C12), 17.2 (C15); 

IR (KBr, cm
-1

): 3356.7, 2961.7, 2931.1, 2875.4, 1670.7, 1632.8, 1580.2, 1507.5, 1417.7, 1384.8, 

1344.5, 1288.5, 1124.4, 1092.5, 644.2, 612.2; CIMS (MeOH): 428.27917 [M+1]
+
; UV/Vis 

(MeOH): λmax (log ε) 286 (4.68), 498 (4.34). 

4.1.1.5. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]-(S)leucine (1e)      

Obtained by the same procedure as 1a, but the reaction time was prolonged to 5 h and the 

crude product was first purified by preparative TLC (silica gel GF254, 1 mm, eluent toluene/ethyl 

acetate (9:1)). Starting from 100 mg avarone and 126 mg L-leucine, 1e was obtained as red 

crystals (42 mg; yield 30 %). Mp: 148–150 ºC; [α]D
20 

= –24 (c 0.250, CH3OH); 
1
H NMR (200 

MHz, CD3OD): δ 6.32 (d, J= 2.8 Hz, 1H, C6’-H), 5.39 (d, J=2.8 Hz, 1H, C4’-H), 5.103 (brs, 1H, 

C3-H), 3.77 (t, J= 5.6 Hz, 1H, C7’-H), 2.52 (d, J= 14.0 Hz, 1H, C11- Ha), 2.46 (d, J= 14 Hz, 1H, 

C11- Hb), 1.71 (m, 3H, C9’, C10’), 1.51 (s, 3H, C12-H), 1.01 (s, 3H, C13-H), 0.89 (d, J= 6.2 

Hz, 3H, C14-H), 0.96 (s, 3H, C11’), 0.93 (s, 3H, C12’), 0.84 (s, 3H, C15-H); 
13

C NMR (50 

MHz, CD3OD): δ 187.2 (C5’), 184.7 (C2’), 178.2 (C8’), 148.6 (C3’), 145.2 (C4), 144.0 (C1’), 

140.6 (C6’), 121.5 (C3), 97.5 (C4’), 58.0 (C7’), signal overlapped with solvent signal (C10), 

43.1 (C9), 42.0 (C9’), 39.6 (C5), 37.8 (C8), 37.4 (C6), 36.0 (C11), 28.6 (C7), 27.4 (C2), 26.4 

(C10’), 23.5 (C11’), 22.8 (C12’), 20.5 (C1), 20.3 (C13), 18.3 (C14), 18.1 (C12), 17.2 (C15); IR 

(KBr, cm
-1

): 3368.4, 1670.0, 1632.7, 1581.0, 1512.1, 1449.6, 1384.4, 1343.1, 1257.4, 1121.1, 



  

1029.4, 737.1, 702.6, 613.5; CIMS (MeOH): 442.29476 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 

286 (4.62), 494 (4.24).  

4.1.1.6. N-[4-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]-(S)proline (1f)    

Obtained by the same procedure as 1a, using 110 mg avarone and 122 mg L-proline, but 

the color changed from yellow to purple. The reaction time was shortened to 1.5 h and the 

product was purified by preparative TLC (silica gel GF254, eluent toluene/ethyl acetate (9:1)), 

then rechromatographed with the chloroform/methanol (8:2) as the eluent. Compound 1f was 

obtained as red-purple crystals (28 mg; yield 19 %). Mp: 193–195 ºC (dec.); [α]D
20 

= –120 (c 

0.125, CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 6.13 (brs, 1H, C6’-H), 5.37 (brs, 1H, C3’-H), 

5.00 (bs, 1H, C3-H),  3.57-3.42 (m, 3H, C7’-H, C10’-H), 2.51 (d, J= 13.0 Hz, 1H, C11- Ha), 

2.38 (d, J= 13.0 Hz, 1H, C11- Hb), 2.19-2.05 (m, 2H, C9’-H), 2.05-1.85 (broad signal, 2H, C8’-

H), 1.41 (s, 3H, C12-H), 0.91 (s, 3H, C13-H), 0.85 (d, J= 6.2 Hz, 3H, C14-H), 0.75 (s, 3H, C15-

H); 
13

C NMR (50 MHz, CD3OD): δ 186.3 (C2’), 185.7 (C5’), 180.0 (C11’), 150.1 (C1’), 148.9 

(C4’), 144.9 (C4), 134.5 (C6’), 121.7 (C3), 102.5 (C3’), 66.9 (C10’), signal overlapped with 

solvent signal (C10), 43.7 (C9), 39.5 (C5), 38.2 (C8), 37.4 (C6), 36.1 (C11), 33.0 (C9’), 30.7 

(C8’), 28.7 (C7), 27.4 (C2), 20.5 (C1), 20.4 (C13), 18.3 (C14), 18.2 (C12), 17.3 (C15); IR 

(KBr, cm
-1

): 3377.8, 2959.8, 2925.5, 2876.4, 1658.7, 1629.5, 1590.2, 1563.9, 1452.0, 1420.8, 

1144.6; CIMS (MeOH): 426.26373 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 296 (4.67), 512 

(4.34).  

4.1.1.7. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]-(S)methionine (1g)  

Obtained by the same procedure as 1a, using 200 mg avarone and 239 mg L-methionine. 

The reaction time was prolonged to 5 h. The product was purified using toluene/ethyl acetate 

(9:1) as the eluent and then rechromatographed with the eluent chloroform/methanol (8:2). 1g: 

red crystals; 45 mg (yield 15 %). Mp: 164–168 ºC; [α]D
20 

= –12 (c 0.250, CH3OH); 
1
H NMR 

(200 MHz, CD3OD): δ 6.33 (d, J= 2.2 Hz, 1H, C6’-H), 5.45  (d, J= 2.2 Hz, 1H, C3’-H), 5.10 

(brs, 1H, C3-H), 3.89 (dd, J= 5.6 Hz, J= 9.0 Hz, 1H, C7’-H), 2.66-2.37 (m, 4H, C11- Ha, C11- 

Hb, C10’-H), 2.17-2.10 (m, 2H, C9’-H), 2.04 (s, 3H, C11’-H), 1.50 (s, 3H, C12-H), 1.00 (s, 3H, 



  

C13-H), 0.94 (d, J= 6.2 Hz, 3H, C14-H), 0.84 (s, 3H, C15-H); 
13

C NMR (50 MHz, CD3OD): δ 

187.2 (C5’), 184.6 (C2’), 176.9 (C8’), 148.3 (C3’), 145.1 (C4), 144.1 (C1’), 140.6 (C6’), 121.5 

(C3), 97.7 (C4’), 57.9 (C7’), signal overlapped with solvent signal (C10), 43.1 (C9), 39.5 (C5), 

37.8 (C8), 37.4 (C6), 35.9 (C11), 32.1 (C9’), 31.1 (C10’), 28.5 (C7), 27.4 (C2), 20.5 (C1), 20.3 

(C13), 18.3 (C14), 18.1 (C12), 17.1 (C15), 15.4 (C11’); IR (KBr, cm
-1

): 3350.0, 2959.2, 2931.1, 

2857.9, 1669.7, 1632.1, 1584.4, 1489.0, 1442.6, 1384.6, 1339.1, 1284.1, 1144.8, 1029.6, 628.8; 

CIMS (MeOH): 460.25091 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 290 (4.59), 490 (4.20).  

4.1.1.8. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]-(S)phenylalanine (1h)  

Obtained by the same procedure as 1a, using 190 mg avarone and 100 mg L- 

phenylalanine and the reaction time was prolonged to 5 h. After the evaporation of ethyl acetate, 

the product was purified by preparative TLC (silica gel GF254, 1 mm, eluent toluene/ethyl acetate 

(9:1), affording 1h as red crystals (28 mg; yield 10 %). Mp: 155–158 ºC; [α]D
20 

= 60 (c 0.250, 

CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 7.20-7.08 (broad signal, 5H, Ph-H), 6.26 (d, J= 2.2 

Hz, 1H, C6’-H), 5.21 (d, J= 2.2 Hz, 1H, C4’-H), 5.13 (brs, 1H, C3-H), 3.98 (dd, J= 4.4 Hz, J= 

7.8 Hz, 1H, C7’-H), 3.27 (dd, J= 6.0 Hz, J= 8.0 Hz, 1H, C9’-Ha), 2.99 (dd, J= 8.0 Hz, J= 14.0 

Hz, 1H, C9’-Hb), 2.66 (d, J= 13.4 Hz, 1H, C11- Ha), 2.30 (d, J= 14.0 Hz, 1H, C11- Hb), 1.54 (s, 

3H, C12-H), 1.01 (s, 3H, C13-H), 0.92 (d, J= 6.2 Hz, 3H, C14-H), 0.82 (s, 3H, C15-H); 
13

C 

NMR (50 MHz, CD3OD): δ 187.1 (C5’), 184.3 (C2’), 176.8 (C8’), 148.0 (C3’), 145.0 (C4), 

143.8 (C1’), 140.5 (C6’), 138.7 (C10’), 130.5 (C11’, C15’), 129.4 (C12’, C14’), 127.6 (C13’), 

121.8 (C3), 97.5 (C4’), 59.9 (C7’), signal overlapped with solvent signal (C10), 43.0 (C9), 39.5 

(C5), 39.0 (C9’), 37.5 (C8), 37.4 (C6), 35.6 (C11), 28.4 (C7), 27.5 (C2), 20.5 (C1), 20.3 (C13), 

18.4 (C14), 18.1 (C12), 17.0 (C15); IR (KBr, cm
-1

): 3365.2, 3026.4, 2957.0, 2929.6, 2857.3, 

1670.0, 1631.9, 1581.7, 1514.3, 1494.2, 1440.9, 1409.8, 1341.5, 1288.9, 1127.5, 1028.9; CIMS 

(MeOH): 476.27878 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 286 (4.66), 496 (4.26).  

4.1.1.9. N-[3-[[(1R,2S,4aS,8aS)-1,2,3,4,4a,7,8,8a-octahydro-1,2,4a,5-tetramethyl-1-

naphthalenyl)methyl]-2,5-dioxo-1,4-cyclohexadien-1-yl]-(S)tryptophan (1i)  

Obtained by the same procedure as 1a, using 100 mg avarone and 98 mg L-tryptophan, 

but the color changed from yellow to red-purple and the reaction time was shortened to 3 h. For 



  

the first preparative TLC, eluent toluene/ethyl acetate (9:1) was used. 1i: red crystals; 52 mg 

(yield 32 %). Mp: 157–160 ºC (dec.); [α]D
20 

= –32 (c 0.125, CH3OH); 
1
H NMR (200 MHz, 

CD3OD): δ 7.55 (d, J= 7.2 Hz, 1H, C16’-H), 7.30 (d, J= 8.0 Hz, 1H, C13’-H), 7.09 (s, 1H, C11’-

H), 7.05-6.92 (m, 2H, C14’-H, C15’-H), 6.23 (brs, 1H, C6’-H), 5.27 (brs, 1H, C4’-H), 5.07 

(brs, 1H, C3-H), 4.09 (brs, 1H, C7’-H), 3.55-3.40 (brm, 1H, C9’-Ha), 3.30-3.15 (brm, 1H, C9’-

Hb), 2.55 (d, J= 13.4 Hz, 1H, C11- Ha), 2.28 (d, J= 13.4 Hz, 1H, C11- Hb), 1.52 (s, 3H, C12-H), 

0.99 (s, 3H, C13-H), 0.88 (d, J= 6.2 Hz, 3H, C14-H), 0.80 (s, 3H, C15-H); 
13

C NMR (50 MHz, 

CD3OD): δ 187.0 (C5’), 184.1 (C2’), 179.8 (C8’), 148.1 (C3’), 144.5 (C4), 143.4 (C1’), 140.4 

(C6’), 137.7 (C12’), 128.8 (C17’), 124.3 (C11’), 122.2 (C16’), 121.7 (C3), 119.8 (C15’), 119.2 

(C14’), 112.1 (C13’), 111.2 (C10’), 97.5 (C4’), 54.5 (C7’), signal overlapped with solvent signal 

(C10), 42.8 (C9), 39.3 (C5), 37.4 (C8), 37.0 (C6), 35.7 (C11), 28.8 (C9’), 28.3 (C7), 27.2 (C2), 

20.4 (C1), 20.1 (C13), 18.3 (C14), 18.1 (C12), 17.0 (C15); IR (KBr, cm
-1

): 3351.8, 2956.1, 

2839.6, 1664.8, 1632.6, 1581.7, 1439.9, 1412.7, 1145.3, 1024.0, 740.7, 659.7, 637.6, 611.3; 

CIMS (MeOH): 515.28989 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 282 (4.74), 290 (4.71), 396 

(3.82), 500 (4.10).  

4.1.1.10. N-(5-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-glycine (2a)   

Glycine (324 mg) was dissolved in 100 ml of saturated solution of NaHCO3, and a few 

drops of aqueous solution of NaOH until pH 10 were added. Solution was added in portions to 

the 100 ml of ethanol solution of tert-butylquinone (180 mg) and the color changed from yellow 

to red. The reaction mixture was stirred for 2.5h at room temperature. After ethanol had been 

removed, the remaining aqueous solution was extracted with ethyl acetate. Thereafter aqueous 

layer was acidified with 10% HCl and again extracted with ethyl acetate. The solutions were 

dried over anhydrous Na2SO4. After the evaporation of ethyl acetate, the product was purified by 

preparative TLC (silica gel GF254, 1 mm, chloroform/methanol (9:1)) and rechromatographed 

with the same eluent. The product was recrystallized in dichloromethane overnight, affording 2a 

as red crystals (31 mg; yield 12 %). Mp: 104–106 ºC (dec.); 
1
H NMR (200 MHz, CD3OD): δ 

6.41 (d, J=2.2 Hz, 1H, C6-H), 5.30 (d, J= 2.2 Hz, 1H, C4-H), 3.64 (brs, 2H, C11-H), 1.27 (s, 

9H, C8-H, C9-H, C10-H); 
13

C NMR (50 MHz, CD3OD): δ 187.8 (C5), 183.9 (C2), 174.9 (C12), 

153.1 (C1), 149.7 (C3), 135.9 (C6), 97.0 (C4), 47.0 (C11), 35.7 (C7), 29.4 (C8, C9, C10); IR 

(KBr, cm
-1

): 3356.9, 2959.9, 2930.6, 2871.1, 1725.8, 1633.2, 1591.1, 1486.1, 1461.1, 1393.9, 



  

1362.5, 1278.0, 1124.1, 1074.2; CIMS (MeOH): 238.10636 [M+1]
+
; UV/Vis (MeOH): λmax (log 

ε) 274 (4.60), 368 (3.90), 476 (3.98).  

4.1.1.11. N-(5-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-L-alanine (2b)  

Obtained by the same procedure as 2a, using 200 mg tert-butylquinone and 170 mg L-

alanine, but without adding of aqueous solution of NaOH. The reaction time was prolonged to 3 

h. For product purification by preparative TLC (silica gel GF254, 1 mm), chloroform/methanol 

(8:2) was used as the eluent. Compound 2b was obtained as red crystals (73 mg; yield 24 %). 

Mp: 159–163 ºC (dec.); [α]D
20 

= –32 (c 0.125, CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 6.40 (d, 

J=2.2 Hz, 1H, C6-H), 5.35 (d, J= 2.2 Hz, 1H, C4-H), 3.81 (q, J= 6.8 Hz, 1H, C11-H), 1.43 (d, J= 

7.2 Hz, 3H, C13-H), 1.26 (s, 9H, C8-H, C9-H, C10-H); 
13

C NMR (50 MHz, CD3OD): δ 187.7 

(C5), 184.0 (C2), 179.3 (C12), 153.1 (C1), 148.8 (C3), 135.9 (C6), 97.0 (C4), 54.0 (C11), 35.7 

(C7), 29.4 (C8, C9, C10), 18.0 (C13); IR (KBr, cm
-1

): 3351.9, 2961.3, 1673.1, 1630.3, 1580.8, 

1488.0, 1455.2, 1416.4, 1365.3, 1338.6, 1283.0, 1171.5; CIMS (MeOH): 252.12285 [M+1]
+
; 

UV/Vis (MeOH): λmax (log ε) 274 (4.87), 486 (4.40).  

4.1.1.12. N-(4-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-β-alanine (2c)  

Obtained by the same procedure as 2a, using 100 mg tert-butylquinone and 110 mg β-

alanine and the reaction time was prolonged to 3 h. Rechromatography was not necessary. 2c: 

red crystals; 74 mg (yield 48 %). Mp: 117–120 ºC;
 1

H NMR (200 MHz, CD3OD): δ 6.41 (brs, 

1H, C6-H), 5.44 (brs, 1H, C4-H), 3.30 (t, J= 1.6 Hz, 2H, C11-H), 2.55 (broad signal, 2H, C12-

H), 1.25 (s, 9H, C8-H, C9-H, C10-H); 
13

C NMR (50 MHz, CD3OD): δ 187.7 (C5), 184.0 (C2), 

178.1 (C13), 153.1 (C1), 150.1 (C3), 135.9 (C6), 96.6 (C4), 40.4 (C11), 35.7 (C7), 30.0 (C12) 

29.4 (C8, C9, C10); IR (KBr, cm
-1

): 3349.5, 2960.8, 1673.4, 1631.6, 1582.2, 1509.9, 1455.5, 

1365.4, 1256.1, 1158.3; CIMS (MeOH): 252.12255 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 274 

(4.92), 484 (4.44).  

4.1.1.13. N-(5-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-D-valine (2d)  

Obtained by the same procedure as 2a, using 130 mg tert-butylquinone and 140 mg D-valine. 

The crude product was purified by preparative TLC (silica gel GF254, 1 mm) using toluene/ethyl 

acetate (9:1) as the eluent. Compound 2d was obtained as red crystals (61 mg; yield 28 %). Mp: 



  

180–183 ºC (dec.); [α]D
20 

= –20 (c 0.250, CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 6.41 (d, J= 

2.4 Hz, 1H, C6-H), 5.40 (d, J= 2.4 Hz, 1H, C4-H), 3.61 (d, J= 6.2 Hz, 1H, C11-H), 2.20 (m, 1H, 

C13-H), 1.26 (s, 9H, C8-H, C9-H, C10-H), 0.98 (d, J= 6.4 Hz, 6H, C14-H, C15-H); 
13

C NMR 

(50 MHz, CD3OD): δ 187.8 (C5), 184.0 (C2), 177.6 (C12), 153.0 (C1), 149.6 (C3), 135.9 (C6), 

97.2 (C4), 64.5 (C11), 35.7 (C7), 32.5 (C13) 29.4 (C8, C9, C10), 20.0 (C15), 19.1 (C14); IR 

(KBr, cm
-1

): 3350.0, 2962.7, 2873.6, 1673.5, 1630.7, 1578.5, 1506.2, 1421.1, 1340.7, 1162.2; 

CIMS (MeOH): 280.15442 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 274 (4.78), 490 (4.34).  

4.1.1.14. N-(5-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-L-leucine (2e)  

Obtained by the same procedure as 2a, but the color changed from yellow to red-purple 

and the reaction time was shortened to 2 h. For the first purification by preparative TLC 

toluene/ethyl acetate (9:1) was used as the eluent. Starting from 100 mg tert-butylquinone and 80 

mg L-leucine, 2e was obtained as red crystals (32 mg; yield 18 %). Mp: 147–148 ºC; [α]D
20 

= –20 

(c 0.250, CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 6.32 (d, J= 2.2 Hz, 1H, C6-H), 5.29 (d, J= 

2.2 Hz, 1H, C4-H), 3.68 (m, 1H, C11-H), 1.64 (m, 3H, C13-H, C14-H), 1.18 (s, 9H, C8-H, C9-

H, C10-H), 0.89 (d, J= 6.0 Hz, 3H, C15-H), 0.83 (d, J= 6.0 Hz, 3H, C16-H); 
13

C NMR (50 

MHz, CD3OD): δ 187.8 (C5), 184.0 (C2), 178.4 (C12), 153.1 (C1), 149.4 (C3), 135.9 (C6), 97.0 

(C4), 58.0 (C11), 42.3 (C13), 35.7 (C7), 29.4 (C8, C9, C10), 26.4 (C14), 23.4 (C15), 22.7 

(C16); IR (KBr, cm
-1

): 3359.8, 2958.5, 2871.7, 1672.3, 1630.8, 1578.7, 1511.2, 1419.7, 1365.0, 

1341.6, 1264.7, 1165.1; CIMS (MeOH): 294.16991 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 272 

(4.72), 488 (4.258).  

4.1.1.15. N-(4-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-L-proline (2f)  

Obtained by the same procedure as 2a, using 200 mg tert-butylquinone and 280 mg L-

proline. The color changed from yellow to red-purple and the reaction time was prolonged to 3 h. 

The product was rechromatographed by preparative TLC using toluene/ethyl acetate (6:4). 2f: 

purple crystals; 29 mg (yield 9 %). Mp: 148–152 ºC (dec.); [α]D
20 

= –264 (c 0.125, CH3OH); 
1
H 

NMR (200 MHz, CD3OD): δ 6.28 (s, 1H, C6-H), 5.40 (s, 1H, C3-H), 3.63 (poorly resolved dd 

overlapping with C15-H, 1H, C11-H), 3.55-3.40 (m, 2H, C15-H), 2.24-2.12 (m, 2H, C13-H), 

1.90 (brs, 2H, C14-H), 1.26 (s, 9H, C8-H, C9-H, C10-H); 
13

C NMR (50 MHz, CD3OD): δ 187.1 

(C2), 187.0 (C5), 180.1 (C12), 158.6 (C1), 148.7 (C4), 129.8 (C6), 104.6 (C3), 66.7 (C11), 52.2 



  

(C15), 36.0 (C7), 33.0 (C13), 29.9 (C8, C9, C10), 24.0 (C14); IR (KBr, cm
-1

): 3377.2, 2962.2, 

1623.5, 1581.5, 1424.5, 1146.2; CIMS (MeOH): 278.13828 [M+1]
+
; UV/Vis (MeOH): λmax (log 

ε) 276 (4.62), 498 (4.11).  

4.1.1.16. N-(5-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-L-methionine (2g)  

Obtained by the same procedure as 2a, using 130 mg tert-butylquinone and 118 mg L-

methionine, but the reaction time was shortened to 2 h and extraction was done with chloroform. 

2g: red crystals; 43 mg (yield 17 %). Mp: 137–139 ºC (dec.); [α]D
20 

= –24 (c 0.125, CH3OH); 
1
H 

NMR (200 MHz, CD3OD): δ 6.42 (d, J= 2.2 Hz, 1H, C6-H), 5.44 (d, J= 2.2 Hz, 1H, C4-H), 3.88 

( dd, J= 6.2 Hz, J= 11.8 Hz, 1H, C11-H), 2.52 (m, 2H, C14-H), 2.15-2.01 (m, 2H, C13-H), 1.98 

(s, 3H, C15-H), 1.27 (s, 9H, C8-H, C9-H, C10-H); 
13

C NMR (50 MHz, CD3OD): δ 187.8 (C5), 

184.0 (C2), 177.0 (C12), 153.2 (C1), 149.2 (C3), 135.8 (C6), 97.2 (C4), 58.0 (C11), 35.7 (C7), 

32.5 (C13), 31.2 (C14), 29.4 (C8, C9, C10), 15.3 (C15); IR (KBr, cm
-1

): 3344.6, 2961.2, 

1671.4, 1630.4, 1580.6, 1488.2, 1423.6, 1339.5, 1143.7; CIMS (MeOH): 312.12628 [M+1]
+
; 

UV/Vis (MeOH): λmax (log ε) 274 (4.77), 486 (4.31). 

4.1.1.17. N-(5-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-L-phenylalanine (2h)  

Obtained by the same procedure as 2a, using 230 mg tert-butylquinone and 232 mg L-

phenilalanine. The reaction time was prolonged to 3 h. The product was rechromatographed by 

preparative TLC using toluene/ethyl acetate (9:1) as the eluent. 2h: red crystals (186 mg, yield 

41 %). Mp: 143–146 ºC; [α]D
20 

= 16 (c 0.250, CH3OH); 
1
H NMR (200 MHz, CD3OD): δ 7.22-

7.14 (m, 5H, C15, C16, C17, C18, C19), 6.35 (d, J= 2.5 Hz, 1H, C6-H), 5.26 (d, J= 2.5 Hz, 1H, 

C4-H), 3.99 (dd, J=5.0 Hz, J= 7.4 Hz, 1H, C11-H),  3.23 (m, 1H, C13-Ha), 3.05 (dd, J= 7.2 Hz, 

J= 13.4 Hz, 1H, C13-Hb), 1.22 (s, 9H, C8-H, C9-H, C10-H); 
13

C NMR (50 MHz, CD3OD): δ 

187.8 (C5), 183.8 (C2), 177.0 (C12), 153.0 (C1), 149.0 (C3), 138.8 (C14), 135.7 (C6), 130.5 

(C15, C19), 129.4 (C16, C18), 127.7 (C17), 97.2 (C4), 60.1 (C11), 38.8 (C13), 35.6 (C7), 29.4 

(C8, C9, C10); IR (KBr, cm
-1

): 3353.7, 3060.6, 3027.9, 2960.2, 2870.3, 1672.5, 1627.9, 1573.3, 

1502.0, 1449.9, 1400.6, 1365.3, 1340.8, 1256.6; CIMS (MeOH): 328.15398 [M+1]
+
; UV/Vis 

(MeOH): λmax (log ε) 274 (4.71), 488 (4.29). 

4.1.1.18. N-(5-tert-Butyl-3,6-dioxo-1,4-cyclohexadien-1-yl)-L-tryptophan (2i)  



  

Obtained by the same procedure as 2a, but the reaction time was shortened to 1 h and the 

product was purified by preparative TLC using toluene/ethyl acetate (9:1) as the eluent. Starting 

from 100 mg tert-butylquinone and 125 mg L-tryptophane, 2i was obtained as red crystals (42 

mg, yield 18 %). Mp: 156–159 ºC (dec.); [α]D
20 

= –24 (c 0.125, CH3OH); 
1
H NMR (200 MHz, 

CD3OD): δ 7.56 (d, J= 8.0 Hz, 1H, C12-H), 7.30 (d, J= 8.0 Hz, 1H, C17-H), 7.13 (s, 1H, C15-

H), 7.08-6.90 (m, 2H, C18-H, C19-H), 6.34 (d, J= 2.0 Hz, 1H, C6-H), 5.31 (poorly resolved d, 

1H, C4-H), 4.11 (poorly resolved dd, 1H, C11-H), 3.49 (dd, J= 4.2 Hz, J= 14.4 Hz, 1H, C13-

Ha), 3.27 (dd, J= 7.2 Hz, J= 14.4 Hz, 1H, C13-Hb), 1.18 (s, 9H, C8-H, C9-H, C10-H); 
13

C NMR 

(50 MHz, CD3OD): δ 187.7 (C5), 183.6 (C2), 177.6 (C12), 152.8 (C1), 149.1 (C3), 138.0 (C16), 

135.7 (C6), 129.1 (C21), 124.5 (C15), 122.2 (C20), 119.7 (C19), 119.4 (C18), 112.2 (C17), 

111.4 (C14), 96.9 (C4), 59.8 (C11), 35.5 (C7), 29.3 (C8, C9, C10), 28.8 (C13); IR (KBr, cm
-1

): 

3349.4, 3001.7, 2960.7, 2871.7, 1671.5, 1630.7, 1574.9, 1501.2, 1421.7, 1363.3, 1341.5, 1151.4; 

CIMS (MeOH): 367.16471 [M+1]
+
; UV/Vis (MeOH): λmax (log ε) 278 (4.90), 496 (4.27).  

4.2. Pharmacology 

4.2.1. Antiproliferative activity 

4.2.1.1. Compounds and solutions 

Stock solutions of investigated complexes, were prepared in DMSO at concentrations of 

10 mM and afterwards they were diluted with complete nutrient medium (RPMI-1640 without 

phenol red) supplemented with 3 mM L-glutamine, 100 µg/mL streptomycin, 100 IU/mL 

penicillin, 10 % heat inactivated fetal bovine serum (FBS), and 25 mM 4-(2-hydroxyethyl)-1-

piperazineethanesulfonic acid (Hepes) adjusted to pH 7.2 by bicarbonate solution. RPMI-1640, 

FBS, Hepes and L-glutamine were products of Sigma Chemical Co., St. Louis, MO. The MTT 

(2-(4,5-dimethylthiazol-2-yl)-3,5-diphenyl-2H-tetrazolium bromide) was dissolved (5 mg/ml) in 

phosphate buffer saline pH 7.2 and filtered (0.22 µm) before use. The RPMI 1640 cell culture 

medium, fetal bovine serum (FBS), and MTT, were purchased from Sigma Chemical Company, 

USA. 

4.2.1.2. Cell lines 



  

Cervix adenocarcinoma cell line (HeLa), human melanoma (Fem-X), human chronic 

myelogenous leukemia (K562) cells, human breast cancer (MDA-MB-453), non-small cell lung 

carcinoma (A549) and a non-cancerous cell line, MRC-5 (human embryonic lung fibroblast) 

were grown in RPMI-1640 medium (Sigma). Media were supplemented with 10 % fetal bovine 

serum, L-glutamine, and penicillin—streptomycin (Sigma). 

4.2.1.3. Treatment of cell lines 

Stock solutions (10 mM) of compounds, made in dimethyl sulfoxide (DMSO), were 

dissolved in corresponding medium to the required working concentrations. Neoplastic cells 

HeLa (2000 cells per well), Fem-X (5000 cells per well), K562 (5000 cells per well), MDA-MB-

453 (3000 cells per well), A549 (5000 cells per well), and non-cancerous MRC-5 (5000 cells per 

well) were seeded into wells of a 96-well flat-bottomed microtitre plates, and 24 h later, after the 

cell adherence, five different, double diluted, concentrations of investigated compounds were 

added to the wells. Exceptionally, compounds were applied to the suspension of leukemia K562 

cells (5000 cells per well), 2 hours after the cell seeding. Final concentrations applied to target 

cells were 200, 100, 50, 25, and 12.5 μM, except to the control wells where only nutrient 

medium was added to the cells. Nutrient medium was RPMI 1640 medium, supplemented with 

L-glutamine (3 mM), streptomycin (100 µg/ml), and penicillin (100 IU/ml), 10 % heat 

inactivated (56 ˚C) fetal bovine serum (FBS) and 25 mM Hepes, and was adjusted to pH 7.2 by 

bicarbonate solution. The cultures were incubated for 72 h.  

4.2.1.4. Determination of cell survival 

 The effect of the prepared compounds on cancer cell survival was determined by the 

microculture tetrazolium test (MTT) according to Mosmann [47] with modification by Ohno and 

Abe [48] 72 h after addition of the compounds, as described earlier. Briefly, 20 mL of MTT 

solution (5 mg/mL phosphate-buffered saline) was added to each well. Samples were incubated 

for a further 4 h at 37 ºC in a humidified atmosphere of 95 % air/5 % CO2 (v/v). Then, 100 mL 

of 100 g/L sodium dodecyl sulfate were added to the extract, resulting in formation of insoluble 

formazan by conversion of the MTT dye by viable cells. The number of viable cells in each well 

was proportional to the intensity of the absorbance of light, which was read in an enzyme-linked 

immunosorbent assay (ELISA) plate reader at 570 nm. The absorbance (A) at 570 nm was 



  

measured 24 h later. To determine cell survival (%), A of the sample with cells grown in the 

presence of various concentrations of the investigated compounds was divided by the control 

optical density (A of control cells grown only in nutrient medium) and multiplied by 100. It was 

implied that A of the blank was always subtracted from A of the corresponding sample with 

target cells. IC50 was defined as the concentration of an agent inhibiting cell survival by 50 % 

compared with a vehicle-treated control. As positive controls, cis-diamminedichloroplatinum 

(cis-DDP, cisplatin) was used. All experiments were done in triplicate. 

4.2.1.5. Cell cycle analysis 

Cervix adenocarcinoma cell line (HeLa) was seeded in six-well plates (3 × 10
5
 

cells/well), and after 24 h treated with investigated compounds, except control cells, and 

incubated at 37 °C for the next 24 hours. Concentrations used corresponded to IC50 values. After 

the incubation, the cells were collected by trypsinization, and fixed in ice-cold 70 % ethanol for 

1h on ice, then at −20 °C for at least a week. After fixation, the cells were washed in PBS and 

pellets obtained by centrifugation were treated with RNase (100 μg/mL) at 37 °C for 30 min and 

then incubated with propidium iodide (PI) (40 μg/mL) for at least 30 min. DNA content and cell-

cycle distribution were analyzed using a Becton Dickinson FACSCalibur flow cytometer. Flow 

cytometry analysis was performed using CellQuestR (Becton Dickinson, San Jose, CA, USA) 

software on a minimum of 10,000 cells per sample [49]. 

4.2.1.6. Determination of target caspases 

In order to examine the role of caspases involved in the apoptotic cell death induced by 

the investigated compounds, the percentages of HeLa cells pretreated with caspase inhibitors in 

sub-G1 phase were determined. HeLa cells were preincubated for 2 h with specific caspase 

inhibitors (final concentration e 40 mM): Z-DEVD-FMK (caspase-3 inhibitor), Z-IETD-FMK 

(caspase-8 inhibitor) and Z-LEHD-FMK (caspase-9 inhibitor). Caspase inhibitors were 

purchased from R&D Systems (Minneapolis, USA). The tested compounds were applied to 

target HeLa cells at concentrations which corresponded to 2IC50 values obtained for 72 h. For 

each compound, one sample of HeLa cells was not treated with inhibitor and served as a referent 

sample. After 24 h of incubation, cells were harvested and fixed in 70 % ethanol on ice. Samples 

were stored at –20 ºC for one week before PI staining. Changes in the percentages of cells in sub-



  

G1 phase were determined using a FACSCalibur Flow Cytometer and analyzed using CellQuest 

Software. 

4.2.2. Antibacterial activity 

A microbroth double dilution test [50] was used to determine antibacterial activity of 

compounds against six Gram-positive bacteria: Staphylococcus aureus (ATCC 6538), 

Micrococcus flavus (ATCC 10240), Micrococcus luteus (ATCC 4698), Clostridium sporogenes 

(ATCC 19404), Kocuria rhizophila (ATCC 9341), Bacillus subtilis (ATCC 6633), and four 

Gram-negative bacteria: Escherichia coli (ATCC 25922), Proteus hauseri (ATCC 13315), 

Salmonella enterica (ATCC 13076), Pseudomonas aeruginosa (ATCC 9027). Sterile 96-well 

polystyrene microliter plates with well capacities of 300 µL were used, and 100 µL of fresh 

Mueller Hinton broth were added to each well of the plate. One hundred microliters of the 

compound stock solution (10 mg/mL) were added to the first well of the each row. Then, 100 µL 

of the solution were removed from the first well of the row to the following well of the same row 

and mixed with the broth previously added to it. This double dilution was done in every row of 

the plate. One row was used as a positive control containing a broad-spectrum antibiotic 

amikacin to determine the sensitivity of a bacterial strain. The other row contained the DMSO as 

a negative control. Afterwards, every well was inoculated with 10 µL (10
6
 cells per mL) of 

bacterial cultures. The microtiter plate was incubated at 37 ºC for 24 h. The growth of bacteria 

was measured. The lowest concentration of tested compound which inhibited the bacterial 

growth was defined as MIC.  

4.2.3. Antifungal activity 

The tested fungi were Candida albicans (ATCC 10231), Saccharomyces cerevisiae 

(ATCC 9763) and Aspergillus brasiliensis (ATCC 16404). Antifungal activities of the 

synthesized compounds were evaluated as previously described for antibacterial activity, by a 

microbroth double dilution assay. In this test the used broth was Sabouraud dextrose broth and 

each well was inoculated with 10 µL of fungal cultures (10
5
 spores per mL). The microliter plate 

was incubated at 28 ºC for 48 h. The MIC was determined as the lowest concentration that 

resulted in inhibition of fungal growth.   

4.2.4. The brine shrimp test  



  

A small bag (18 g) of lyophilized eggs of brine shrimp Artemia salina was added to 0.5 L 

of tap water. A few grains of dried yeast were stirred in, and air was passed through the 

suspension where the temperature was maintained at 18–20 ºC under illumination for 48 h. 

Freshly hatched nauplii were used in further experiments [51].  

All derivatives were dissolved in DMSO and various amounts (0.01–1 mg) were added to 

950 µL of artificial seawater with 10–20 nauplii. The final concentration of DMSO was 5 %. 

After 24 h illumination at room temperature, the number of dead and surviving nauplii were 

counted and statistically analyzed. LC50 was defined as a concentration lethal to 50 % of the 

nauplii. All samples were done in triplicate. 
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Figure captions 

 

Fig. 1. Sesquiterpene quinones with an amino acid in side chain (nakijiquinones A–D; 

smenospongines B and C) 

Fig. 2. Chemical structure of avarone and tert–butylquinone derivatives 

Fig. 3. Tautomeric forms of avarone and tert-butylquinone derivatives 

Fig. 4. Cyclic voltammogram of compounds 1, 1i, 2 and 2i 

Fig. 5. Cell cycle distribution after 24 h continuous action of investigated compounds. 

Concentration corresponded to IC50. 

Fig. 6. Cell cycle distribution after 24 h continuous action of investigated compounds. 

Concentration corresponded to 2IC50. 

Fig. 7. Influence of compounds 1c (A) and 1e (B) alone or in combination with inhibitors of 

caspase-3 (Z-DEVD-FMK), caspase-8 (Z-IETD-FMK) or caspase-9 (Z-LEHD-FMK) on the 

fraction of HeLa cells in sub-G1 phase. 
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