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Abstract 

We investigated 1060 possible anion–π interactions in a data set of 41 superoxide 

dismutase active centers. Our observations indicate that majority of the aromatic residues 

are capable to form anion–π interactions, mainly by long-range contacts, and that there is 

preference of Trp over other aromatic residues in these interactions. Furthermore, 68% of 

total predicted interactions in the dataset are multiple anion–π interactions. Anion–π 

interactions are distance and orientation dependent. We analyzed the energy contribution 

resulting from anion–π interactions using ab initio calculations. The results showed that, 

while most of their interaction energies lay in the range from –0 to –4 kcal mol–1, those 

energies can be up to –9 kcal mol–1 and about 34% of interactions were found to be 

repulsive. Majority of the suggested anion–π interacting residues in ternary complexes 

are metal-assisted. Stabilization centers for these proteins showed that all the six residues 

found in predicted anion–π interactions are important in locating one or more of such 

centers. The anion–π interacting residues in these proteins were found to be highly 

conserved. We hope that these studies might contribute useful information regarding 

structural stability and its interaction in future designs of novel metalloproteins. 
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1. Introduction 

Due to their crucial roles in stabilising biomolecular structures and in 

supramolecular chemistry [1–3], noncovalent interactions related to the π electron cloud 

have gained considerable interest among theoreticians and experimentalists. Among all 

noncovalent interactions related to aromatic rings, anion–π interactions received the most 

attention in the last few years. Due to their significant role in aforementioned 

supramolecular chemistry [4–7], crystal engineering [8–11] and structural biology [12–

15], these interactions became a subject of great interest. Anion–π, also referred to as 

anion-quadrupole, interactions are theorized to form between aromatic groups and anions. 

Aromatic functional groups are planar and ringed structures with delocalized π electrons. 

The delocalization of electrons in an aromatic molecule create an electron density above 

and below the plane of the ring which can be described as a quadrupole (i.e., two 

opposite dipoles). The direction of the quadrupole creates a positive potential along the 

plane of an aromatic ring and this allows for favorable interactions with nearly co-planar 

anions. The general postulation is that electrostatic (charge-quadrupole) and ion-induced 

polarization (charge-induced dipole) are key forces that contribute to the anion–π 

interaction [16]. 

Whereas anion–π interactions were widely studied in supramolecular assemblies, 

investigation of their role in biological macromolecules is still at its early stages. A 

systematic search through structures in the Protein Data Bank (PDB) showed that in 

protein structures orientations similar to those in anion–π interacting pairs exist between 

standard aromatic residues (Trp, Phe, Tyr, His) and some anions, such as chloride and 

phosphate [8]. Hinde and co-workers [17] performed a PDB search focusing on 

interactions between Phe and negatively charged residues, such as Asp and Glu. The 

interactions having the angle between the anion group and the plane of the ring in the 

range between 0 to 40º (edgewise) were found to be quite common and attractive by their 

nature (estimated energies were in the range between 8 and 2 kcal mol–1), but the 

anion–π interactions involving the ring face were less frequent and usually found to be 

weakly attractive or even slightly repulsive by their nature. Those repulsive forces are 

usually compensated with other, stronger interaction (salt bridge, H-bonding, or similar; 

see chapter 3.2). Using the systematic search of protein structures followed by ab initio 
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calculations, Deyà and co-workers showed that anion–π interactions are to be expected in 

flavin-dependent enzymes [18]. Anion–π interactions have been shown to stabilize 

flavoproteins and to regulate the redox potential of the flavin cofactor [15]. In addition, 

Moore and co-workers examined high-resolution structures of proteins and nucleic acids 

for the presence of "6"-type anion–π contacts, where the anion is placed directly above 

the centre of the six-membered ring [12]. Anion–π interactions are currently helpfully 

exploited in fields such as anion sensing [19–21], supramolecular assembly [7,22,23], 

and anion transport through membranes [24,25], even in biological systems [18]. 

Research of the anion channels are of great interest in investigation of diseases such as 

cystic fibrosis and other anion channelopathies [26]. Sacchettini and co-workers 

published an outstanding study of the development of effective anti-tuberculosis drugs, 

reporting an important role of the anion–π interactions [27]. Frontera and co-workers 

studied long-range effects in anion–π interactions and their role in the mycobacterium 

tuberculosis malate synthase inhibition mechanism [28], that can be exploited for the 

development of antitubercular therapeutics because of its significance in Mycobacterium 

tuberculosis virulence. Recently, Matile and co-workers introduce artificial enzymes 

operating with anion–π interactions [29]. Etezad and co-workers revealed the impact of 

anion–π interactions in the thermal stability and ionic liquids tolerance that could be used 

as an alternative strategy to stabilize enzymes using protein engineering [30]. In our 

recently published works, we suggested that anion–π interactions can contribute 

significantly to stabilization of Sm/LSm proteins [31], protein-porphyrin complexes [32] 

and complexes of proteins and halogen-containing amino acids [33]. 

Superoxide dismutases, or SODs, are enzymes that play a pivotal role in 

metabolizing O2
•−, preempting oxidizing chain reactions that cause extensive damage, 

and forestalling formation of a cascade of deleterious reactive oxygen species (ROS) 

including hydrogen peroxide (H2O2), hypochlorite (OCl−), peroxynitrate (ONO2
−) and 

hydroxyl radical (HO•). The name SOD denotes not one, but three unrelated enzymes. All 

three earned the name by virtue of ability to convert two molecules of superoxide to one 

each of dioxygen and hydrogen peroxide, with consumption of two equivalents of H+. 

Three classes of SOD have evolved with distinct protein folds and different catalytic 

metal ions: the Cu/ZnSODs, MnSOD/FeSODs and NiSODs. Cu/ZnSOD (also known as 
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SOD1 and SOD3 in humans) occurs in eukaryotes and some prokaryotes, and point 

mutations in human Cu/ZnSOD are linked to the fatal neurodegenerative disease 

amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig's disease). FeSOD and 

MnSOD (also referred to as SOD2 in humans) appear to have evolved from a common 

ancestral gene, with the FeSOD gene observed in primitive eukaryotes, the plastids of 

plants and in bacteria [34–36]. 

Studies of the metal center in metalloproteins and model systems have shown that 

many factors, including noncovalent interactions, may play important roles in the 

properties of these proteins [37–40]. Even though many studies are done on the molecular 

aspects [34,36], there are no reports on the systematic analysis of noncovalent 

interactions in superoxide dismutases. Thus, considering the above facts, we thought it 

would be useful to investigate the role of anion–π interactions in these proteins by 

bioinformatics approaches. As we focused our study on the active centers, the anion–π 

interactions within protein structures were not considered. We have investigated the 

structural stability patterns of anion–π interactions in superoxide dismutases related to the 

other environmental preferences like preference of particular amino acid residue to form 

anion–π interactions, interaction geometries and energetic contribution, metal-assisted 

anion–π interactions in ternary complexes, their involvement in stabilizing centers, and 

conservation score of anion–π interacting residues. The investigation of these important 

interactions might enhance our insight of protein stabilities, interaction energies and 

further improve our understanding of metalloprotein structures and their functions. 

2. Materials and methods 

2.1. Dataset 

For this study, we used the Protein Data Bank (PDB) October 21st
, 2015 list of 

113,130 structures [41]. The selection criteria for superoxide dismutases to be included in 

the dataset were (1) crystal structures of proteins containing E.C. Number 1.15.1.1 

(superoxide dismutase) with metal were accepted; (2) no theoretical model structures and 

no NMR structures were accepted, these structur qes were not included since it was 

difficult to define the accuracy of the ensemble of structures in terms of displacement that 
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was directly comparable to the X-ray diffraction studies; (3) only crystal structures with 

the resolution of 2.0 Å or better and a crystallographic R-factor of 25.0 % or lower were 

accepted; and (4) only representatives at 70% sequence identity. After assembling the 

dataset, several structures containing ligands and mutant amino acids were rejected, thus 

leaving 41 proteins that were actually used as the dataset in our analysis. Hydrogen atoms 

were added and optimized where needed, using the program REDUCE [42], with default 

settings. REDUCE is adding hydrogen atoms to protein and/or DNA structures in 

standardized geometry optimizing them to the orientations of OH, SH, NH3
+, Met 

methyls, Asn and Gln sidechain amides, and His rings. Software determines best 

hydrogen positions by selecting the best overall score from all of the possible 

combinations taking into the account individual scores assigned for each individual 

residue and for groups containing movable protons partitioned in closed sets of local 

interacting networks. The PDB IDs of these structures are as follows: 1ar5, 1cbj, 1d5n, 

1hl5, 1ids, 1isa, 1kkc, 1luv, 1my6, 1qnn, 1srd, 1to4, 1unf, 1xre, 1xuq, 1y67, 1yai, 1yso, 

2aqn, 2cw2, 2goj, 2rcv, 2w7w, 3ak2, 3ce1, 3dc6, 3evk, 3f7l, 3h1s, 3js4, 3lio, 3lsu, 3mds, 

3pu7, 3tqj, 4br6, 4c7u, 4f2n, 4ffk, 4yet, and 5a9g. 

2.2. Anion interaction analysis 

For selecting the protein structures having various types of possible anion– 

interactions some specific criteria and geometrical features were used in Discovery 

Studio Visualizer 4.5 [43]: (1) Anions (the nearest oxygen atom in Asp or Glu 

carboxylate group) were considered to be atoms having a formal charge of –0.5 or less. 

This allowed the inclusion of delocalized anionic species such as aspartate and glutamate 

side-chains. (2) The distance between an anion and the centroid of a π ring (aromatic 

moiety from His, Phe, Trp and Tyr) should be less than the anion– (max dist) cut-off 

(7.0 Å, R in Fig. 1). (3) The angle between the anion–centroid vector (line connecting the 

closest carboxylate oxygen atom and the center point of the π ring) and the normal to the 

ring plane should be less than the anion– maximum angle (90°, θ in Fig. 1). Compared 

to the criteria applied in studies of small molecules found in the CSD (Cambridge 

Structural Database) these criteria were a bit more relaxed. We opted for slightly looser 

criteria because the structural variations in crystal structures of proteins are generally 
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larger than in crystal structures of small molecules. Earlier publications confirmed anion–

π interactions as long-range interactions, showing notable binding forces even at 

intermolecular distances of 7 Å [17,32,33,44]. 

 

2.3. Computation of anion–π interaction energy 

In order to apply ab initio methods in determining the energies of predicted 

anion–π pairs on desired level of theory, calculations were performed on structurally 

reduced model systems. We used acetate (1) as mimics for anionic amino acids (Asp, 

Glu). Phenylalanine was simplified to methylbenzene (2), histidine to 5-methyl-1H-

imidazole (3), while tryptophan and tyrosine were reduced to 3-methyl-1H-indole (4) and 

4-methyphenol (5), respectively (Fig. 2). 

 

 

Ab initio calculations were performed using Jaguar from Schrödinger Suite 2016-

1 [45], using LMP2 method with triple zeta Dunning’s correlation consistent basis set 

[46] and ++ diffuse functions [47]. All calculations were performed in vacuum. The 

LMP2 method applied to the study of anion–π interactions, showed to be considerably 

faster than the MP2 method while the calculated interaction energies and equilibrium 

distances are almost identical for both methods [48]. Several authors found that LMP2 

represents an excellent method for calculations of interaction energies in proteins [14,49]. 

Geometries of interacting structures were optimized using LMP2/cc-pVTZ(-f)++ 

level of theory and their single point energies calculated at LMP2/cc-pVTZ++ level. 

Optimized geometries were placed in space to match corresponding complexes by 

superimposing heavy atoms onto their respective coordinates from crystal structures and 

then the energies of dimeric structures produced in that way were calculated. 

The anion–π interaction energies in dimers (anion–π pairs) were calculated as the 

difference between the energy of the complex and the sum of the energies of the 

monomers in their optimized geometries. 



7 

 

2.4. Computation of stabilization centers 

Stabilization centers (SC) are defined as the clusters of residues making 

cooperative, noncovalent long-range interactions [50]. Measured as individual 

interactions, stabilisation forces resulting from noncovalent long-range interactions are 

not very strong, but since they are cooperative by their nature, in regions where they act 

in a group (SC), they could play an important role in maintaining the overall stability of 

protein structures. In order to analyze SC of interaction-forming residues, we used the 

SCide program [51]. The criteria SCide uses for determining SC are as follows: (1) Two 

residues are in contact if there is, at least, one heavy atom–atom distance smaller than the 

sum of their van der Waals radii plus 1 Å. (2) A contact is recognized as “long-range” 

interaction if the interacting residues are, at least, ten amino acids apart. (3) Two residues 

form a stabilization centers if they are in long-range interaction and if it is possible to 

select one–one residues from both flanking tetrapeptides of these two residues that make, 

at least, seven contacts between these two triplets [51]. 

2.5. Computation of conservation of amino acid residues 

The conservation of amino acid residues in each protein was computed using the 

ConSurf server [52]. This server computes the conservation based on the comparison of 

the sequence of a PDB chain with the proteins deposited in Swiss–Prot [53] and finds the 

ones that are homologous to the PDB sequence. The number of PSI–BLAST iterations 

and the E-value cutoff used in all similarity searches were 1 and 0.001, respectively. All 

the sequences that were evolutionary related to each one of the proteins in the dataset 

were used in the subsequent multiple alignments. Based on these protein sequence 

alignments the residues are classified into nine categories from highly variable to highly 

conserved. Residues with a score of 1 are considered to be highly variable and residues 

with a score of 9 are considered to be highly conserved. 

3. Results and discussion 

In this work, we have analyzed the influence of predicted anion–π interactions in 

41 superoxide dismutase structures. Our study focused on the active centers, thus the 
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eventual anion–π interactions within the rest of the protein structures were not 

considered. The functions of metal complexes are directly linked to the local environment 

in which they have profound effects on function that range from the modulation of 

physical properties to the delivery of reactants and removal of products. Hence, the 

characteristic features of residues involved in predicted anion–π interactions evaluated 

were their preference to form anion–π interactions, interaction geometries and energetic 

contribution, metal-assisted anion–π interactions in ternary complexes, their involvement 

in stabilizing centers, and conservation score of anion–π interacting residues. 

3.1. Preference of residues to form anion interactions 

The preference of amino acid residues to be involved in predicted anion 

interactions was analyzed and the results for superoxide dismutase active centers are 

presented in Table 1. 

 

 

The analysis of the amino acid preferences for the superoxide dismutase active 

centers allowed us to investigate the amino acid composition of the first and the second 

coordination sphere of these sites. The most common residues in the first coordination 

sphere of metal-sites is His, followed by the Asp and H2O. The analysis of the 

composition of the second coordination sphere brings two general observations. First, 

there is a clear trend for metal-sites to be enriched in aromatic residues, particularly in 

Trp and Tyr. Those residues occurs in this region about 3 times more frequently than 

their average frequencies in proteins. Second, metal-sites tend to be depleted of charged 

residues, with Asp having frequencies reduced by 56% with respect to their average 

frequencies (Table 1). A possible functional requirement for aromatic residues in metal-

sites may be due to their ability to mediate electron transfer reactions, which makes them 

most suitable for tunneling electrons to/from redox sites [54,55]. 

We found out that suggested anion–π interactions are present in all of the 

superoxide dismutase active centers. There were a total of 1060 interactions found. On 

average, in every active center analyzed, we found 7.5 predicted anion interactions 

between the amino acid residues. It is noteworthy that Trp, although less frequently found 
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in this database, was involved in more anion–π interactions than the other aromatic 

residues. From the inspection of the results in Table 1, it can be reasoned that Asp and 

Glu have the same preference for the aromatic rings for establishing eventual anion–π 

interactions. From all of the results obtained in these analyses, we concluded that the 

contribution of amino acids toward a particular anion interaction is specific for these 

proteins. The findings for this type of proteins differ to some extent from previous results 

for Sm/LSm proteins [31], protein–porphyrin complexes [32] and complexes of proteins 

and halogen-containing amino acids [33]. 

In order to better understand their stabilizing role, in this study we extended the 

analysis of interactions between the first and the second coordination sphere of 

superoxide dismutases. We found 447 (42.2%) predicted anion interactions between 

Asp and His from first coordination sphere and surrounding aromatic amino acids (an 

illustrative example is shown in Fig. 3). The most abundant aromatic amino acid involved 

in such interactions is Trp (52.3%), followed by His (24.8%), Phe (17.2%), and Tyr 

(5.7%). It has been suggested that the interaction between ligands coordinated to a metal 

ion and aromatic residues can represent a kind of cation/anion–π interaction [16,56], 

which may be important for stabilizing the conformation of metal sites, and for the 

mechanisms of certain enzymatic reactions occurring at the metal center [29,57]. 

 

 

Clusters of predicted anionπ interactions (involving more than one anionπ pair) 

were found in the protein structures. Many crystal structures of superoxide dismutases 

demonstrated that an anion is capable of binding with several aromatic residues. For 

example, in the crystal structure of superoxide dismutase (Fe) (sodB) from Coxiella 

burnetii (PDB ID: 3tqj), there exists a “π–anion–π” interaction structure motif (Fig. 4a). 

The negative charged residue is sandwiched by two aromatic residues. This binding motif 

of an anion interacting with two aromatic residues was also reported earlier in protein 

structures [17,31–33] and obviously could present a significant factor in maintaining 

structural stability. Fig. 4b shows the presence of several anions surrounding one 

aromatic group. The analysis shows that about 68% of the total interacting residues in the 

dataset are involved in the formation of multiple anion–π interactions. This conveys that 
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furcation is an inherent characteristic of macromolecular crystal structures. All of the 

studies above showed that different types of anionπ interactions existing in superoxide 

dismutase active centers could significantly influence their structural stability. 

 

3.2. Interaction geometries and energetic contribution of anion interactions 

The geometries of interacting pairs observed in our work certainly are not always 

the one that could show the highest calculated anion–π interaction energy, but the ones 

that provide the maximum stability to the protein structure by optimizing the use of all 

interactions that can coexist with other amino acid moieties, along with possible anion–π 

interaction were interested in. Within a large protein structure numerous interaction are 

possible, and sometimes it is not easy to parse out the role of the anion–π interaction in 

their energetics by simple calculation. Therefore, the interacting pair residues 

participating in other noncovalent interactions were not analyzed. 

The frequency distribution of the distance and angle parameters of suggested 

anion interacting pairs were analyzed (Fig. 5). The geometrical details were quantified 

using the parameters (R, ) described in the section 2. The plot of distance distribution 

derived from anion–π interacting pairs, between the anion group and aromatic ring of 

amino acid residues, shows the distance distribution has a maximum at 5.0–5.5 Å. The 

shortest distance found was 3.49 Å, as shown in Fig. 5a. The anion–π pair angles were 

distributed between all values (0 to 90º range), with a preference for larger angle values 

(Fig. 5b). The histogram reveals two well-defined, asymmetrically represented states 

which can be easily associated with face-to-face (from 0 to 40) and edge-to-face (from 

50 to 90) interactions (Fig. 5b). However, the histogram shows that the edge-to-face 

interactions are unevenly distributed along the considered angles. These calculations 

clearly indicate that an effective anion–π interaction can be realized across a wider area 

above the π ring. There was no significant statistical difference observed in the 

distribution of geometrical parameters when single and multiple anionπ interactions 

were in question. However, distribution of distance and angle parameters suggested that 

the packing of side-chains is nonrandom. The analysis of the geometrical parameters for 

this type of protein anion–π interactions yielded results similar to those obtained for 
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Sm/LSm proteins [31], protein–porphyrin complexes [32] and complexes of proteins and 

halogen-containing amino acids [33]. 

 

 

The energetic contributions of residues involved in predicted anion–π interactions 

were computed using ab initio calculations at LMP2 level. The energy of anion–π 

interaction depends upon various factors such as the size and electronic structure of the 

anion, nature of the π-ligand, extent of ligation, the directionality and interplay with other 

noncovalent interactions [16,58]. The results of calculations of the interaction energies 

for all possible interacting pairs are presented in Fig. 6. Calculated energies were in the 

range from 9.27 to +10.15 kcal mol-1, but most of them were in the range from 4 to 0 

kcal mol-1, indicating that the anionπ interactions in proteins can be common and non-

negligible. Previously published results reported finding in numerous protein structures 

anion interactions between Phe and negatively charged residues such as Asp and Glu 

with energies less than 8 kcal mol1 [17,32,59]. The overall interaction energies may 

also be modulated by the environment of the interacting pairs in the protein. About 66% 

of calculated energies of interacting anion–π pairs were attractive by nature (values were 

less than 0), indicating a stabilizing contribution to the corresponding protein structures, 

but 34% of the calculated interaction energies were repulsive (their calculated values 

were larger than 0). The repulsive nature of those interactions emerges from the 

unfavorable geometries of anion–π interactions in the crystal structures and usually is 

counterbalanced by other interactions. Namely, we mentioned earlier that, when 

examined under isolated conditions, this type of interaction is considered unfavorable, 

but similar to other potentially unfavorable interactions, their influence can be 

compensated by other interactions from the rest of the polypeptide chain [32,33]. 

 

 

The highest predicted attractive anion–π energetic contribution (9.27 kcal mol-1) 

is with Asp72 and His88 (PDB ID: 1yai) and the lowest (0.01 kcal mol-1) is with 

Asp165 and His150 (PDB ID: 3ak2); the interacting residues with the highest and lowest 

interaction energies are shown in Fig. 7. Such large differences are caused by distribution 



12 

 

of charge and distance, as pictures of electrostatic potential mapped on electron density 

(ESP) in dimer systems shows, and by their orientation in protein. The nature of the 

anion–π interaction has been initially interpreted in terms of an attractive electrostatic 

ion–quadrupole interaction [59]. In a case of highest predicted anion–π energetic 

interaction, electrostatic distribution and orientations are favorable (Fig. 7a), showing 

greater compatibility and thus adding to stabilizing forces, while in case of lowest 

energetic interaction the orientation of ESP are not so favorable, (Fig 7b). Furthermore, 

the distance between two interacting residues is larger, thus making the ion-quadrupole 

interaction weaker. This is in agreement with calculated electrostatic potential surfaces 

around aromatics which are a qualitative guide to anion interactions. 

 

3.3. Metal-assisted anion–π interactions in ternary complexes 

Taking advantage of the structural versatility of metal ions and the directionality 

of metal-ligand interactions, the spontaneous assembly of elegant supramolecular 

architectures with unusual properties and applications or intriguing host-guest behaviour 

was described [5]. In this section, a special type of suggested anion–π interaction is 

considered, in cases where the aromatic system interacts with an anion and a transition 

metal on opposing sides of the ring. This kind of predicted interaction we call the metal-

assisted anion–π interaction. The metal coordination strongly affects the π-binding ability 

of the aromatic ligands, increasing significantly their π-acidity and, consequently, 

enhancing the ability of the ring to interact favourably with anions. Here we focus on the 

bonding relationship between anionic and aromatic amino acids coordinated to transition 

metals in ternary complexes of superoxide dismutase active centers. 

The search for these specific interactions in proteins returned 447 hits out of 1060 

anion–π interactions, implying that 42.2% of the interactions are involved in metal-

assisted anion–π interactions. The amino acids directly coordinated to metal ion (first 

coordination sphere) that participate in the interactions are Asp and His. The most 

abundant aromatic amino acid from second coordination sphere involved in such 

interactions is Trp (47.6%), followed by Asp (20.4%), Phe (18.7%), His (7.0%) and Tyr 

(6.3%). Analyzing the incidences of different kind of metal, we found that Fe3+ (25.5%) 
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and Mn2+ (25.5%) plays a dominant role. They are followed by Cu2+ (19.6%), Zn2+ 

(19.6%), Fe2+ (5.9%) and Mn3+ (3.9%). 

An illustrative example of metal-assisted anion–π interaction is shown in Fig. 8. 

The zinc active site of Cu/Zn superoxide dismutase from Neisseria meningitidis (PDB ID: 

2aqn) is depicted. The metal ion (Zn2+) is coordinated in a nearly tetrahedral geometry by 

three histidyl imidazoles (His104, His113, His122) and an aspartyl residue (Asp125). A 

second-sphere residue, Asp106, links the metal-binding site by forming anion–π 

interaction with His122. 

 

 

In an attempt to evaluate the effect of metal coordination to first-sphere residues 

on the anion–π interactions we have computed the binding energy of the ternary 

complexes. The metal-assisted anion–π interactions exhibit large binding energies (about 

40%) and shorter distances (about 20%) than those in the corresponding binary anion–π 

complexes due to the strong electrostatic effect caused by the proximity of the metal 

center. The metal coordination strongly affects the π-acidity of the aromatic ligand, thus 

increasing the strength of the anion–π interactions. However, the electronic nature of the 

other ligands coordinated to the metal influences the interaction strength as well [16,60]. 

This is a rather unexplored topic that deserves additional investigation. In this respect, 

several theoretical studies have showed that the contribution of the anion–π interaction is 

usually large and naturally assisted by the increased electron deficiency induced by 

coordination [61–63]. 

3.4. Stabilization center residues 

Stabilization centers are composed by residues involved in cooperative long-range 

contacts, which are likely to play an important role in the regulation of flexibility and the 

stability of protein structures [50]. The residues most frequently forming stabilization 

centers are commonly located in buried positions of protein and usually have a 

hydrophobic or aromatic side-chain, although some polar or charged residues are found 

as well. The performed structural and sequential conservation analysis showed a higher 

conservation of stabilization centers over protein families [50,64]. Stabilization centers, 
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which in general protect the protein structure against spontaneous degradation due to 

thermal fluctuation, have also been used in evolution to develop a simple means for 

regulating the house-keeping of an immunologically important protein family, the 

classical MHC molecules [65,66]. 

We have computed the stabilization centers for all predicted anion interaction 

forming residues in superoxide dismutase active centers using the SCide program and the 

results are depicted in Table 2. It was found that 31.7% of anionic residues and 36.0% of 

π residues were found to have one or more stabilization centers. Among the stabilization 

centers involving π residues, His and Phe were incorporated more frequently than other 

residues. Since considerable number of anion interacting residues have more than one 

stabilization center, these residues confers additional stability to the protein along with 

their participation in anion interactions. It is interesting to note that these results are 

comparable with findings in anion interaction studies in Sm/LSm proteins [31] but 

different than our results from investigation of anion interaction in protein–porphyrin 

complexes [32] and complexes of proteins and halogen-containing amino acids [33]. 

 

3.5. Conservation score of anion interacting residues 

The level of evolutionary conservation was used often as indicator for the 

importance of the position in maintaining the protein’s structure and/or function [67]. 

Functionally important residues are identified based on the conservation score generated 

by ConSurf server. From our analysis, we found that more than 81% of predicted 

anion interacting residues are conserved (the cutoff value used to identify the 

stabilizing residues was conservation score 6). Of all of the interacting residues, 22.3% 

had the highest conservation score, 9. Moreover, most of the additional residues 

comprising the superoxide dismutase active centers show a great degree of conservation 

as well. 

Considering metal-assisted residues we found that 51.2% of the residues have the 

highest conservation score of 9, while 48.8% of the residues are in the range of 6–8. In 

the case of non-metal-assisted residues we found that 14.3% of residues have the highest 
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conservation score of 9 and 52.0% of the residues are in the range of 6–8. Thus 100% of 

metal-assisted residues and 66.3% of non-metal-assisted residues have a higher 

conservation score of 6 and above (Fig. 9). Those results indicate higher level of 

evolutionary conservation in case of metal-assisted residues than in non-metal assisted 

residues and can indicate their functional importance in function and structure of protein.  

 

 

Since the conserved residues plays an important role in the stability and functional 

specificity of protein structure, results obtained from this study could be useful for 

understanding the importance of anion interacting residues in the stability of 

superoxide dismutase. 

As a representative picture, the conservation grade of amino acid residues in 

Cu/Zn superoxide dismutase from Neisseria meningitidis (PDB ID code 2aqn; Chain A) 

using Chimera [68] is shown in Fig. 10. Conservation score of anion–π interacting 

residues (A:Asp106 and A:His122) is 9. 

 

 

Evolutionary conservation interacting pairs position in proteins was further 

examined using the multiple structural alignment. The structural similarity of the proteins 

was carried using PDBeFold server [69]. The PDB coordinates, downloaded from RCSB 

website, were uploaded to the server for finding structural similarity. PDBeFold 

structural similarity searches were conducted using on-line interface of web server at 

http://www.ebi.ac.uk/msd-srv/ssm/. The PDBeFold compares structures by matching the 

graph built on secondary-structure elements, followed by iterative 3D alignment of 

protein backbone Cα atoms. Due to their diversification, all superoxide dismutase 

structures could not be aligned, therefore structures were grouped according to the type of 

metal ion in protein (FeSOD, MnSOD and Cu/ZnSOD). Alignment scores and positions 

of matched/unmatched residues of all proteins in group, generated for the multiple 

structural alignment are shown in Supplementary material. Quite interestingly, almost of 

all the structures considered in this study retain similar three-dimensional folding, as 

revealed by the low RMSD values. Analysis of the residue-by-residue 3D-mapping data 
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(in a similar way it was done by ConSurf alignment) also indicates high degree of 

similarity observed in metal-assisted anion–π interaction residues (Supplementary 

material; 3D Structural alignment tab). We observed that 100% of metal-assisted anion–π 

interaction and 83% of non-metal-assisted anion–π interaction positions were conserved. 

The present study reveals that, in general, interacting positions have structural 

convergence with respect to anion–π interactions, which often play important role for 

maintaining protein function/structure during the evolutionary process. 

4. Conclusions 

Suggested anion–π interactions are directional non-covalent bonds, distance and 

orientation dependent. In our investigation, we have studied the role of anion–π 

interactions in active centers of series of superoxide dismutases and their environmental 

preferences. We found that most of the aromatic residues located in active centers exhibit 

anion–π interactions. We investigated the preferences of residues to form predicted 

anion–π interactions and results we obtained suggest that Trp is most abundant anion–π 

interacting residue, whereas Phe has the lowest occurrence of anion–π interactions in the 

dataset we studied. Furthermore, the multiple interaction patterns founded in the present 

study indicate that more than half of the residues involved in these interactions participate 

in multiple anion–π interactions. The results of ab initio calculations of optimized 

structures of interacting anion–π pairs showed that approximately 34% of those 

interactions are repulsive by their nature. The energy favorable interactions were less 

than 9 kcal mol1, while most of them have energy in the range from 0 to 4 kcal mol1. 

Our analysis found that majority of the anion–π interacting residues in ternary complexes 

are metal-assisted. moreover, significant percentage of anion–π interacting residues are 

located in stabilization centers as well, and thus capable to provide additional stability of 

these proteins. Occurrence of significant percentage of anion–π interacting residues in 

highly conserved region could indicate the important role these interactions possess in 

superoxide dismutases. Having all of this in mind, we hope that these studies might 

contribute useful information regarding structural stability and its interaction in future 

designs of novel metalloproteins. 
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Fig. 1. Parameters for anion– interactions: the distance (R) between the anion and the 

centroid of the ring; and the angle () between the anion–centroid vector and the 

principle axis of the aromatic ring. 
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Fig. 2. Structurally reduced structures used for calculations of anion–π interaction energy. 

(1) instead of carboxylate from Asp and/or Glu; (2) instead of Phe; (3a) or (3b) instead of 

His; (4) instead of Trp; (5) instead of Tyr. 

 

 

Fig. 3. The predicted anion–π interaction between the first and the second coordination 

sphere of cambialistic superoxide dismutase from Propionibacterium shermanii (PDB 

ID: 1ar5). The anionπ interaction is marked with brown dashed lines (A:Asp161:OD1—
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A:Trp126). The indole group of tryptophan consists of two aromatic rings: one five-

membered and one six-membered. Both can take part in anion–π interaction and they can 

even do this simultaneously. Angle  between anion and ring centroids is 18.75° for six-

membered ring and 27.27° for five-membered ring. This particular interaction is 

calculated as slightly repulsive (Eint = +0.7 kcal mol-1). Letters followed by the colon (e.g. 

A:) in front of the amino acid name on the picture are names of the protein chain. Figure 

was prepared using the program Discovery Studio Visualizer 4.5 [43]. 

 

Fig. 4. Details of multiple anion interactions of superoxide dismutase (Fe) (sodB) from 

Coxiella burnetii (PDB ID: 3tqj). (a) An anion with multiple aromatics. (b) Several 

anions clustering around an aromatic group. The anionπ interactions are marked with 

brown dashed lines. Letters followed by the colon (e.g. A:) in front of the amino acid 

name on the picture are names of the protein chain. Figure was prepared using the 

program Discovery Studio Visualizer 4.5 [43]. 
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Fig. 5. Distributions of interaction geometries. (a) Distance distribution of anion 

interactions. (b)  angle distribution of anion interactions. 

 

 

Fig. 6. 3D scatter plots from the energy analysis showing the distribution of energies 

depending on distance and angle for anionπ interacting pairs; (a) His, (b) Phe, (c) Trp, 

and (d) Tyr. A red circle denotes an energy that is an accepted anionπ interaction; 

yellow, green, and blue circles denote XY, XZ and YZ projections, respectively. 
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Fig. 7. ESPs mapped onto electron density isosurfaces: (a) The strongest anionπ 

interaction (B:Asp72:OD2—B:His88) in the Cu/Zn superoxide dismutase of 

Photobacterium leiognathi (PDB ID: 1yai), and (b) The weakest attractive predicted 

anionπ interaction (A:Asp165:OD1—A:His150) in the cambialistic superoxide 

dismutase of Aeropyrum pernix (PDB ID: 3ak2). Pictures were prepared by mapping 

values for calculated ESP of molecules onto the isodensity surface on 0.0125 

electrons/bohr3. Typically, a color scale is used, with the most negative potential colored 

red and the most positive potential colored violet. Figure was prepared using the program 

Jaguar from Schrödinger Suite 2016-1 [45]. 

 

Fig. 8. Details of metal-assisted anion–π interaction of Cu/Zn superoxide dismutase from 

Neisseria meningitidis (PDB ID: 2aqn). The anionπ interaction is marked with brown 

dashed line. Letters followed by the colon on picture (e.g. C:) in front of the amino acid 

name on the picture are names of the protein chain. Figure was prepared using the 

program Discovery Studio Visualizer 4.5 [43]. 
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Fig. 9. Frequency of occurrence of residues at different conservation scores in superoxide 

dismutase active centers. 
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Fig. 10. Conservation pattern of Cu/Zn superoxide dismutase from Neisseria meningitidis 

(PDB ID code 2aqn; Chain A) using Chimera. Conservation score of A:Asp106 and 

A:His122 residues is 9. Letters followed by the colon (e.g. A:) in front of the amino acid 

name on the picture are names of the protein chain. 

 

Table 1 

Frequency of occurrence of anion interaction forming residues in active centers of 

superoxide dismutases. 

 Na %b Nc %d Nanion
e %anion

f 

Anionic amino acid       

Asp 1475 5.3 109 2.3 536 50.6 

Glu 1707 6.2 267 5.7 524 49.4 

Total 3182 11.5 376 8.0 1060 100 

Aromatic amino acid       

His 1394 5.0 418 8.9 247 23.3 

Phe 1118 4.0 256 5.5 138 13.0 

Trp 668 2.4 348 7.4 429 40.5 

Tyr 970 3.5 468 10.0 246 23.2 
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Total 4150 14.9 1490 31.8 1060 100 
a The number of amino acid in the entire database 
b Percent of amino acid in the entire database 
c The number of amino acid in second coordination sphere of superoxide dismutase active centers 
d Percent of amino acid in second coordination sphere of superoxide dismutase active centers 
e Number of anion interactions in superoxide dismutase active centers 
f Percent of anion interactions in superoxide dismutase active centers 

 

Table 2 

Involvement of stabilizing center residues in anion interactions of superoxide 

dismutase active centers. 

Amino acid Nanion
a SCb SC%

c 

Anionic    

Asp 536 175 32.6 

Glu 524 161 30.7 

Total 1060 336 31.7 

π residues    

His 247 104 42.1 

Phe 138 54 39.1 

Trp 429 133 31.0 

Tyr 246 91 37.0 

Total 1060 382 36.0 
a Number of anion interactions in superoxide dismutase 

active centers  
b Number of SC residues involved in anion interactions 
c % of SC residues involved in anion interactions 

 

 


