Article

What is the nature of interactions of $\mathrm{BF}^{-}, \mathrm{NO}^{-}$and $\mathrm{ClO4}^{-}$to $\mathrm{Cu}(\mathrm{II})$ complexes with Girard's T hydrazine? When can binuclear complexes be formed?
Tanja Keški\#, Božidar \#obelji\#, Maja Gruden, Katarina An\#elkovi\#, Andrej Pevec, Iztok Turel, Dušanka Radanovi\#, and Matija Zlatar
Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.9b00760 • Publication Date (Web): 15 Jul 2019
Downloaded from pubs.acs.org on July 15, 2019

Just Accepted

Abstract

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

What is the nature of interactions of $\mathrm{BF}_{4}^{-}, \mathrm{NO}_{3}^{-}$and

 ClO_{4}^{-}to $\mathrm{Cu}(\mathrm{II})$ complexes with Girard's T hydrazine? When can binuclear complexes be formed?Tanja Keškić, ${ }^{\dagger}$ Božidar Čobeljić, ${ }^{\dagger}$ Maja Gruden, ${ }^{\dagger}$ Katarina Anđelković, ${ }^{\dagger}$ Andrej Pevec, ${ }^{\ddagger}$ Iztok Turel, ${ }^{\text {* Dušanka Radanović** }}$ and Matija Zlatar*§
${ }^{\dagger}$ Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
\$Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia.
${ }^{\text {§ }}$ Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, National Institute, University of Belgrade, Njegoševa 12, 11000 Belgrade, Serbia.

Abstract

In the solid-state coordination chemistry, the coordination number of a metal center is not always unambiguously determined, as sometimes from the geometrical parameters it is not clear if ligands are directly bound to the central metal ion or they belong to the outer sphere of a complex. Nature of bonding between $\mathrm{Cu}(\mathrm{II})$ and weakly coordinated anions $\mathrm{BF}_{4}{ }^{-}$, $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{ClO}_{4}{ }^{-}$are investigated by the combined crystallographic and computational study. It is shown that the synergy between the crystal structure determination and computational chemistry allows identification of all interactions present in crystals. Three new complexes, $[\mathrm{CuLCl}] \mathrm{BF}_{4}$ (1), $[\mathrm{CuLCl}] \mathrm{NO}_{3}$ (2) and $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (3) with the same $[\mathrm{CuLCl}]^{+}$moiety $(\mathbf{L}=(E)-N, N, N-$ trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene) hydrazinyl)ethan-1-amin), were synthesized and characterized by single crystal X-ray diffraction methods and compared to the previously reported $[\mathrm{CuLCl}] \mathrm{ClO}_{4}$ (4). Energy decomposition analysis, non-covalent interaction index analysis, independent gradient model and the quantum theory of atoms in molecules are performed on the X-ray structures of these four complexes. The results revealed that in 1, 2 and 4 $\mathrm{BF}_{4}^{-}, \mathrm{NO}_{3}{ }^{-}$and ClO_{4}^{-}are weakly, but directly coordinated to the $\mathrm{Cu}(\mathrm{II})$ with bonds having high electrostatic character. In $\mathbf{3}, \mathrm{BF}_{4}^{-}$is the counter-anion, electrostatically bonded to the \mathbf{L}. Furthermore, the present analysis rationalized the fact that only complex $\mathbf{3}$ is binuclear with bridging Cl^{-}ions.

1. INTRODUCTION

Design of molecular crystals requires an explicit understanding of different, intra- and intermolecular interactions. Combination of the crystal structure determination and computational chemistry emerges as a powerful strategy for advancement in crystal engineering. Notably, the
application of computational chemistry tools allows precise determination of various interactions present in crystals, that surpasses simple geometrical criteria that are frequently used. In solidstate coordination chemistry, the coordination number of a metal center is typically specified based only on the distance of surrounding ligands to the metal cation. Often this assumption is appropriate. However, in the case of weakly coordinated anions, like tetrafluoroborate $\left(\mathrm{BF}_{4}{ }^{-}\right)$, nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, or perchlorate $\left(\mathrm{ClO}_{4}{ }^{-}\right)$there is uncertainty whether in crystals they are directly bound to the central metal ion or they belong to the outer sphere of a complex. ${ }^{1,2}$ If the central metal ion is $\mathrm{Cu}(\mathrm{II})$, description of coordination geometries is particularly challenging. Complexes of $\mathrm{Cu}(\mathrm{II})$ are typically subject to the Jahn-Teller types of distortions resulting in long axial or apical metal-ligand contacts. ${ }^{3,4}$ Considering tetragonal $\mathrm{Cu}(\mathrm{II})$ complexes, with one or two axial ligands with F, O or N donor atoms, it is assumed that ligand is bonded to $\mathrm{Cu}(\mathrm{II})$ if $\mathrm{Cu}(\mathrm{II})$-ligand distance is less than $2.4 \AA^{.}{ }^{3}$ If the $\mathrm{Cu}(\mathrm{II})$-ligand distance is larger than $2.8 \AA$, it is assumed that $\mathrm{Cu}(\mathrm{II})$-ligand interaction is of the van der Waals type. ${ }^{3}$ In the range 2.4-2.8 \AA ligand should be bonded electrostatically. ${ }^{3}$ In the case of chloride ligand, Cl^{-}is considered bonded if $\mathrm{Cu}(\mathrm{II})-\mathrm{Cl}$ distance is less than $2.8 \AA$ and electrostatically bonded if the distance is between 2.8 and $3.2 \AA .{ }^{3}$ The three types of $\mathrm{Cu}(\mathrm{II})$-ligand interactions are referred by Halcrow as genuine, secondary and van der Waals contacts. ${ }^{3}$ This division of $\mathrm{Cu}(\mathrm{II})$-ligand interactions is based solely on the sum of corresponding radii.

In this article, we address vagueness of the coordination of $\mathrm{BF}_{4}^{-}, \mathrm{NO}_{3}{ }^{-}$and $\mathrm{ClO}_{4}{ }^{-}$to $\mathrm{Cu}(\mathrm{II})$ by the combined crystallographic and computational study. For this study, three new complexes, $[\mathrm{CuLCl}] \mathrm{BF}_{4}(\mathbf{1}),[\mathrm{CuLCl}] \mathrm{NO}_{3}(\mathbf{2})$ and $\left[\mathrm{Cu}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (3) with the same $[\mathrm{CuLCl}]^{+}$fragment $(\mathbf{L}=(E)-N, N, N$-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene) hydrazinyl)ethan-1-amin) were synthesized and characterized by single crystal X-ray diffraction methods and compared to the
previously reported $[\mathrm{CuLCl}] \mathrm{ClO}_{4}$ (4). ${ }^{5}$ Structures of newly synthesized complexes $\mathbf{1 - 3}$, as well as, structure of $4,{ }^{5}$ are perfect examples of intricate bonding present in crystals of $\mathrm{Cu}(\mathrm{II})$ complexes. Density functional theory (DFT) based analysis on the X-ray structures of these four complexes containing the same inner-sphere cation and different anions are performed to understand the nature of bonding between Cu (II) and weakly coordinated anions. Namely, energy decomposition analysis, ${ }^{6-8}$ non-covalent interaction (NCI) index analysis, ${ }^{9}$ independent gradient model (IGM) $)^{10,11}$ and the quantum theory of atoms in molecules (QTAIM) ${ }^{12}$ are used to identify all interactions present in the crystals of these complexes. This analysis helps in understanding the coordination geometry around $\mathrm{Cu}(\mathrm{II})$ ion in crystals. Also, this study discerns whether the self-assemblies of the complexes, as found in the crystals, are de facto polynuclear complexes.

2 EXPERIMENTAL

2.1 Materials and methods

2-Acetylpyridine ($\geq 99 \%$) and Girard's T reagent (99%) were obtained from Aldrich. IR spectra were recorded on a Nicolet 6700 FT-IR spectrometer using the ATR technique in the region 4000-400 cm-1 (s-strong, m-medium, w-weak). Elemental analyses (C, H, and N) were performed by standard micro-methods using the ELEMENTARVario ELIII C.H.N.S.O analyzer.

2.2 Synthesis

2.2.1 Synthesis of ligand HLCl (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-

 $\mathbf{y l}$)ethylidene)hydrazinyl)ethan-1-aminium-chloride. The ligand HLCl was synthesized by the reaction of Girard's T reagent $(1.676 \mathrm{~g}, 1.00 \mathrm{mmol})$ and 2-acetylpyridine $(1.120 \mathrm{~mL}, 1.00 \mathrm{mmol})$ in methanol $(50 \mathrm{~mL})$. The reaction mixture was acidified with $3-4$ drops of 2 M HCl and wasrefluxed for 2 h at $85^{\circ} \mathrm{C}$. IR (cm^{-1}): 3387 (w), 3127 (m), 3090 (m), 3049 (m), 3016 (m), 2950 (s), 1700 (vs), 1612 (w), 1549 (s), 1485 (m), 1400 (m), 1300 (w), 1253 (w), 1200 (s), 1153 (w), 1135 (m), 1095 (w), 1073 (m), 975 (w), 944 (w), 914 (m), 748 (w), 683 (w). Elemental analysis calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}:$ C 53.23 \%, H 7.07 \%, N 20.69 \%, found: C 53.42%, H 7.12%, N 20.77 \%.
2.2.2 Synthesis of $[\mathbf{C u L C l}] \mathrm{BF}_{4}$ (1) and $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathbf{C l}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (3). The mononuclear (1) and binuclear (3) $\mathrm{Cu}(\mathrm{II})$ complexes were synthesized by the reaction of $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(0.115 \mathrm{~g}$, $0.30 \mathrm{mmol})$ and ligand $\mathbf{H L C l}(0.081 \mathrm{~g}, 0.30 \mathrm{mmol})$ in methanol $(20 \mathrm{~mL})$. The solution was refluxed for 4 h . After slow evaporation of the solvent in the refrigerator $\left(\sim 7^{\circ} \mathrm{C}\right)$ for ten days, two kinds of green crystals suitable for X-ray analysis were formed. The main fraction corresponds to compound 1, while complex $\mathbf{3}$ was obtained only in traces.
2.2.3 Synthesis of $[\mathbf{C u L C l}] \mathrm{NO}_{3}$ (2). Into a methanol solution (10 mL) of ligand $\mathbf{H L C l}(0.054$ $\mathrm{g}, 0.20 \mathrm{mmol}), \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}(0.050 \mathrm{~g}, 0.20 \mathrm{mmol})$ dissolved in 5 mL of methanol, was added. The reaction mixture was refluxed for 4 h . After refrigeration of the reaction solution at $-8{ }^{\circ} \mathrm{C}$ for a one week, green crystals suitable for X-ray analysis were formed. Yield: 72 mg (91%). IR (cm-1): 3373 (vs), 3326 (m), 3271 (vs), 3106 (m), 3061 (m), 3031 (m), 1596 (vs), 1561 (m), 1529 (w), 1482 (s), 1443 (s), 1365 (m), 1307 (m), 1265 (w), 1196 (w), 1167 (m), 1118 (w), 1075 (w), 1048 (w), 1021 (w), 981 (w), 909 (w), 784 (s), 675 (w), 648 (w), 575 (w). Elemental analysis calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{ClCuN}_{5} \mathrm{O}_{4}$: C 36.46%, H 4.59%, N 17.72 \%, found: C 36.57%, H 4.64 \%, N 17.48%.

2.3 X-ray crystallography

The molecular structures of complexes 1, 2, and $\mathbf{3}$ were determined by single-crystal X-ray diffraction methods. Crystallographic data and refinement details are given in Supporting Information (SI). Diffraction data for $\mathbf{1 - 3}$ were collected at 150 K for $\mathbf{1}$ and $\mathbf{3}$ and 293 K for $\mathbf{2}$
with Agilent SuperNova dual source diffractometer using an Atlas detector and equipped with mirror-monochromated $\mathrm{MoK} \alpha$ radiation $(\lambda=0.71073 \AA)$. The data were processed by using CrysAlis PRO. ${ }^{13}$ All the structures were solved using SIR-92 ${ }^{14}$ (1 and 3) or SHELXS-9715 (2) and refined against F^{2} on all data by full-matrix least-squares with SHELXL-2016. ${ }^{16}$ All nonhydrogen atoms were refined anisotropically. All other hydrogen atoms were included in the model at geometrically calculated positions and refined using a riding model. The ORTEP-3 ${ }^{17}$ for Windows and MERCURY ${ }^{18}$ programs were used for graphical presentations. CCDC 1917721 (for 1), 1917722 (for 2) and 1917723 (for 3) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

2.4 Computational details

All calculations were performed using DFT formalism on the model systems constructed from the corresponding crystal structures (structures 1-4). For mononuclear complexes, the interaction between $[\mathrm{CuLCl}]^{+}$and the nearest counter-anions in the X-ray determined geometries of 1, 2, $\mathbf{3}$ and 4 structures were studied. To understand the formation of binuclear complexes, the interaction between two monomer units from the X-ray structures were investigated. In the X-ray structures of $\mathbf{1}$ and $\mathbf{4}, \mathrm{BF}_{4}{ }^{-}$and $\mathrm{ClO}_{4}{ }^{-}$, respectively, are disordered. To see how the geometries of anions influence the analysis, constrained geometry optimization of F atoms in the dimeric structure of $\mathbf{1}$, and O (perchlorate) atoms in the dimeric structure of $\mathbf{4}$ have been performed with ORCA 4.1.1 program, ${ }^{19,20}$ using revPBE ${ }^{21}$ exchange-correlation functional with Grimme's third generation dispersion energy correction ${ }^{22}$ and Becke-Johnson damping, ${ }^{23}$ i.e. revPBE-D3 functional. Relativistic effects were accounted for by Zeroth-Order Regular Approximation (ZORA) in in the scalar-relativistic formulation. ${ }^{24-26}$ ZORA-def2-TZVP basis set for all atoms
and the resolution-of-the-identity approximation in the Split-RI-J variant and the scalar relativistically recontracted SARC/J Coulomb fitting sets have been used. ${ }^{27-29}$

The nature of the interaction between chosen fragments was analyzed with the aid of the extended transition state energy decomposition scheme (EDA) ${ }^{6-8}$ as implemented in ADF program package ${ }^{30-32}$ The interaction energy between fragments is decomposed into four chemically meaningful components: $\mathrm{E}_{\text {int }}=\mathrm{E}_{\text {elst }}+\mathrm{E}_{\text {Pauli }}+\mathrm{E}_{\text {orb }}+\mathrm{E}_{\text {disp. }}$. The term $\mathrm{E}_{\text {elst }}$ is the quasiclassical electrostatic interaction between the fragments; $\mathrm{E}_{\text {Pauli }}$ is the repulsive Pauli interaction between occupied orbitals on the two fragments and is accounting for a steric interaction; $\mathrm{E}_{\text {orb }}$ is a stabilizing contribution due to the charge transfer and polarization; $\mathrm{E}_{\text {disp }}$ is the dispersion energy correction. Additionally, natural orbitals for chemical valence (NOCV) 33,34 decomposition of the electron density deformation was performed to elucidate different density transfer channels and to quantify their importance as an energy contribution to the $\mathrm{E}_{\text {orb }}$. Charge flow between the fragments was quantified with Hirshfeld charge analysis. ${ }^{35}$ For energies, the general gradient approximated (GGA) in the form of BP86, ${ }^{36-38} \mathrm{PBE}^{39}$ and revPBE ${ }^{21}$ were used, with Grimme's third generation dispersion energy correction ${ }^{22}$ and Becke-Johnson damping, ${ }^{23}$ i.e. BP86-D3, PBE-D3, and revPBE-D3 functionals. Furthermore, dispersion corrected metaGGA, M06L ${ }^{40,41}$ functional with zero damping (parameters: $\mathrm{s}_{6}=1.0, \mathrm{~s}_{\mathrm{r}, 6}=1.325, \mathrm{~s}_{8}=0.0$) was used. ZORA in the scalar-relativistic formulation ${ }^{24,25}$ has been used. An all-electron triple- ζ Slater-type orbitals plus one polarization function (TZP) basis set was employed for all atoms.

Non-covalent interactions between fragments had been identified with the aid of the NonCovalent Interactions Index $(\mathrm{NCI})^{9}$ and Independent Gradient Model (IGM) ${ }^{10,11}$ methods. Interactions between fragments were also analyzed within the framework of Bader's Quantum Theory of Atoms in Molecules (QTAIM). ${ }^{12}$ NCI, IGM and QTAIM analyses were performed by

Multiwfn software 3.6^{42} on the wave functions generated at the self-consistent (SC) revPBE-NL/ZORA-def2-TZVP level of theory. revPBE-NL ${ }^{43}$ is the non-local (NL) density-dependent dispersion functional. ${ }^{44}$ DFT-NL calculations were carried out with ORCA 4.1.1 program ${ }^{19,20}$ with the resolution-of-the-identity approximation in the Split-RI-J variant and the scalar relativistically recontracted SARC/J Coulomb fitting sets. ${ }^{27-29}$ NCI model is based on the visualization of the isosurfaces of the reduced density gradient(s) colored by the product of the sign of the second eigenvalue of the electron density Hessian and electron density $\left(\operatorname{sign}\left(\lambda_{2}\right)^{*} \rho\right)$. Isosurfaces are colored with "Blue-Green-Red" color scheme, so that the strong attractive interactions (negative $\operatorname{sign}\left(\lambda_{2}\right)^{*} \rho$) are blue, weak attractive interactions and van der Waals interactions are green $\left(\operatorname{sign}\left(\lambda_{2}\right)^{*} \rho\right.$ close to zero), and steric repulsion is red (positive $\left.\operatorname{sign}\left(\lambda_{2}\right)^{*} \rho\right)$. Localized interactions are disk-shaped, while delocalized interactions are depicted as diffused surfaces. Thus, the shape and color of the isosurfaces are informative of the type and spatial localization of noncovalent interactions. IGM model is based on calculating $\delta \mathrm{g}=\mathrm{g}^{\mathrm{IGM}}-\mathrm{g}$, where $\mathrm{g}^{\mathrm{IGM}}$ is the density gradient calculated as the sum of the absolute value of the density gradient of each atom in their free-states and g is the true density gradient. In the IGM model, $\delta \mathrm{g}$ can be defined only in the inter-fragment region, and isosurfaces of $\delta \mathrm{g}^{\text {inter }}$ colored by the $\operatorname{sign}\left(\lambda_{2}\right)^{*} \rho$ are used to identify various inter-fragment interactions analogously to the NCI method. IGM isosurfaces are more rounded shaped compared to the NCI isosurfaces. QTAIM is based on the topological analysis of the electron density. The electron density, its Laplacian, total energy density, the potential energy density, and the kinetic energy density at inter-fragment bond critical points were used for additional study of chemical bonding between fragments.

3. RESULTS AND DISCUSSION

3.1. General

The ligand, (E)-N,N,N-trimethyl-2-oxo-2-(2-(1-(pyridin-2-yl)ethylidene)hydrazinyl)ethan-1-aminium-chloride $(\mathbf{H L C l})$, was obtained from the condensation reaction of 2-acetylpyridine and Girard's T reagent in methanol (Scheme 1). In the reaction of ligand HLCl with $\mathrm{Cu}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ in a 1:1 molar ratio in methanol, mixture of mononuclear (1) and binuclear (3) $\mathrm{Cu}(\mathrm{II})$ complexes, was obtained (Scheme 1). Changing polarity of solution using different solvent or mixture of solvents, as well as, changing the molar ratio of reactants, did not affect obtained results (additional Experimental details are in SI). The reaction of $\mathbf{H L C l}$ with $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in a $1: 1$ molar ratio, in methanol, gives mononuclear $\mathrm{Cu}(\mathrm{II})$ complex 2, with composition $[\mathrm{CuLCl}] \mathrm{NO}_{3}$ (Scheme 1).

Scheme 1 Schematic presentation of the synthesis of ligand $(\mathbf{H L C l})$ and complexes $\mathbf{1 , 2}$ and $\mathbf{3}$

The ligand $\mathbf{H L C l}$ has recently been used for the preparation of mononuclear $[\mathrm{CuLCl}] \mathrm{ClO}_{4}(4)$ and binuclear $\left[\mathrm{Cu}_{2} \mathbf{L}_{2}\left(\mu_{-1,1}-\mathrm{N}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complexes. ${ }^{5}$ Both complexes were found to be good catalysts in the synthesis of N -arylatedimidazoles and benzimidazoles. ${ }^{5}$ The HLCl ligand possesses positively charged quaternary ammonium fragment and can exist either in protonated monocationic form or as a deprotonated zwitterionic ligand. In mononuclear complex 4 and binuclear $\left[\mathrm{Cu}_{2} \mathbf{L}_{2}\left(\mu_{-1,1}-\mathrm{N}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ complex hydrazone based ligand is zwitterionic and the distorted square-planar and square-pyramidal geometries of $\mathrm{Cu}(\mathrm{II})$ ions, respectively, have been established by X-ray crystallography. However, if long $\mathrm{Cu} \cdots \mathrm{O}$ (perchlorate) contacts are considered as week coordinative bonds $\mathrm{Cu}(\mathrm{II})$ in $\mathbf{4}$ is the distorted square-pyramid, while in $\left[\mathrm{Cu}_{2} \mathbf{L}_{2}\left(\mu_{-1,1}-\mathrm{N}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ is of pseudo-octahedral geometry. Furthermore, in the crystals of mononuclear complex 4, complex cations $[\mathrm{CuLCl}]^{+}$of square-planar geometry are linked through in-plane coordinated chloride anions so to mimic a dimeric structure $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ with the distance of approximately $3.6 \AA$ between the $\mathrm{Cu}(\mathrm{II})$ centres. ${ }^{5}$ Considering the crystal structures of related mononuclear $\mathrm{Cu}(\mathrm{II})$ complexes, we have found relatively short $\mathrm{Cu}(\mathrm{II}) \cdots \mathrm{Cu}(\mathrm{II})$ separations, nearly $4.0 \AA$, in two structures $\left[\mathrm{Cu}\left(\mathbf{H L}^{2}\right) \mathrm{Cl}_{2} \mathrm{CuHL}^{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{Cl}$ $\left(\mathbf{H L}^{\mathbf{2}}=\text { 2-formylpyridine semicarbazone }\right)^{45}$ and $\left[\mathrm{CuHL}^{4} \mathrm{Cl}_{2}\right]\left(\mathbf{H L}^{4}=\right.$ 2-pyridine-carboxaldehyde 4-dimethyl-aminobenzoylhydrazone). ${ }^{46}$ However, in the other mononuclear $\mathrm{Cu}(\mathrm{II})$ considered, the distance between the closest metal centers exceeds $6.4 \AA$ (vide infra). ${ }^{47-49} \mathrm{Cu}(\mathrm{II})$ ions in herein reported structures $\mathbf{1}$ and $\mathbf{2}$ are either in a distorted square-planar or in a distorted squarepyramidal environment. The coordination geometry of $\mathbf{1}$ and $\mathbf{2}$ depends whether $\mathrm{BF}_{4}{ }^{-}$and $\mathrm{NO}_{3}{ }^{-}$ are considered as counter-anions, or they are coordinated to the $\mathrm{Cu}(\mathrm{II})$. Both $\mathbf{1}$ and $\mathbf{2}$, similarly as $\mathbf{4}$, can be considered as dimeric structures linked through in-plane coordinated chloride anions
with the distance between the closest $\mathrm{Cu}(\mathrm{II})$ centers of approximately 3.6 and $3.8 \AA$, respectively. In binuclear complex $\mathbf{3}, \mathrm{BF}_{4}^{-}$is not bonded to $\mathrm{Cu}(\mathrm{II})$ but is linked via hydrogen bonds to the \mathbf{L} (vide infra). In the binuclear complexes $\left[\mathrm{Cu}_{2} \mathrm{~L}_{2}\left(\mu_{-1,1}-\mathrm{N}_{3}\right)_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$ and $\mathbf{3}$ the distance between the closest $\mathrm{Cu}(\mathrm{II})$ centers is approximately $3.4 \AA$.
3.2 The crystal structures of $[\mathrm{CuLCl}] \mathrm{BF}_{4}$ (1), $[\mathrm{CuLCl}] \mathrm{NO}_{3}$ (2) and $\left[\mathrm{Cu}_{2} \mathrm{~L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (3) complexes

a)

b)

Figure 1. a) ORTEP presentation of the $[\mathrm{CuLCl}] \mathrm{BF}_{4}$ (1). Thermal ellipsoids are drawn at the 30% probability level. Long contact $\mathrm{Cu} \cdots \mathrm{F}$ is represented as a dashed line. b) View of the dimeric unit of $\mathbf{1}$ of pseudo-octahedral geometry. Long contacts $\mathrm{Cu} \cdots \mathrm{F}$ and $\mathrm{Cu} \cdots \mathrm{Cl}$ are represented as orange lines. $\mathrm{BF}_{4}{ }^{-}$anions suffer from positional disorder. Symmetry code i stands for $2-x,-y, 2-z$.

The molecular structures of $[\mathrm{CuLCl}] \mathrm{BF}_{4}(\mathbf{1}),[\mathrm{CuLCl}] \mathrm{NO}_{3}$ (2) and $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (3) with atom numbering schemes are presented in Figures 1a, 2 and 3, respectively. The selected bond lengths and bond angles for $\mathbf{1 , 2}$ and $\mathbf{3}$ are given in SI (Table S2). The structural parameters
correlating the geometry of related mononuclear ${ }^{5,45-49}\left(\mathbf{1}, 2\right.$ and 4-10) and binuclear ${ }^{50-52}(\mathbf{3}, \mathbf{1 1}-$ 14) $\mathrm{Cu}(\mathrm{II})$ complexes with hydrazone-based NNO-donor ligands are listed in Table 1.

Complex 1 crystallizes in the monoclinic centrosymmetric space group $P 2_{1} / c$, with the asymmetric unit comprising one complex cation $[\mathrm{CuLCl}]^{+}$and statistically disordered $\mathrm{BF}_{4}{ }^{-}$ anion. The complexes $\mathbf{1}, \mathbf{2}$ and $\mathbf{4}^{5}$ are isostructural. The complex cation features a fourcoordinate $\mathrm{Cu}(\mathrm{II})$ center with the NNO donor set of tridentate zwitterionic ligand \mathbf{L} and the Cl^{-} ion supplementing the fourth coordination site (Figure 1a). The coordination geometry around $\mathrm{Cu}(\mathrm{II})$ may be described as a distorted square planar with τ_{4} parameter ${ }^{53}$ of 0.17 for 1 ($\tau_{4}=$ $360^{\circ}-(\alpha+\beta) / 141^{\circ}$, where α and β are the two largest angles around the central atom). The values of τ_{4} can range from 1.00 for a perfect tetrahedral geometry to zero for a perfect square planar. Intermediate structures, including trigonal pyramidal and seesaw, fall within the range of 0 to 1.00. The tridentate NNO coordination of \mathbf{L} to $\mathrm{Cu}(\mathrm{II})$ ion generates two five-membered chelate rings ($\mathrm{Cu}-\mathrm{N}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{O}$) fused along the $\mathrm{Cu} 1-\mathrm{N} 2$ bond. The chelate rings are non-coplanar, as indicated by the dihedral angle of 3.5°. Similarly, as in the case of 4 , the complex units of $\mathbf{1}$ are organized into $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ dimers (Figure 1b) in which the symmetry related $\mathrm{Cu}(\mathrm{II})$ ions of tetragonally elongated octahedral geometry are separated by $3.5990(4) \AA$. In the crystals of $\mathbf{1}$, the complex molecules are arranged in layers parallel with the (0 0 1) lattice plain by means of intermolecular C-H $\cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (cf. SI). The adjacent layers are packed via C7-H7A‥F2A and C12-H12C‥F3A hydrogen bonds into the three-dimensional supramolecular structure. The $\mathrm{Cu}-\mathrm{N}_{\mathrm{py}}\left(2.0023(19) \AA\right.$), $\mathrm{Cu}-\mathrm{N}_{\text {imine }}(1.9308$ (18) \AA), $\mathrm{Cu}-\mathrm{O}(1.9806(15) \AA$) and $\mathrm{Cu}-\mathrm{Cl}(2.2141(6) \AA$) distances are similar to those for copper(II) complexes where the metal ions are coordinated to the same type of atoms (Table 1). As expected, the complexes 6-10 show slightly longer $\mathrm{Cu}-\mathrm{O}_{\mathrm{am}}(2.035(2)-2.137(2) \AA$) distances
compared to the distances (1.953(3)-1.990(3) \AA) observed in complexes $\mathbf{1 - 5}$ and $\mathbf{1 1 - 1 4}$ having deprotonated amide-O bound copper(II).

Table 1 Structural parameters correlating the geometry of related mono- and binuclear $\mathrm{Cu}(\mathrm{II})$ complexes with hydrazone-based NNO-donor ligands

Binuclear								
$\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (3)	5	3.3644(6)	Cu1-N1 2.023(3)		0.17	0.1820(4)	85.78(3)	This work
			$\mathrm{Cu} 1-\mathrm{N} 21.931(3)$	$\begin{aligned} & \mathrm{Cu1}-\mathrm{Cl1} 1^{\mathrm{ii}} \\ & 2.6800(9) \end{aligned}$				
			Cu1-O1 1.977(2) Cu1-Cl1 2.2408(8) Cu1-N1 2.0008(14)		0.17	0.1034(2)	83.94(2)	50
$\left[\mathrm{Cu}_{2}\left(\mathbf{L}^{7}\right)_{2}(\mathrm{Cl})_{2}\right]^{\mathrm{k}}(\mathbf{1 1})$	5	3.4000(3)	Cu1-N2 1.9347(14)	$\begin{aligned} & \mathrm{Cu1-Cl1} 1 \mathrm{iii} \\ & 2.8033(5) \end{aligned}$				
			Cu1-O1 1.9623(12) Cu1-Cl1 2.2425(4) Cu1-N1 2.0084(18)		0.08	0.1611(3)	85.03(2)	51
$\left[\mathrm{Cu}_{2}\left(\mathbf{L}^{\mathbf{8}}\right)_{2}(\mathrm{Cl})_{2}\right]^{1}(\mathbf{1 2})$	5	3.3691(4)	Cu1-N2 1.9374(16)	$\begin{aligned} & \mathrm{Cu} 1-\mathrm{Cl1}{ }^{\mathrm{ii}} \\ & 2.7158(6) \end{aligned}$				
			Cu1-O1 1.9636(14) Cu1-Cl1 2.2430(6) Cu1-N1 2.017(3)		0.02	0.2468(4)	88.33(3)	52
$\left[\mathrm{Cu}_{2}\left(\mathbf{L}^{9}\right)_{2}(\mathrm{Cl})_{2}\right]^{\mathrm{m}}(\mathbf{1 3})$	5	3.4085(8)	Cu1-N2 1.932(3)	$\begin{aligned} & \mathrm{Cu} 1-\mathrm{Cl1} 1^{\mathrm{v}} \\ & 2.6206(10) \end{aligned}$				
$\left[\mathrm{Cu}_{2}\left(\mathrm{~L}^{\mathbf{1 0}}\right)_{2}(\mathrm{Cl})_{2}\right]^{\mathrm{n}}(\mathbf{1 4})$	5	3.2926(5)	Cu1-O1 1.953(3) Cu1-Cl1 2.2572(9) Cu1-N1 2.0003(17) Cu1-N2 1.9431(18) Cu1-O1 1.9569(15) Cu1-Cl1 2.2523(6)	$\mathrm{Cu} 1-\mathrm{Cl1}{ }^{\text {iv2 }} 2.6248(6)$	0.11	0.1878(3)	84.56(2)	52

Symmetry codes: $\mathrm{ii}=-x,-y,-z+1$; $\mathrm{iii}=-x+1,-y+2,-z+1$; iv $=-x+1,-y+1,-z$.
${ }^{\mathrm{a}} \mathrm{CN}=$ Coordination number. ${ }^{\mathrm{b}}$ For $\mathrm{Cu}(\mathrm{II})$ complexes of $\mathrm{CN}=4$ the τ parameter has been calculated using the equation $\tau_{4}=360^{\circ}-(\alpha+\beta) / 141^{\circ}$, where α and β are the two largest angles around the central atom. For $\mathrm{Cu}(\mathrm{II})$ complexes of $\mathrm{CN}=5$ the τ parameter has been calculated using the equation $\tau_{5}=(\beta-\alpha) / 60$, where β and α are the two largest angles around the central atom. ${ }^{\mathrm{c}} \rho(\AA)$ is the distance of metal ion from the mean basal plane of square pyramid toward the apical ligand. ${ }^{\mathrm{d}} \mathbf{L}^{1}=2$-formylpyridine-para-nitro-phenyl hydrazone. ${ }^{\mathrm{e}}$ Complexes having keto-O bound copper(II). f $\mathbf{H L}^{\mathbf{2}}=2$-formylpyridine semicarbazone. $\mathrm{g} \quad \mathbf{H L} \mathbf{3}^{\mathbf{3}}=$ 2-formylpyridine-para-chloro-phenyl hydrazone. ${ }^{\mathrm{h}} \mathbf{H L}^{4}=2$-pyridine-carboxaldehyde 4-dimethyl-aminobenzoylhydrazone. ${ }^{\mathrm{i}} \mathbf{H L}^{5}=$ condensation product of 2-acetylpyridine and acetyl hydrazide. ${ }^{j} \mathbf{H L}^{6}=$ condensation product of 2-formylpyridine and acetyl hydrazide. ${ }^{\mathrm{k}}$ $\mathbf{L}^{7}=$ methyl 2-pyridyl ketone semicarbazone. ${ }^{1} \mathbf{L}^{8}=$ 2-benzoylpyridine-3-methoxybenzhydrazone. ${ }^{m} \mathbf{L}^{9}=$ condensation product of adamantane-1-carbohydrazide and 2-acetylpyridine. ${ }^{n} \mathbf{L}^{\mathbf{1 0}}=$ condensation product of adamantane-1-carbohydrazide and di(2-pyridyl) ketone.

Figure 2. ORTEP presentation of the $[\mathrm{CuLCl}] \mathrm{NO}_{3}$ (2). Thermal ellipsoids are drawn at the 30% probability level. Long contact $\mathrm{Cu} \cdots \mathrm{O}$ is represented as a dashed line.

Complex 2 also crystallizes in the monoclinic space group $P 2_{1} / c$. The asymmetric unit of 2 comprises the complex cation $[\mathrm{CuLCl}]^{+}$and $\mathrm{NO}_{3}{ }^{-}$anion (Figure 2). Complexes $\mathbf{1}$ and $\mathbf{2}$ show greater distortion from perfect square planar configuration than complex 4, as indicated by the calculated τ_{4} parameters of 0.17 and 0.19 vs 0.15 (Table 1). Crystal packing of $\mathbf{2}$ is similar to that of 1 and 4. In the crystals of 2 the complex molecules are connected by means of intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds into the layer parallel with the ($\left.\begin{array}{lll}0 & 0 & 1\end{array}\right)$ lattice plain (cf. SI). The adjacent layers are packed via C12-H12A…O4 hydrogen bond to form a three-dimensional supramolecular structure. In complexes 1, 2, 45 and $\mathbf{6}^{45}$ the formation of dimeric units $\quad\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}, \quad\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{NO}_{3}\right)_{2}, \quad\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{ClO}_{4}\right)_{2}$, and $\left[\mathrm{Cu}\left(\mathbf{H L}^{2}\right) \mathrm{Cl}_{2} \mathrm{CuHL}{ }^{2} \mathrm{Cl}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]^{+}$, respectively, is accomplished by linking the metal centers through in-plain coordinated chloride anions which leads to short separations between the closest Cu atoms $(\mathrm{Cu} \cdots \mathrm{Cu}$ is in the range $3.5793(8)-3.902(1) \AA$) in comparison to those observed for $\mathbf{5}, 7$, 9 and 10. In complex $\mathbf{8}$ relatively short $\mathrm{Cu} \cdots \mathrm{Cu}$ distance of $4.023(1) \AA$ is achieved by π-stacking
of the neighboring hydrogen bonded dimers. The other mononuclear $\mathrm{Cu}(\mathrm{II})$ complexes $\mathbf{(5 , 7 , 9}$ and 10) listed in Table 1, show significantly longer $\mathrm{Cu} \cdots \mathrm{Cu}$ separations.

Figure 3. ORTEP presentation of the $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ (3). Thermal ellipsoids are drawn at the 30% probability level. Unlabeled part of the dimeric molecule and one BF^{-}counter anion are generated by symmetry operation $-\mathrm{x},-\mathrm{y}, 1-\mathrm{z}$.

Complex 3 crystallizes in the monoclinic space group $P 2_{1} / n$, with the asymmetric unit comprising one $\mathrm{Cu}(\mathrm{II})$ center, zwitterionic ligand \mathbf{L}, one Cl^{-}ion and $\mathrm{BF}_{4}{ }^{-}$counter anion. The crystal structure displays a centrosymmetric binuclear complex with the crystallographically independent Cu 1 center being coordinated to three donor atoms ($\mathrm{N} 1, \mathrm{~N} 2$ and O 1) of \mathbf{L} and two bridging chlorine atoms (Cl 1 and Cl 1 at $-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$) (Figure 3). The $\mathrm{Cu}(\mathrm{II})$ ion in $\mathbf{3}$ adopts a distorted square pyramidal geometry with an index of trigonality $\left(\tau_{5}\right)^{54}$ of $0.17\left(\tau_{5}=(\beta-\alpha) / 60\right.$, where β and α are the two largest angles around the central atom; τ_{5} is 0 for regular square based pyramidal geometry and 1.00 for regular trigonal bipyramidal geometry). The square base of the $\mathrm{Cu}(\mathrm{II})$ center is formed by pyridyl (N1) and imine (N2) nitrogen atoms and enolate oxygen (O1) of \mathbf{L} and one chloride ion (Cl1), while the apical position is occupied by the
symmetry related chloride ion at $-\mathrm{x},-\mathrm{y},-\mathrm{z}+1$. The chloride ion bridges in an asymmetric (basalapical) fashion so that the in-plane and axial $\mathrm{Cu}-\mathrm{Cl}$ bond lengths are significantly different, $\mathrm{Cu}-\mathrm{Cl1}=2.2408(8) \AA$ and $\mathrm{Cu} 1-\mathrm{Cl1} 1^{\mathrm{ii}}=2.6800(9) \AA($ where ii stands for $-\mathrm{x},-\mathrm{y},-\mathrm{z}+1)$. The asymmetric bridging mode of chlorido ligands has also been established in complexes 11-14 (Table 1). In $\mathbf{3}$ and 11-14, the four-membered $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$ bridging units are constrained to be planar by the presence of the symmetry element with the $\mathrm{Cu} \cdots \mathrm{Cu}$ separations ranging from $3.2926(5)$ to $3.4085(8) \AA$ and $\mathrm{Cu}-\mathrm{Cl}-\mathrm{Cu}$ angles from $83.94(2)$ to $88.33(3)^{\circ}$. The complexes $\mathbf{3}$ and $\mathbf{1 1}$ show the same degree of trigonal distortion of regular square pyramidal geometry. For the other binuclear complexes listed in Table 1, τ_{5} value varies from 0.02 to 0.11 , indicating that these structures are closer to the ideal square pyramidal configuration. The $\mathrm{Cu}(\mathrm{II})$ ions in $\mathbf{3}$ and 11-14 are displaced by distance ρ of $0.1034(2)-0.2468(4) \AA$ from the basal N, N, O, Cl plane towards the apical chlorine atom. In the crystal structure of complex $\mathbf{3}$ the dimeric molecules self-assemble within the layer parallel with the ($\left.\begin{array}{lll}0 & 1 & 0\end{array}\right)$ lattice plane by means of $\pi \cdots \pi$ stacking interactions between the adjacent aromatic rings of L and $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The BF^{-}anions, placed in between the adjacent layers are involved in the intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonds and serve to connect the neighboring layers, as well as, to support stacking of the aromatic rings along the [100] (cf. SI).

3.3 DFT calculations on monomer units

To investigate the nature of bonding of counter-anions in the structures of the complexes 1-4, energy decomposition analysis has been performed, and the results are summarized in Table 2. Note that the inner sphere is taken from corresponding X-ray structures (1-4), and in this section, interaction with counter-anions is emphasized. In the case of $\mathbf{1}$, the geometry of $\mathrm{BF}_{4}{ }^{-}$does not
influence the analysis (Table S7 in SI summarizes the analysis on the structure with optimized F atoms). In the X-ray structure of 4 , the geometry of ClO_{4}^{-}deviates markedly from the expected tetrahedral shape. Optimization of O atoms recovers tetrahedral geometry of $\mathrm{ClO}_{4}{ }^{-}$. Consequently, there are some differences in energy components between the two considered structures, but general trends in the interactions in $4--\mathrm{ClO}_{4}{ }^{-}$are the same. In the following discussion results of the $4--\mathrm{ClO}_{4}^{-}$with optimized O (perchlorate) will be given, while the results on the structures where all atoms are extracted from the crystal structure of $\mathbf{4}$ are reported in SI. (Table S8, Figure S5 in SI)

In all the structures, the most dominant stabilizing term is electrostatic interaction between the fragments. It accounts for approximately $75-85 \%$ of the stabilization. Pauli repulsion is small, because of the large separation between the fragments. Dispersion correction is non-negligible (approximately $4-7 \%$ of the stabilization). The choice of density functional approximation is not affecting the results, with only small numerical differences. The only differences are present in the case of M06L-D3 because M06L in its parameterization already encompasses dispersion. Therefore, in this case, dispersion corrections are negligible. Consequently, Pauli repulsion in M06L-D3 is smaller than with standard GGA functionals.

Table 2. Energy decomposition analysis of $[\mathrm{CuLCl}]^{+}--\mathrm{X}^{-}$in monomer structures $\mathbf{1 , 2 , 3}$ and $\mathbf{4}$ at different levels of theory; energy components are given in $\mathrm{kcal} / \mathrm{mol} ; \Delta \mathrm{q}$ is Hirshfeld charge, transferred between fragments; coordinates of all atoms are extracted from corresponding X-ray structures except in the case of $\mathbf{4}$ where O (perchlorate) atoms are optimized at revPBE/def2TZVP level of theory because of disorder in the X-ray structure.

$[\mathrm{CuLCl}]^{+}-\mathrm{X}^{-}$	Energy Component	BP86-D3	PBE-D3	revPBE-D3	M06L-D3
1-- $\mathrm{BF}_{4}{ }^{-}$	$\mathrm{E}_{\text {elst }}$	-64.15	-64.57	-64.78	-63.72
	$\mathrm{E}_{\text {Pauli }}$	13.00	10.86	14.16	5.34
	$\mathrm{E}_{\text {orb }}$	-13.43	-13.43	-13.47	-14.74
	$\mathrm{E}_{\text {disp }}$	-5.46	-3.22	-5.81	-0.79
	$\mathrm{E}_{\text {int }}$	-70.04	-70.35	-69.91	-73.91
	Δq	0.08	0.07	0.07	0.07
$2--\mathrm{NO}_{3}{ }^{-}$	$\mathrm{E}_{\text {elst }}$	-71.39	-71.73	-71.91	-71.15
	$E_{\text {Pauli }}$	16.34	14.23	17.89	7.44
	$\mathrm{E}_{\text {orb }}$	-18.77	-18.98	-18.73	-18.39
	$\mathrm{E}_{\text {disp }}$	-6.45	-3.84	-7.15	-0.77
	$\mathrm{E}_{\text {int }}$	-80.27	-80.32	-79.89	-82.88
	Δq	0.25	0.21	0.20	0.14
3-- $\mathrm{BF}_{4}{ }^{-}$	$\mathrm{E}_{\text {elst }}$	-66.52	-66.59	-66.61	-66.25
	EPauli	4.47	2.52	4.38	0.42
	$\mathrm{E}_{\text {orb }}$	-8.02	-8.14	-8.22	-8.47
	$\mathrm{E}_{\text {disp }}$	-2.96	-1.9	-3.33	-0.66
	$\mathrm{E}_{\text {int }}$	-73.7	-74.11	-73.77	-74.96
	Δq	0.03	0.03	0.03	0.02
4-- ClO_{4}^{-}	$\mathrm{E}_{\text {elst }}$	-62.16	-62.40	-62.56	-62.02
	$\mathrm{E}_{\text {Pauli }}$	11.72	9.28	12.71	3.68
	$\mathrm{E}_{\text {orb }}$	-12.78	-12.91	-12.81	-13.58
	$\mathrm{E}_{\text {disp }}$	-7.89	-4.55	-8.20	-1.01
	$\mathrm{E}_{\text {int }}$	-71.11	-70.58	-70.86	-72.93
	Δq	0.09	0.09	0.09	-0.08

Figure 4. Electrostatic potential surfaces (at 0.01 au) from -0.13 (red) to +0.13 (blue) a.u. of monomeric units $[\mathrm{CuLCl}]^{+}-\mathrm{X}^{-}$a) $1--\mathrm{BF}^{-}$b) 2--NO3 ${ }^{-}$c) 3-- BF^{-}d) 4--ClO4 ${ }^{-}$.

The significance of the electrostatic stabilization is evident because of the charged fragments and is further illustrated in the electrostatic potential surfaces, Figure 4. The color code in Figure 4 is "Red-White-Blue". It ranges from deep red, indicating negatively charged regions, to deep blue, positively charged regions. The counter-anions carry most of the negative charge. Positive charge is delocalized in $[\mathrm{CuLCl}]^{+}$moiety. The most positive region is $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ group from the side chain of the \mathbf{L}.

a) $\Delta \mathrm{E}=-3.94 \mathrm{kcal} / \mathrm{mol}$

c) $\Delta \mathrm{E}=-3.88 \mathrm{kcal} / \mathrm{mol}$

e) $\Delta \mathrm{E}=-0.91 \mathrm{kcal} / \mathrm{mol}$

g) $\Delta \mathrm{E}=-3.38 \mathrm{kcal} / \mathrm{mol}$

b) $\Delta \mathrm{E}=-0.90 \mathrm{kcal} / \mathrm{mol}$

d) $\Delta \mathrm{E}=-4.84 \mathrm{kcal} / \mathrm{mol}$

f) $\Delta \mathrm{E}=-1.00 \mathrm{kcal} / \mathrm{mol}$

h) $\Delta \mathrm{E}=-1.01 \mathrm{kcal} / \mathrm{mol}$

Figure 5. Most important covalent deformation density channels from NOCV analysis of $[\mathrm{CuLCl}]^{+}-\mathrm{X}^{-}$interaction; a) 1-- BF_{4}^{-}metal-ligand (isovalue 0.001 a.u.) b) $1--\mathrm{BF}_{4}{ }^{-}$hydrogen bond (isovalue 0.0003 a.u.) c) $2--\mathrm{NO}_{3}{ }^{-}$metal-ligand (isovalue 0.001 a.u.) d) $2--\mathrm{NO}_{3}{ }^{-}$hydrogen bond (isovalue 0.0003 a.u.) e) and f) $3--\mathrm{BF}_{4}{ }^{-}$hydrogen bond (isovalue $0.0002 \mathrm{a} . \mathrm{u}$.) g) 4-- $\mathrm{ClO}_{4}{ }^{-}$ metal-ligand (isovalue 0.001 a.u.) h) $4--\mathrm{ClO}_{4}{ }^{-}$hydrogen bond (isovalue 0.0003 a.u.). Red/blue color represent electron outflow/inflow.

The preceding analysis shows clearly a prominent role of electrostatics in the interaction between $[\mathrm{CuLCl}]^{+}$and counter-anions. In the case of $\mathbf{1}, \mathbf{3}$, and $\mathbf{4}$ this is additionally confirmed with a small charge transfer, $\Delta \mathrm{q}$ in Table 2, between the fragments. However, in 2, the charge transfer is non-negligible, Table 2 . Furthermore, $\mathrm{E}_{\text {orb }}$, that often indicates covalency, ${ }^{55}$ in all four cases, contributes between $10-20 \%$ to the stabilization. Nevertheless, $\mathrm{E}_{\text {orb }}$ incorporates both the effects of covalency (charge transfer between the fragments) and polarization. To clarify the contribution of sole covalency, NOCV analysis has been performed. The most important density deformation channels related to the covalency are depicted in Figure 5. Two types of covalent interactions are found. The first one is metal-ligand covalency, i.e. ligand-to-metal charge transfer present in $\mathbf{1 , 2}$ and $\mathbf{4}$. The second type of covalent bonding is found in all structures and is a covalent part of the hydrogen bonding between counter-anion and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ group. In all the molecules, covalency is of minor importance, and polarization, i.e. electron density redistribution on one fragment due to the presence of another one is dominating to the $\mathrm{E}_{\text {orb }}$.

Detailed noncovalent interactions present in these systems are shown in Figure 6. NCI plots show different interactions as distinctly colored and shaped regions. Strong attractive interactions are blue, weak attractive interactions and van der Waals interactions are green, and steric repulsion is red. Localized interactions are disk-shaped, while delocalized interactions are depicted as diffused surfaces. In all four molecules, interactions in $[\mathrm{CuLCl}]^{+}$fragments are identified: red disks in the middle of the two chelate rings, and the middle of the pyridine ring indicate ring-strain; weak intramolecular hydrogen bonds between Cl^{-}and pyridine CH , and between O1 and methyl group in $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ group from the side chain of the L , are identified as small green disks. Electrostatic interactions between counter-anions and $\mathrm{Cu}(\mathrm{II})$ in $\mathbf{1 , 2}$ and $\mathbf{4}$ are shown as blue-green disks. In $\mathbf{3} \mathrm{BF}_{4}^{-}$and \mathbf{L} are connected by hydrogen bonds (interactions
between $\mathrm{BF}_{4}{ }^{-}$and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ and between $\mathrm{BF}_{4}{ }^{-}$and C 7 H$)$. Hydrogen bonding between counteranions and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ is present also in $\mathbf{1 , 2}$ and 4. In these three molecules, there are also van der Waals interactions between anions and chelate $\mathrm{Cu}-\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{O}$ rings.

a)

c)

b)

d)

Figure 6. Three dimensional NCI plots for a) $1--\mathrm{BF}_{4}{ }^{-}$b) $\mathbf{2}--\mathrm{NO}_{3}{ }^{-}$c) $\mathbf{3}--\mathrm{BF}_{4}{ }^{-}$d) $4--\mathrm{ClO}_{4}{ }^{-}$. Isosurfaces (isovalue $\mathrm{s}=0.4$) are colored in range $-0.03<\operatorname{sign}\left(\lambda_{2}\right)^{*} \rho<0.02$ ("Blue-Green-Red" color scheme). Bond paths, connecting bond critical points (yellow spheres) and nuclear critical points (coinciding with atoms) are shown as orange lines.

Intermolecular interactions are also seen in IGM plots, Figure 7. In $\mathbf{1}, \mathrm{BF}_{4}^{-}$is bonded electrostatically with $\mathrm{Cu}(\mathrm{II})$, there is a hydrogen bonding between $\mathrm{BF}_{4}{ }^{-}$and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ and van der Waals interaction between $\mathrm{BF}_{4}{ }^{-}$and N 3 of the $\mathrm{Cu}-\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{O}$ chelate ring. In 2 there are a strong electrostatic $\mathrm{NO}_{3}{ }^{-}---\mathrm{Cu}(\mathrm{II})$ interaction, hydrogen bonding between $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$ group, and evident anion- π van der Waals interactions between $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{Cu}-\mathrm{N}-\mathrm{N}-\mathrm{C}-\mathrm{O}$ chelate ring. The situation in $\mathbf{4}$ is equivalent. In $\mathbf{3}$ there are two non-equivalent regions of hydrogen bonding between $\mathrm{BF}_{4}{ }^{-}$and $[\mathrm{CuLCl}]^{+}$fragment.

Figure 7. IGM plots for a) $1--\mathrm{BF}_{4}{ }^{-}$b) $\mathbf{2}-\mathrm{NO}_{3}{ }^{-}$c) $\mathbf{3}--\mathrm{BF}_{4}{ }^{-}$d) $4--\mathrm{ClO}_{4}{ }^{-}$; isosurfaces of $\delta \mathrm{g}^{\text {inter }}$ (isovalue 0.004) colored by $\operatorname{sign}\left(\lambda_{2}\right)^{*} \rho$ (range -0.05 to 0.05 , "Blue-Green-Red" color scheme). Interfragment bond paths are shown as orange lines.

All the interactions are also identified in the framework of Bader's QTAIM method, with the presence of corresponding critical points and bond paths (Figure 6 and 7 and Figure S 7 in SI). The topological properties of the electron density in bond critical points (Table S 9 in SI) confirms ionic nature of bonding between counter-anions and $\mathrm{Cu}(\mathrm{II})$, as well as, additional weak hydrogen bonding between counter-anions and $[\mathrm{CuLCl}]^{+}$fragment. IGM plots of $\delta \mathrm{g}^{\text {inter }}$ around $\mathrm{Cu}(\mathrm{II})$ ion in 1, 2 and 4 (Figure S 6 in SI) show distinction between metal-ligand in-plane bonds $(\mathrm{Cu}-\mathrm{N} 1, \mathrm{Cu}-\mathrm{N} 2, \mathrm{Cu}-\mathrm{O} 1$ and $\mathrm{Cu}-\mathrm{Cl} 1)$ and $\mathrm{Cu}(\mathrm{II})$-anion bonds. Metal-ligand in-plane bonds are typical coordination bonds, while bonding with anions is obviously weaker but definitively present.

All these results, taking into account both covalent and all noncovalent interactions, suggests that in structures $\mathbf{1 , 2}$ and $\mathbf{4}$ anions are weakly coordinatively bound to $\mathrm{Cu}(\mathrm{II})$ with high ionic character, while in $\mathbf{3}$ hydrogen bonding is responsible for the position of counter-anion.

3.4 DFT study of binuclear complexes

As indicated before, regardless of reaction conditions (additional Experimental details are in SI), only complex $\mathbf{3}$ has been obtained as binuclear species. However, in 1, 2 and $\mathbf{4}$ monomeric units in the crystal are placed in a way that two $\mathrm{Cu}(\mathrm{II})$ ions are on somewhat shorter distance than if the units are completely separated. Therefore, we performed DFT calculations to analyze interactions between units in all four complexes.

Energy decomposition analysis of the formation of dimeric structures from monomer complexes is given in Table 3. Geometries of BF_{4}^{-}and ClO_{4}^{-}does not influence the analysis (Table S10 in SI summarizes the analysis on the structure 1--1 with optimized F atoms, and

Table S11 of the analysis of the structure 4-4 with all atoms taken from the X-ray structure of 4).

Table 3. Energy decomposition analysis of $[\mathrm{CuLCl}]--[\mathrm{CuLCl}]$ dimeric structures of $\mathbf{1 , 2 , 3}$ and 4 at different levels of theory; energy components are given in $\mathrm{kcal} / \mathrm{mol} ; \Delta \mathrm{q}$ is Hirshfeld charge, transferred between fragments; coordinates of all atoms are extracted from corresponding X-ray structures except in the case of $\mathbf{4}$ where O (perchlorate) atoms are optimized at revPBE/def2TZVP level of theory because of disorder in the X-ray structure.

$\begin{aligned} & \text { [CuLClX]-- } \\ & \text { [CuLClX] } \end{aligned}$	Energy Component	BP86-D3	PBE-D3	revPBE-D3	M06L-D3
$\left(\mathrm{BF}_{4}^{-}\right) \mathbf{1 - - 1}\left(\mathrm{BF}_{4}{ }^{-}\right)$	$\mathrm{E}_{\text {elst }}$	-20.03	-20.55	-20.46	-18.07
	$\mathrm{E}_{\text {Pauli }}$	32.34	28.67	35.04	13.64
	Eorb	-15.49	-15.55	-15.21	-18.21
	$\mathrm{E}_{\text {disp }}$	-21.5	-12.11	-21.66	-2.93
	$\mathrm{E}_{\text {int }}$	-24.67	-19.54	-22.29	-25.57
	$\Delta \mathrm{q}$	0.00	0.00	0.00	0.00
$\begin{gathered} \left(\mathrm{NO}_{3}^{-}\right) \mathbf{2 - -} \\ 2\left(\mathrm{NO}_{3}^{-}\right) \end{gathered}$	$\mathrm{E}_{\text {elst }}$	-9.34	-9.65	-9.69	-8.59
	$\mathrm{E}_{\text {Pauli }}$	19.70	15.90	21.69	2.94
	$\mathrm{E}_{\text {orb }}$	-11.24	-11.30	-11.12	-14.76
	$\mathrm{E}_{\text {disp }}$	-20.77	-11.71	-20.63	-2.93
	$\mathrm{E}_{\text {int }}$	-21.65	-16.76	-19.75	-23.34
	Δq	0.00	0.00	0.00	0.00
3	Eelst	-44.26	-44.43	-44.03	-42.02
	$\mathrm{E}_{\text {Pauli }}$	56.91	54.49	59.91	41.63
	Eorb	-24.37	-24.36	-23.86	-26.71
	$\mathrm{E}_{\text {disp }}$	-15.62	-8.53	-15.68	-1.88
	$\mathrm{E}_{\text {int }}$	-27.34	-22.84	-23.66	-28.98
	$\Delta \mathrm{q}$	0.00	0.00	0.00	0.00
$\begin{aligned} & \left(\mathrm{ClO}_{4}^{-}\right) 4-- \\ & 4\left(\mathrm{ClO}_{4}^{-}\right) \end{aligned}$	$\mathrm{E}_{\text {elst }}$	-21.78	-22.21	-22.11	-20.04
	$\mathrm{E}_{\text {Pauli }}$	33.23	29.73	35.67	15.74
	$\mathrm{E}_{\text {orb }}$	-16.19	-16.25	-15.92	-18.93
	$\mathrm{E}_{\text {disp }}$	-20.49	-11.55	-20.50	-2.93
	$\mathrm{E}_{\text {int }}$	-25.22	-20.28	-22.85	-26.16
	$\Delta \mathrm{q}$	0.00	0.00	0.00	0.00

From first sight, one can see a prominent role of the dispersion in interaction energies. As in the case of monomers, different density functional approximations give consistent results. The only exception is M06L-D3, where a dispersion, contained in the functional form, clearly lowers $\mathrm{E}_{\text {Pauli }}$ while D3 part is only a further correction to the energy. Electrostatic attraction is bringing
two neutral monomers together in parallel displaced manner, (Figure S8 in SI). Covalency seems negligible in all four analyzed model binuclear structures, as the net charge transfer between two monomers, $\Delta \mathrm{q}$, Table 3, is zero. NOCV analysis, Fig. 8, establishes that only in 3, covalent σ bond between $\mathrm{Cu}^{\mathrm{Cl}}{ }^{\mathrm{ii}}$ brings considerable stabilization (it brings around 12% of the stabilization).

a) $\Delta \mathrm{E}=-4.37 \mathrm{kcal} / \mathrm{mol}$

c) $\Delta \mathrm{E}=-10.34 \mathrm{kcal} / \mathrm{mol}$

b) $\Delta \mathrm{E}=-2.44 \mathrm{kcal} / \mathrm{mol}$

d) $\Delta \mathrm{E}=-3.37 \mathrm{kcal} / \mathrm{mol}$

Figure 8. Most important covalent deformation density channels from NOCV analysis of [CuLClX]--[CuLClX] interactions; a)1--1 (isovalue 0.001 a.u.) b) 2--2 (isovalue 0.0002 a.u.) c) 3 (isovalue 0.001 a.u.) d) 4--4 (isovalue 0.0008 a.u). Red/blue color represent electron outflow/inflow.

Table 4 Influence of various dispersion corrections (Grimme's D3, Grimme's D4, non-local density dependent non-self-consistent (NL) and non-local density-dependent self-consistent (SCNL) fuctionals) to the revPBE/ZORA-def2-TZVP interaction energies of [CuLClX]-$[\mathrm{CuLClX}]$ in dimer structures of $\mathbf{1 , 2 , 3}$ and 4. Comparison with results of revPBE-D3/TZP results is also given. All the energies are given in $\mathrm{kcal} / \mathrm{mol}$.

CuLCIX]-- $[\mathrm{CuLClX}]$	Energy	revPBE ${ }^{\text {a }}$	$\begin{aligned} & \text { revPBE- } \\ & \text { D3 }^{\text {a }} \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} \text { revPBE- } \\ \mathrm{D}^{\mathrm{a}} \end{array} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { revPBE- } \\ & \mathrm{NL}^{\mathrm{a}} \\ & \hline \end{aligned}$	revPBESCNL ${ }^{\text {a }}$	revPBE ${ }^{\text {b,c }}$ revPBE-D3 ${ }^{\text {b,c }}$	
1-1	$\mathrm{E}_{\text {int }}$	0.28	-21.38	-21.13	-21.03	-21.50	$\begin{gathered} -0.63 \\ (0.74) \end{gathered}$	$\begin{gathered} -22.29 \\ (-20.92) \end{gathered}$
	$\mathrm{E}_{\text {disp }}$	0.00	-21.66	-21.41	-21.32	-21.78	0.00	-21.66
1-1 (F-opt) ${ }^{\text {d }}$	$\mathrm{E}_{\text {int }}$	0.13	-21.53	-21.25	-21.19	-21.66	$\begin{gathered} -0.75 \\ (0.64) \end{gathered}$	$\begin{gathered} -22.41 \\ (-21.02) \end{gathered}$
	$\mathrm{E}_{\text {disp }}$	0.00	-21.66	-21.38	-21.32	-21.79	0.00	-21.66
2-2	$\mathrm{E}_{\text {int }}$	2.23	-18.40	-17.57	-17.42	-17.89	$\begin{gathered} \hline 0.88 \\ (2.99) \end{gathered}$	$\begin{gathered} \hline-19.75 \\ (-17.64) \end{gathered}$
	$\mathrm{E}_{\text {disp }}$	0.00	-20.63	-19.80	-19.65	-20.12	0.00	-20.63
3	$\mathrm{E}_{\text {int }}$	-8.15	-23.84	-25.50	-25.29	-25.58	$\begin{gathered} -7.98 \\ (-6.64) \end{gathered}$	$\begin{gathered} -23.66 \\ (-22.33) \end{gathered}$
	$\mathrm{E}_{\text {disp }}$	0.00	-15.68	-17.35	-17.14	-17.43	0.00	-15.68
4-4	$\mathrm{E}_{\text {int }}$	1.50	-19.00	-18.98	-18.73	-19.18	$\begin{gathered} 1.04 \\ (2.24) \end{gathered}$	$\begin{gathered} -19.47 \\ (-18.06) \end{gathered}$
	$\mathrm{E}_{\text {disp }}$	0.00	-20.50	-20.48	-20.32	-20.68	0.00	-20.50
4-4 (O-opt) ${ }^{\text {e }}$	$\mathrm{E}_{\text {int }}$	-1.22	-21.72	-21.56	-21.32	-21.76	$\begin{gathered} -2.35 \\ (-0.67) \end{gathered}$	$\begin{aligned} & -22.85 \\ & (21.17) \end{aligned}$
	$\mathrm{E}_{\text {disp }}$	0.00	-20.50	-20.34	-20.10	-20.34	0.00	-20.50

${ }^{\mathrm{a}}$ Calculations with ORCA program package. ${ }^{\mathrm{b}}$ Calculations with ADF program package. ${ }^{\mathrm{c} R e s u l t s ~ i n ~}$ brackets are relative to unrestricted monomers. ${ }^{\mathrm{d}} \mathrm{F}$ atoms of BF_{4}^{-}optimized. ${ }^{\circ} \mathrm{O}$ atoms of ClO_{4}^{-} optimized.

To further understand the importance of dispersion, the interaction energies were also calculated with ORCA program package using revPBE-D3/ZORA-def2-TZVP level of theory, as well as the Grimme's fourth generation dispersion energy correction (revPBE-D4 ${ }^{56}$) and the non-self-consistent and self-consistent non-local density-dependent dispersion functional (revPBENL and revPBE-SCNL, ${ }^{43}$ respectively). In Table 4, the results at revPBE/TZP level of theory from Table 3 are also summarized, where the $\mathrm{E}_{\text {int }}$ is given both relative to the quasi-restricted
fragments (as done in the energy decomposition analysis, Table 3) and relative to the electronically fully relaxed unrestricted monomers. The difference is around $1 \mathrm{kcal} / \mathrm{mol}$. All the results in Table 4 are consistent. revPBE results here are considered as "dispersion-free". ${ }^{57} \mathrm{We}$ see that without dispersion, the interaction energy of two monomer units in the dimer of $\mathbf{2}$ are positive. In the case of dimers of $\mathbf{1}$ and $\mathbf{4}$, interaction energies are close to zero or positive (in the range approximately from -2 to $+1 \mathrm{kcal} / \mathrm{mol}$). Only in the case of $\mathbf{3}$, interaction energy, even without dispersion, is negative.

Interestingly, in all four systems, interaction energies between monomers are similar (from -17 $\mathrm{kcal} / \mathrm{mol}$ to $-25 \mathrm{kcal} / \mathrm{mol}$). However, the nature of the interactions is different. Energy decomposition analysis (Table 3), coupled with careful NOCV analysis (Figure 8) and comparison of dispersion-corrected with "dispersion-free" results (Table 4), allow estimation of various contributions to the interaction energies, namely contribution of electrostatics, covalency, polarization and dispersion. In the case of $\mathbf{3}$, most of the stabilization comes from the electrostatics (53\% of stabilization). Covalency brings around 12% of the stabilization, polarization approximately 16% and dispersion around 18%. In the case of dimers of $\mathbf{1}$ and 4 electrostatics and dispersion are of similar importance (both around 35% of the stabilization). Polarization contributes around 20% to the stabilization and covalency is of minor importance (around 5%). Dimer of $\mathbf{2}$ is mainly stabilized by dispersion interactions (50% of stabilization), electrostatics and polarization provide both around 22% of stabilization, and covalency is of minor importance (5\% of stabilization).

a)

c)

b)

d)

Figure 9. Three dimensional NCI plots for a) 1--1 b) 2--2 c) $\mathbf{3}$ d) 4--4. Isosurfaces (isovalue $\mathrm{s}=0.4$) are colored in range $-0.03<\operatorname{sign}(\lambda 2) \rho<0.02$ ("Blue-Green-Red" color scheme). Interfragment bond paths, connecting bond critical points (yellow spheres) and nuclear critical (coinciding with atoms) points are shown as orange lines.

Detailed noncovalent interactions between monomers are depicted in Figure 9 (NCI plots) and Figure 10 (IGM plots). Strong $\mathrm{Cu}-\mathrm{Cl}^{\text {ii }}$ interactions are apparent in $\mathbf{3}$ - strong blue disks in NCI plot and blue region in IGM plot, together with orange-red area in NCI plot, indicating strain in formed $\mathrm{Cu}-\mathrm{Cl}^{\mathrm{ii}-} \mathrm{Cu}^{\mathrm{ii}-\mathrm{Cl}}$ ring. These $\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ interactions are weaker in $\mathbf{1}$ and $\mathbf{4}$, revealed in NCI and IGM plots by greener color. In $2 \mathrm{Cu}-\mathrm{Cl}^{i}$ interactions are of the van der Waals type (diffuse green surface). IGM plots showing only interactions around $\mathrm{Cu}(\mathrm{II})$ (Figure S 9 in SI) reveal that in $3 \mathrm{Cl}^{-}$acts as bridging ligand and confirms that in $2 \mathrm{Cu}-\mathrm{Cl}^{i}$ interactions are of the van der Waals type. $\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}$ interactions in 1 and 4 are in between these two. Additional attractive interactions are found in all four dimers. Two types of van der Waals interactions are encountered. The first one is between pyridine on one monomer and $\mathrm{N}_{\left(\mathrm{CH}_{3}\right)_{3} \text { group of the other }}$ monomer. The second is between pyridine and O1. Topological properties of the electron density (Figure S10, Table S12 in SI) additionally confirm these types of interactions between monomer units.

Results of the energy decomposition analysis and analysis of the non-covalent interactions assert that only $\mathbf{3}$ has clear dimer structure, in accordance with experimental findings. In the other three cases, two monomers mainly interact via van der Waals attractive forces, explaining shortest $\mathrm{Cu}-\mathrm{Cu}$ contact in $\mathbf{3}$.

Figure 10. Isosurfaces of $\delta g^{\text {inter }}($ isovalue 0.004$)$ coloured by $\operatorname{sign}(\lambda 2) * \rho$ (range -0.05 to 0.05 , "Blue-Green-Red" color scheme) for a) 1--1 b) 2--2 c) 3 d) 4--4. Interfragment bond paths are shown as orange lines.

4. CONCLUSIONS

The complexes $[\mathrm{CuLCl}] \mathrm{BF}_{4},[\mathrm{CuLCl}] \mathrm{NO}_{3}$ and $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}$ have been synthesized and characterized by X-ray crystallographic analysis. The structures of $[\mathrm{CuLCl}] \mathrm{BF}_{4}$ and $[\mathrm{CuLCl}] \mathrm{NO}_{3}$ are analogue to the previously reported $[\mathrm{CuLCl}] \mathrm{ClO}_{4}$. Geometries around $\mathrm{Cu}(\mathrm{II})$ ion in mononuclear complexes can be described either as distorted square planar or as distorted square pyramidal. Coordination around $\mathrm{Cu}(\mathrm{II})$ depends on the nature of bonding of $\mathrm{BF}_{4}^{-}, \mathrm{NO}_{3}{ }^{-}$ and ClO_{4}^{-}to the $\mathrm{Cu}(\mathrm{II})$ ion. In other words, coordination geometry will depend on whether the $\mathrm{BF}_{4}^{-}, \mathrm{NO}_{3}{ }^{-}$and ClO_{4}^{-}are considered as counter-anions or ligands. DFT calculations revealed that in all three mononuclear complexes, they are weakly coordinatively bound to $\mathrm{Cu}(\mathrm{II})$, with high ionic character. Hence, their structural formulas could also be written as: [$\mathrm{CuLClBF}_{4}$], $[\mathrm{CuLClNO} 3]$ and $\left[\mathrm{CuLClClO}_{4}\right]$. It is noteworthy to mention that these ligands are weakly bonded, and in solution, they might dissociate, hence, e.g. conductivity measurements in solution will not give an accurate picture of what the structures would be in crystals. In binuclear $\left[\mathrm{Cu}_{2} \mathbf{L}_{2} \mathrm{Cl}_{2}\right]\left(\mathrm{BF}_{4}\right)_{2}, \mathrm{BF}_{4}^{-}$is clearly a counter-anion, and its position is a consequence of hydrogen bonding with \mathbf{L}. In accordance with the experimental findings, DFT calculations establish that only complex $\mathbf{3}$ exist as binuclear species, where two $\mathrm{Cu}(\mathrm{II})$ ions are connected via bridging Cl^{-} ions. Complexes 1, $\mathbf{2}$ and $\mathbf{4}$ form structures where units are held together via attractive van der Waals forces.

The present study shows that ambiguity about actual coordination number in the real crystal structures of coordination compounds can be overcome with the aid of DFT based calculations, like analysis of interaction energy components, NCI and IGM plots, and QTAIM analysis.

ASSOCIATED CONTENT

Abstract

Supporting Information. Supporting information for X-ray crystallography; Additional experimental details for the synthesis of $\mathbf{1}$ and 3; Additional computational results for mononuclear structures; Additional computational results for dimer structures.

AUTHOR INFORMATION
\section*{Corresponding Authors}
*radanovic@chem.bg.ac.rs
*matijaz@chem.bg.ac.rs

Author Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grants OI 172035 and OI 172055) and the Slovenian Research Agency (P-0175).

REFERENCES

(1) Díaz-Torres, R.; Alvarez, S. Coordinating ability of anions and solvents towards transition metals and lanthanides. Dalt. Trans. 2011, 40 (40), 10742 DOI: $10.1039 / \mathrm{c} 1 \mathrm{dt1} 1000 \mathrm{~d}$.
(2) Rosenthal, M. R. The myth of the non-coordinating anion. J. Chem. Educ. 1973, 50 (5), 331 DOI: 10.1021/ed050p331.
(3) Halcrow, M. A. Jahn-Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials. Chem. Soc. Rev. 2013, 42 (4), 1784-1795 DOI: 10.1039/C2CS35253B.
(4) Gruden-Pavlović, M.; Zlatar, M.; Schläpfer, C.-W.; Daul, C. DFT study of the Jahn-Teller effect in $\mathrm{Cu}(\mathrm{II})$ chelate complexes. J. Mol. Struct. THEOCHEM 2010, 954 (1-3), 80-85 DOI: 10.1016/j.theochem.2010.03.031.
(5) Milenković, M. R.; Papastavrou, A. T.; Radanović, D.; Pevec, A.; Jagličić, Z.; Zlatar, M.; Gruden, M.; Vougioukalakis, G. C.; Turel, I.; Anđelković, K.; et al. Highly-efficient Narylation of imidazole catalyzed by $\mathrm{Cu}(\mathrm{II})$ complexes with quaternary ammoniumfunctionalized 2-acetylpyridine acylhydrazone. Polyhedron 2019, 165, 22-30 DOI: 10.1016/J.POLY.2019.03.001.
(6) Ziegler, T.; Rauk, A. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chim. Acta 1977, 46 (1), 1-10 DOI: 10.1007/BF02401406.
(7) Ziegler, T.; Rauk, A. A theoretical study of the ethylene-metal bond in complexes between copper(1+), silver(1+), gold(1+), platinum(0) or platinum(2+) and ethylene, based on the Hartree-Fock-Slater transition-state method. Inorg. Chem. 1979, 18 (6),

1558-1565 DOI: 10.1021/ic50196a034.
(8) Bickelhaupt, F. M.; Baerends, E. J. Kohn-Sham Density Functional Theory: Predicting and Understanding Chemistry. In Reviews in computational chemistry; Lipkowitz, K. B., Boyd, D. B., Eds.; Wiley-VCH Verlag, 2000; Vol. 15, pp 1-86.
(9) Johnson, E. R.; Keinan, S.; Mori-Sánchez, P.; Contreras-García, J.; Cohen, A. J.; Yang, W. Revealing Noncovalent Interactions. J. Am. Chem. Soc. 2010, 132 (18), 6498-6506 DOI: 10.1021/ja100936w.
(10) Lefebvre, C.; Rubez, G.; Khartabil, H.; Boisson, J.-C.; Contreras-García, J.; Hénon, E. Accurately extracting the signature of intermolecular interactions present in the NCI plot of the reduced density gradient versus electron density. Phys. Chem. Chem. Phys. 2017, 19 (27), 17928-17936 DOI: 10.1039/C7CP02110K.
(11) Lefebvre, C.; Khartabil, H.; Boisson, J.-C.; Contreras-García, J.; Piquemal, J.-P.; Hénon, E. The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations. ChemPhysChem 2018, 19 (6), 724-735 DOI: $10.1002 /$ cphc. 201701325.
(12) Bader, R. F. W. A quantum theory of molecular structure and its applications. Chem. Rev. 1991, 91 (5), 893-928 DOI: 10.1021/cr00005a013.
(13) Oxford Diffraction. Oxford Diffraction, CrysAlis PRO, Oxford Diffraction Ltd., Yarnton, England, https://www.rigaku.com/en/products/smc/crysalis (accessed May 15, 2019).
(14) Altomare, A.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; IUCr. Completion and
refinement of crystal structures with SIR 92. J. Appl. Crystallogr. 1993, 26 (3), 343-350 DOI: 10.1107/S0021889892010331.
(15) Sheldrick, G. M.; IUCr. A short history of SHELX. Acta Crystallogr. Sect. A Found. Crystallogr. 2008, 64 (1), 112-122 DOI: 10.1107/S0108767307043930.
(16) Sheldrick, G. M.; IUCr. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3-8 DOI: 10.1107/S2053229614024218.
(17) Farrugia, L. J.; IUCr. WinGX and ORTEP for Windows : an update. J. Appl. Crystallogr. 2012, 45 (4), 849-854 DOI: 10.1107/S0021889812029111.
(18) Macrae, C. F.; Edgington, P. R.; McCabe, P.; Pidcock, E.; Shields, G. P.; Taylor, R.; Towler, M.; van de Streek, J.; IUCr. Mercury : visualization and analysis of crystal structures. J. Appl. Crystallogr. 2006, 39 (3), 453-457 DOI: 10.1107/S002188980600731X.
(19) Neese, F. The ORCA program system. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2012, 2 (1), 73-78 DOI: $10.1002 / \mathrm{wcms} .81$.
(20) Neese, F. Software update: the ORCA program system, version 4.0. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2018, 8 (1), e1327 DOI: 10.1002/wcms. 1327.
(21) Zhang, Y.; Yang, W. Comment on "Generalized Gradient Approximation Made Simple." Phys. Rev. Lett. 1998, 80 (4), 890-890 DOI: 10.1103/PhysRevLett.80.890.
(22) Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements

H-Pu. J. Chem. Phys. 2010, 132 (15), 154104 DOI: 10.1063/1.3382344.
(23) Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32 (7), 1456-1465 DOI: 10.1002/jcc. 21759 .
(24) Lenthe, E. van; Baerends, E. J.; Snijders, J. G. Relativistic regular two-component Hamiltonians. J. Chem. Phys. 1993, 99 (6), 4597-4610 DOI: 10.1063/1.466059.
(25) van Lenthe, E.; Baerends, E. J.; Snijders, J. G. Relativistic total energy using regular approximations. J. Chem. Phys. 1994, 101 (11), 9783-9792 DOI: 10.1063/1.467943.
(26) Wüllen, C. van. Molecular density functional calculations in the regular relativistic approximation: Method, application to coinage metal diatomics, hydrides, fluorides and chlorides, and comparison with first-order relativistic calculations. J. Chem. Phys. 1998, 109 (2), 392-399 DOI: 10.1063/1.476576.
(27) Pantazis, D. A.; Chen, X.-Y.; Landis, C. R.; Neese, F. All-Electron Scalar Relativistic Basis Sets for Third-Row Transition Metal Atoms. J. Chem. Theory Comput. 2008, 4 (6), 908-919 DOI: $10.1021 / \mathrm{ct} 800047 \mathrm{t}$.
(28) Pantazis, D. A.; Neese, F. All-Electron Scalar Relativistic Basis Sets for the Lanthanides. J. Chem. Theory Comput. 2009, 5 (9), 2229-2238 DOI: 10.1021/ct900090f.
(29) Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8 (9), 1057-1065 DOI: 10.1039/b515623h.
(30) Baerends, E. J.; Ziegler, T.; Atkins, A. J.; Autschbach, J.; Bashford, D.; Baseggio, O.;

Bérces, A.; Bickelhaupt, F. M.; Bo, C.; Boerritger, P. M.; et al. ADF2017, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, https://www.scm.com.
(31) Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerends, E. J. Towards an order- N DFT method. Theor. Chem. Accounts Theory, Comput. Model. (Theoretica Chim. Acta) 1998, 99 (6), 391-403 DOI: 10.1007/s002140050353.
(32) te Velde, G.; Bickelhaupt, F. M.; van Gisbergen, S. J. A.; Guerra, C. F.; Baerends, E. J.; Snijders, J. G.; Ziegler, T.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Snijders, J. G.; et al. Chemistry with ADF. J. Comput. Chem. 2001, 22 (9), 931-967 DOI: 10.1002/jcc.1056.
(33) Nalewajski, R. F.; Mrozek, J.; Mazur, G. Quantum chemical valence indices from the onedeterminantal difference approach. Can. J. Chem. 1996, 74 (6), 1121-1130 DOI: 10.1139/v96-126.
(34) Mitoraj, M. P.; Michalak, A.; Ziegler, T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5 (4), 962-975 DOI: 10.1021/ct800503d.
(35) Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 1977, 44 (2), 129-138 DOI: 10.1007/BF00549096.
(36) Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 1988, 38 (6), 3098-3100 DOI: 10.1103/PhysRevA.38.3098.
(37) Perdew, J. P. Density-functional approximation for the correlation energy of the
inhomogeneous electron gas. Phys. Rev. B 1986, 33 (12), 8822-8824 DOI: 10.1103/PhysRevB.33.8822.
(38) Perdew, J. P. Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B 1986, 34 (10), 7406-7406 DOI: 10.1103/PhysRevB.34.7406.
(39) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77 (18), 3865-3868 DOI: 10.1103/PhysRevLett.77.3865.
(40) Zhao, Y.; Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 2006, 125 (19), 194101 DOI: 10.1063/1.2370993.
(41) Zhao, Y.; Truhlar, D. G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2008, 120 (1-3), 215-241 DOI: 10.1007/s00214-007-0310-x.
(42) Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33 (5), 580-592 DOI: 10.1002/jcc. 22885.
(43) Hujo, W.; Grimme, S. Performance of the van der Waals Density Functional VV10 and (hybrid)GGA Variants for Thermochemistry and Noncovalent Interactions. J. Chem. Theory Comput. 2011, 7 (12), 3866-3871 DOI: 10.1021/ct200644w.
(44) Vydrov, O. A.; Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys. 2010, 133 (24), 244103 DOI: 10.1063/1.3521275.
(45) Chumakov, Y. M.; Tsapkov, V. I.; Antosyak, B. Y.; Bairac, N. N.; Simonov, Y. A.; Bocelli, G.; Pahontu, E.; Gulea, A. P. Crystal structures of copper(II) nitrate, copper(II) chloride, and copper(II) perchlorate complexes with 2-formylpyridine semicarbazone. Crystallogr. Reports 2009, 54 (3), 455-463 DOI: 10.1134/S1063774509030146.
(46) Sangeetha, N. R.; Pal, S.; Anson, C. E.; Powell, A. K.; Pal, S. A one-dimensional assembly of copper(II) polyhedra via dual use of hydrogen-bonding and $\pi-\pi$ interaction. Inorg. Chem. Commun. 2000, 3 (8), 415-419 DOI: 10.1016/S1387-7003(00)00103-9.
(47) Despaigne, A. A. R.; Silva, J. G. da; Carmo, A. C. M. do; Sives, F.; Piro, O. E.; Castellano, E. E.; Beraldo, H. Copper(II) and zinc(II) complexes with 2-formylpyridinederived hydrazones. Polyhedron 2009, 28 (17), 3797-3803 DOI: 10.1016/J.POLY.2009.07.059.
(48) Datta, A.; Das, K.; Jhou, Y.-M.; Huang, J.-H.; Lee, H. M.; IUCr. Dichlorido \{ N '-[1-(2-pyridin-2-yl)ethylidene]acetohydrazide-к $2 \mathrm{~N}^{\prime}$, O \} copper(II). Acta Crystallogr. Sect. E Struct. Reports Online 2011, 67 (1), m123-m123 DOI: 10.1107/S1600536810053195.
(49) Datta, A.; Sheu, S.-C.; Liu, P.-H.; Huang, J.-H.; IUCr. Dichlorido\{ N '-[(pyridin-2-yl)methylidene-к N]acetohydrazide-к $2 \mathrm{~N}^{\prime}$, O \}copper(II). Acta Crystallogr. Sect. E Struct. Reports Online 2011, 67 (12), m1852-m1852 DOI: 10.1107/S1600536811049671.
(50) Shaabani, B.; Khandar, A. A.; Mahmoudi, F.; Maestro, M. A.; Balula, S. S.; Cunha-Silva, L. Novel binuclear $\mathrm{Cu}(\mathrm{II})$ complexes combining a semicarbazone Schiff base with distinct
bridging ligands: Structure and antimicrobial activity. Polyhedron 2013, 57, 118-126 DOI: 10.1016/J.POLY.2013.04.016.
(51) Fousiamol, M. M.; Sithambaresan, M.; Smolenski, V. A.; Jasinski, J. P.; Kurup, M. R. P. Halogen/azide bridged box dimer copper(II) complexes of 2-benzoylpyridine-3methoxybenzhydrazone: Structural and spectral studies. Polyhedron 2018, 141, 60-68 DOI: 10.1016/J.POLY.2017.11.024.
(52) Leovac, V. M.; Rodić, M. V.; Jovanović, L. S.; Joksović, M. D.; Stanojković, T.; Vujčić, M.; Sladić, D.; Marković, V.; Vojinović-Ješić, L. S. Transition Metal Complexes with 1Adamantoyl Hydrazones - Cytotoxic Copper(II) Complexes of Tri- and Tetradentate Pyridine Chelators Containing an Adamantane Ring System. Eur. J. Inorg. Chem. 2015, 2015 (5), 882-895 DOI: 10.1002/ejic. 201403050.
(53) Yang, L.; Powell, D. R.; Houser, R. P. Structural variation in copper(i) complexes with pyridylmethylamide ligands: structural analysis with a new four-coordinate geometry index, τ 4. Dalt. Trans. 2007, No. 9, 955-964 DOI: 10.1039/B617136B.
(54) Addison, A. W.; Rao, T. N.; Reedijk, J.; van Rijn, J.; Verschoor, G. C. Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogensulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2'-yl)-2,6-dithiaheptane]copper(II) perchlorate. J. Chem. Soc., Dalt. Trans. 1984, No. 7, 1349-1356 DOI: 10.1039/DT9840001349.
(55) Zlatar, M.; Allan, M.; Fedor, J. Excited states of $\operatorname{Pt}(\mathrm{PF}<\inf >3</ \inf >)<\inf >4</$ inf $>$ and their role in focused electron beam nanofabrication. J. Phys. Chem. C 2016, 120 (19), 10667-

10674 DOI: 10.1021/acs.jpcc.6b02660.
(56) Caldeweyher, E.; Bannwarth, C.; Grimme, S. Extension of the D3 dispersion coefficient model. J. Chem. Phys. 2017, 147 (3), 034112 DOI: 10.1063/1.4993215.
(57) Horn, P. R.; Mao, Y.; Head-Gordon, M. Defining the contributions of permanent electrostatics, Pauli repulsion, and dispersion in density functional theory calculations of intermolecular interaction energies. J. Chem. Phys. 2016, 144 (11), 114107 DOI: 10.1063/1.4942921.

SYNOPSIS: Are BF^{-}, NO^{-}and ClO^{-}coordinatively or electrostatically bonded to $\mathrm{Cu}(\mathrm{II})$? The synergy between the crystal structure determination and computational chemistry allows identification of all interactions present in crystals and answer questions whether weakly coordinated anions belong to the inner or outer sphere of the complex.

Graphical Abstract

Figure 1. a) ORTEP presentation of the [CuLCI]BF4 (1). Thermal ellipsoids are drawn at the 30% probability level. Long contact Cu--F is represented as a dashed line.

Figure 1b) View of the dimeric unit of 1 of pseudo-octahedral geometry

Figure 2. ORTEP presentation of the [CuLCI]NO3 (2). Thermal ellipsoids are drawn at the 30% probability level. Long contact $\mathrm{C}-\mathrm{O}$ is represented as a dashed line

Figure 3. ORTEP presentation of the [Cu2L2CI2](BF4)2 (3)

Figure 4a. Electrostatic potential surface of 1

Figure 4b. Electrostatic potential surface of 2

Figure 4c. Electrostatic potential surface of 3

Figure 4d. Electrostatic potential surface for 4--ClO4-

Figure 5a. Covalent deformation density channels from NOCV analysis for 1 (metal-ligand)

Figure 5b. Covalent deformation density channels from NOCV analysis for 1 (hydrogen bond)

Figure 5c. Covalent deformation density channels from NOCV analysis for 2 (metal-ligand)

Figure 5d. Covalent deformation density channels from NOCV analysis for 2 (hydrogen bond)

Figure 5e. Covalent deformation density channels from NOCV analysis for 3 (hydrogen bond 1)

Figure 5f. Covalent deformation density channels from NOCV analysis for 3 (hydrogen bond 2)

Figure 5 g . Covalent deformation density channels from NOCV analysis for 4 (metal-ligand)

Figure 5h. Covalent deformation density channels from NOCV analysis for 4 (hydrogen-bond)

Figure 6a. NCI plots for 1

Figure 6b. NCI plots for 2

Figure 6c. NCI plots for 3

Figure 6d. NCI plots for 4

Figure 7a. IGM plots for 1

Figure 7b. IGM plots for 2

Figure 7c. IGM plots for 3

Figure 7d. IGM plots for 4

Figure 8a. Covalent deformation density channels from NOCV analysis for 1--1

Figure 8b. Covalent deformation density channels from NOCV analysis for 2--2

Figure 8c. Covalent deformation density channels from NOCV analysis for 3--3

Figure 8d. Covalent deformation density channels from NOCV analysis for 4--4

Figure 9a. NCI plots for 1--1

Figure 9b. NCI plots for 2--2

Figure 9c. NCI plots for 3--3

Figure 9d. NCI plot for 4--4

Figure 10a. IGM plots for 1--1

Figure 10b. IGM plots for 2--2

Figure 10c. IGM plots for 3--3

Figure 10d. IGM plots for 4--4

