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HIGHLIGHTS 24 

 Antimalarial efficacy of a series of 26 investigational aminoquinolines was examined. 25 

 Two compounds with adamantane as a carrier cured 100% of infected mice.  26 

 Of which one had no in vitro effect against a chloroquine resistant Plasmodium strain. 27 

 Better in vivo than in vitro results suggest a role for the compound metabolites.  28 

 Adamantane aminoquinolines warrant further investigation.  29 

 30 

ABSTRACT 31 

 32 

Malaria remains a major disease of the developing world and globally the most important 33 

parasitic disease causing significant morbidity and mortality. Because of widespread resistance to 34 

conventional antimalarials including chloroquine (CQ), new drugs are urgently needed. We here 35 

report on the antimalarial efficacy, both in vitro and in vivo, of a series of aminoquinoline 36 

derivatives with adamantane or benzothiophene as a carrier. In vitro efficacy was evaluated by an 37 

LDH assay in cultures of a CQ-sensitive (3D7) and a CQ-resistant (Dd2) strain of Plasmodium 38 

falciparum. Of a series of 26 screened compounds, those 12 that exerted a growth inhibition rate 39 

of at least 50% were further examined in vitro, to determine the IC50 values, and in vivo. This 40 

way, even the four compounds that exhibited high IC50 values, were evaluated in vivo, in a 41 

modified Thompson test, in C57BL/6 mice infected with the P. berghei ANKA strain. However, 42 

another three compounds were eventually excluded due to toxicity in mice. All nine compounds 43 

examined in vivo prolonged survival of treated vs. untreated mice, four of which afforded at least 44 

a 60% survival. Most notably, two of these, both with the adamantane carrier, afforded complete 45 

cure (100% survival and parasite clearance). One of these, interestingly, had no in vitro effect 46 

(against the CQR strain). Better in vivo than in vitro results suggest a role for the compound 47 
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metabolites. The presented results point to adamantane as a carrier which enhances the 48 

antimalarial potential of aminoquinolines. 49 

 50 

Keywords: malaria, aminoquinolines, LDH assay, Thompson test, adamantane  51 

 52 

 53 

 54 

1. Introduction
1
 55 

  Malaria, caused by protozoan parasites of the Plasmodium genus, continues to be a 56 

major health problem of the developing world and globally the most important parasitic disease. 57 

Human infections are caused by five species of the genus: Plasmodium falciparum, P. vivax, P. 58 

ovale, P. malariae  and  P. knowlesi. Infection which results from the bite of an infected female 59 

Anopheles mosquito is characterized by blood and liver stages [1].  60 

The World Health Organisation estimated 214 million cases of malaria and 438,000 61 

deaths in 2015 [2], with most of the deaths caused by P. falciparum. Half of the global human 62 

population, residing in the tropical and subtropical areas, is estimated to be at a risk of infection, 63 

but even the other half is facing an increasing number of imported cases, resulting in deaths and  64 

health system burden in non-endemic countries and occasional secondary transmission in areas 65 

where malaria has long ago been eradicated [3].   66 

                                                           
1 1 Chloroquine (CQ); CQ-sensitive (CQS); CQ-resistant (CQR); food vacuole (FV); P. falciparum CQ resistance 

transporter (PfCRT); 4-aminoquinoline (AQ); 7-chloro-4-aminoquinoline (ClAQ); 3-fluoro-4-aminoquinoline 

(FAQ); 3-fluoro-7-chloro-4-aminoquinoline (FClAQ); 3-fluoro-7-chloro-2-aminoquinoline (FCl2AQ); dimethyl 

sulfoxide (DMSO); intraperitoneal (i.p.); per os (p.o.); lactate dehydrogenase (LDH); 50% inhibitory concentration 

(IC50); post infection (p.i.); real time PCR (qPCR) 
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The efficacy of the main conventional antimalarials, including chloroquine (CQ) and 67 

artemisinin, is hampered by widespread drug resistance. Coupled with the lack of an effective 68 

vaccine, this strongly emphasizes the urgent need for novel compounds to treat and prevent 69 

malaria [4, 5]. 70 

The mechanism of action of CQ, like all quinolones, involves activity against the 71 

erythrocyte forms of all Plasmodium species by preventing polymerization of heme through its 72 

selective accumulation in the parasite food vacuole (FV). CQ forms stable complexes with heme 73 

and its removal from FV is prevented by protonation [6, 7]. Mutations in the P. falciparum CQ 74 

resistance transporter (PfCRT) gene have a central role in CQ resistance. PfCRT is located in the 75 

FV membrane and, when mutated, increases CQ export from the FV and decreases its 76 

concentration inside the parasite [6, 8, 9].  77 

The aminoquinoline structure is very well known as a moiety useful for the design and 78 

development of new antimalarial agents [10, 11, 12, 13, 14]. Synthetic quinoline derivatives 79 

remain the most promising basis for discovery of new drugs [15], especially if they are effective 80 

against strains of Plasmodium resistant to CQ [16, 17], and 4-aminoquinoline derivatives 81 

continue to be the most sought after antimalarial agents for chemical modification [18]. Efforts to 82 

develop new aminoquinolines include overcoming CQ resistance by adding modifications at the 83 

ring or at the side chain, with the main aim of finding new ones, which are not recognized by 84 

mutant transporters and thus cannot be pumped out of the parasite FV.  85 

Recently, the synthesis of a series of aminoquinolines and tetraoxanes with demonstrated 86 

antiplasmodial activity, including activity against both the liver and blood stages, has been 87 

described [19]. We here report on further examination of the aminoquinoline series in different in 88 

vitro model systems, and provide further evidence for the complete curative effect observed in 89 

vivo by two compounds, despite, at least in one case, a poor in vitro effect. 90 
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 91 

2. Materials and methods 92 

2.1. Parasites 93 

Cultures of a chloroquine-sensitive (CQS) 3D7 and a chloroquine-resistant (CQR) Dd2 94 

strain of P. falciparum were maintained in human erythrocytes as described previously [20]. For 95 

in vitro drug assays, parasites were synchronized with 5% sorbitol, and ring-stage parasites were 96 

seeded in 96-well plates to achieve 2% parasitemia and 0.75% hematocrit.  97 

In vivo testing was performed using the Plasmodium berghei ANKA strain maintained 98 

through serial intraperitoneal (i.p.) passages in C57BL/6 mice. 99 

2.2. Mice 100 

Female C57BL/6 mice (Medical Military Academy Animal Research Facility, Belgrade), 101 

weighing between 19-21 g, were used. Groups of 4-6 animals were housed in the Institute for 102 

Medical Research Animal Facility under a natural photo-period, and offered drinking water and 103 

standard feed ad libitum.  104 

2.3. Compounds 105 

A total of 26 experimental aminoquinoline derivatives with adamantane or 106 

benzothiophene as a carrier synthesized at the Faculty of Chemistry, University of Belgrade, were 107 

examined (Table 1).  108 

According to the modifications at the aminoquinoline moiety structure, the compounds 109 

belonged to five groups as follows: 110 

1. 4-aminoquinoline - AQ (number of compounds, n=3) 111 

2. 7-chloro-4-aminoquinoline - ClAQ (n=6) 112 
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3. 3-fluoro-4-aminoquinoline - FAQ (n=2) 113 

4. 3-fluoro-7-chloro-4-aminoquinoline - FClAQ (n=8) 114 

5. 3-fluoro-7-chloro-2-aminoquinoline - FCl2AQ (n=7) 115 

For experimental use in vitro, the compounds were dissolved in dimethyl sulfoxide 116 

(DMSO) at a stock concentration of 50 mM. Compounds were further diluted in complete RPMI 117 

1640 culture medium so that the final DMSO concentration was ≤ 0.2%.  118 

Compounds further investigated in vivo were suspended in 0.5% hydroxyethylcellulose - 119 

0.1% Tween 80 and administered per os (p.o.).  120 

2.4. Experimental design  121 

All compounds were screened in vitro by the lactate dehydrogenase (LDH) assay adapted 122 

for Plasmodium [21], and those that at a defined concentration inhibited proliferation of either 123 

Plasmodium strain by at least 50% were titrated to obtain 50% inhibitory concentration (IC50) 124 

values and examined for in vivo efficacy. Prior to in vivo examination, compound toxicity was 125 

examined by treating uninfected mice with 160 mg/kg/day (the highest administered dose) of 126 

each compound for three consecutive days. A drug was considered nontoxic if mice did not 127 

develop any gross clinical symptoms (ruffled fur, lethargy or weight loss) during a 30-day 128 

observation period. Compounds determined to be nontoxic were evaluated for antimalarial 129 

efficacy at doses of 160 and 80 mg/kg/day. Compound efficacy was evaluated based on 130 

parasitemia over time and survival of the treated vs. untreated mice. Cure was defined as survival 131 

past day 31 p.i and complete clearance of parasitemia. Survival past day 31 p.i with residual 132 

parasitemia indicated survival without cure. If a compound did not afford survival but 133 

significantly prolonged time to death of treated vs. untreated mice (P<0.05), the effect was 134 

defined as prolonged survival. Finally, in case a compound cured mice in a dose of 80 135 
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mg/kg/day, efficacy was tested at lower doses, including 40, 20, and 10 mg/kg/day. Parasitemia 136 

was determined twice a week, starting from day 3 p.i. (immediately before treatment) and only 137 

mice in which parasitemia was detected were submitted to experimental treatment. Parasitemia 138 

was evaluated by microscopic examination of Giemsa stained thin blood smears prepared from 139 

mouse tail blood on an Axioscope 2+ (Zeiss) optical microscope at 1000X magnification, while 140 

parasite clearance was additionally confirmed in treated survivors by qPCR.  141 

2.5. In vitro examination of compound efficacy  142 

  In vitro testing was performed using a LDH assay. The compounds were first screened at 143 

a concentration of 500 nM, and those that showed a minimum of 50% growth inhibition of 144 

parasites of either strain (3D7 or Dd2) were further examined to obtain the IC50 value. Three 145 

independent experiments were performed for each compound, each with 3 replicates per 146 

condition. The assay was performed in flat-bottom 96-well microtiter plates. Briefly, compounds 147 

were tested at eight different concentrations, ranging from 256 nM to 2 nM, plated in a volume of 148 

100 µL. Parasites were plated into the wells while in the ring phase at 0.75% hematocrit and 2% 149 

parasitemia in a volume of 100 µL. Each well contained the compound and parasite culture in a 150 

final volume of 200µL. Following incubation at 37
o
 C for 48 hours in a Heracell 150i incubator 151 

(ThermoScientific, Waltham, MA, USA), the parasites were harvested and subjected to three 20-152 

minutes freeze-thaw cycles to resuspend the culture. Cultured erythrocytes without drug were 153 

used as the assay blank, while infected erythrocytes without drug were used as the assay control. 154 

CQ was used as the positive control for drug efficacy. To initiate the LDH reaction, 120 µL of the 155 

detection reagent mixture (Malstat and NBT/PES) was aliquoted into a new flat-bottom 96-well 156 

microtiter plate to which a 20 µL sample of each parasite culture was added. Color development 157 

of the LDH plate was detected by the Multiscan X (ThermoScientific, Waltham, MA, USA) 158 
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microplate reader at 620 nm after an hour incubation in the dark. All reagents used in the assay 159 

were purchased from Sigma-Aldrich Inc. (St. Louis, MO, USA).  160 

2.6. In vivo examination of compound efficacy  161 

Antimalarial activity in vivo was tested by a modified Thompson test [22]. Infected 162 

erythrocytes were obtained from the peripheral blood of a donor mouse infected with P. berghei. 163 

Mice were inoculated i.p. with 10
6
 infected erythrocytes, diluted in PBS to a total volume of 250 164 

μL total (day 0). Mice were treated with the investigational compounds once a day, for three 165 

consecutive days (days 3, 4 and 5 post infection (p.i.)). All compounds were administered p.o., at 166 

doses ranging from 160 mg/kg/day to 10 mg/kg/day in a total volume of 200 μL. Survival and 167 

parasitemia were monitored for 30 days p.i.. Parasitemia was evaluated by microscopic 168 

examination of thin blood smears.  169 

2.7. PCR  170 

Residual parasitemia was examined in the surviving mice by the real time PCR (qPCR) 171 

method adapted from Rougemont et al., based on the detection of Plasmodium species specific 172 

18S rRNA gene [23]. Briefly, mice alive past day 31 p.i. and with complete parasite clearance 173 

were sacrificed, and blood (300 - 500 μl) was sampled from the left ventricle of the heart. The 174 

liver was removed, rinsed with Dulbecco’s PBS and homogenized. DNA extraction was 175 

performed using 100 μl of blood and liver homogenate samples using the DNeasy blood and 176 

tissue kit (Qiagen, Hilden, Germany) according to the manufacturer’s instructions. Each PCR 177 

reaction contained 1X MaximaProbe qPCR Mastermix (Thermo Fisher Scientific, Waltham, MA, 178 

USA), 200 nM of each primer, 50 nM probe, 1U UNG (Thermo Fisher Scientific Waltham, MA, 179 

USA) and 3 μl template gDNA in a final volume of 20 μl. The PCR conditions were as follows: 180 

one holding step at 50°C for 2 min, one holding step at 95 °C for 10 min, then 45 cycles of 95 °C 181 
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for 15 s, 60 °C for 1 min. Samples with Ct values above 40 were considered negative. A positive 182 

(P. berghei DNA) and a negative (H2O) control were included in each run.  183 

2.8. Statistical analysis  184 

IC50 values were obtained using a sigmoidal dose-response model with the variable slope 185 

fitted to the results. Survival rates in each particular group were estimated by the Kaplan-Meier 186 

product limit method and compared by the log-rank (two curves) and log-rank test for trends 187 

(three or more curves) tests. The level of statistical significance was 0.05. Statistical analysis was 188 

performed using GraphPad Prism v. 5. 189 

 190 

3. Results 191 

A series of 26 aminoquinolines was examined in this work. Of these, 12 compounds 192 

inhibited proliferation of either the CQS or the CQR Plasmodium strain by at least 50%, while 193 

the remaining 14 compounds did not, so they were eliminated from further work. 194 

All 12 compounds were first assayed for toxicity. Four compounds (AQ2, AQ3, ClAQ3, 195 

ClAQ6) were shown to cause acute toxicity at a dose of 160 mg/kg/day, which eliminated them 196 

from further in vivo examination. However, due to chemical similarity with other members of the 197 

benzothiophene group, which were nontoxic even at the highest applied dose, one of the latter 198 

compounds, ClAQ3, although toxic at 160 mg/kg/day, was further tested for toxicity at 80 199 

mg/kg/day and found to be nontoxic at this dose. ClAQ3 was thus included in the in vivo 200 

examination (Table 2).  201 

A total of nine compounds (AQ1, ClAQ1, ClAQ2, ClAQ3, ClAQ4, ClAQ5, FAQ1, 202 

FClAQ1, FClAQ2) were subjected to in vivo testing. The results showed that, when administered 203 
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in doses of 160 and/or 80 mg/kg/day, all nine significantly prolonged survival of treated vs. 204 

untreated mice (P<0.05; Fig. 1, Fig. 2).  205 

Remarkably, three ClAQ compounds (ClAQ1, ClAQ4, ClAQ5) and one FClAQ 206 

compound (FClAQ1) (chemical structures presented in Table 3) afforded survival of 60-100% of 207 

treated mice past day 31. Of these, ClAQ4 and ClAQ5 afforded a 60-80% survival rate of 208 

infected mice, although not even the highest dose of either compound eradicated parasitemia in a 209 

single animal.  210 

But treatment with 160 and 80 mg/kg/day of the other two compounds, ClAQ1 and 211 

FClAQ1, afforded complete cure. All treated infected mice survived beyond d31 (Fig. 3, Fig. 4), 212 

and moreover, survival was associated with parasite clearance as determined by microscopic 213 

examination and by qPCR of murine blood and liver tissues after day 31. We thus next examined 214 

their effect at lower doses, which revealed a strong dose-dependent effect (P=0.0141 and 215 

P=0.0362 for ClAQ1 and FClAQ1, respectively), but did not afford survival. ClAQ1 is 216 

particularly interesting in this respect, as treatment with even the lowest dose (10 mg/kg) 217 

prolonged survival (P=0.0031). However, dose reduction resulted in persistence of parasitemia in 218 

all mice.  219 

On the other hand, an interesting observation with FClAQ1 was that although all mice 220 

treated with 40 mg per kg per day eventually succumbed to the infection, they were able to 221 

tolerate very high levels of parasitemia, which amounted up to 62% (ranging from 37.5 to 222 

62.4%). In contrast, the highest level of parasitemia observed with any other treatment regimen 223 

ranged from as low as 0.1 to not more than 13.9% (Table 4).  224 

Interestingly, the correlation between the in vivo and in vitro results appeared haphazard 225 

(Table 2). The four compounds with the highest in vivo efficacy did not show the best in vitro 226 

results i.e. the lowest IC50 values for both strains. For instance, ClAQ4 and ClAQ5, the two 227 
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compounds which afforded survival but not cure, had quite low IC50 values and by far the lowest 228 

ones against the CQR strain. In contrast, FClAQ1, which cured all infected mice (in two doses), 229 

had no in vitro effect against the CQR strain (>500 nM). On the other hand, AQ1, the single 230 

compound that had lower IC50 values than CQ against both strains, did not have remarkable in 231 

vivo efficacy. Of the remaining four compounds, which all significantly prolonged survival time 232 

of treated infected mice, even three had much higher IC50 values than CQ on both parasite strains 233 

(Table 2).  234 

4. Discussion 235 

We here presented the antimalarial efficacy of a series of investigational aminoquinoline 236 

compounds. Of the 12 that exhibited at least 50% of growth inhibition in parasite cultures, the 237 

efficacy of nine shown to be nontoxic in vivo was examined in a mouse infection model. When 238 

given in three daily doses of 160 or 80 mg/kg, all nine significantly prolonged survival compared 239 

to untreated controls, but most notably, four afforded survival of mice past day 31. Of these, 240 

compounds ClAQ4 and ClAQ5 afforded a high protection rate although with residual infection in 241 

mice that survived the observation period, while compounds ClAQ1 and FClAQ1 afforded cure 242 

(with parasite clearance) for 100% mice at doses of both 160 and 80 mg/kg/day. At the latter 243 

dose, the survival rate afforded by ClAQ1 and FClAQ1 was even superior to that of CQ. 244 

Furthermore, these two compounds showed significant activity in lower doses as well, of which 245 

ClAQ1 prolonged time to death (vs. untreated controls) even in a dose as low as 10 mg/kg.  246 

Several important observations arise from these data. To start, we have observed that the 247 

best in vivo effects did not correlate with in vitro efficacy. For instance, AQ1was the single 248 

compound that had lower IC50 values than CQ against both strains but its in vivo efficacy did not 249 

go beyond prolonging survival of infected treated mice. On the other hand, none of the three 250 

Page 11 of 26



 

12 
 

examined compounds with fluorine on the aminoquinoline moiety had any effect of against the 251 

CQR strain in vitro, yet all significantly prolonged survival of infected treated mice, while 252 

FClAQ1 even afforded complete cure. Such discordance has been previously reported for some 253 

thiophene- and furan-based aminoquinolines synthesized by the same group [24]. The 254 

discrepancy between in vitro and in vivo effects suggests that the antimalarial efficacy of such 255 

compounds is due to their metabolites, rather than the compounds themselves.  256 

The second interesting observation was that, although FClAQ1 in lower doses did not 257 

afford survival, it allowed mice to survive remarkably high parasite burdens (37% to 62%), as 258 

opposed to the highest parasitemia of only 14%, seeming to be the survival limit by any other 259 

treatment. Importantly, this compound (designated compound 25 in [19]) has been shown to have 260 

significant activity in the plasmodial liver stage infection [19], where the presence of the fluorine 261 

atom at the C(3) position on the aminoquinoline moiety was attributed to the intrahepatocytic 262 

inhibition of parasite growth. The ability of mice treated with this compound to survive massive 263 

parasitemia may indicate its impact on the parasite pathogenicity/virulence. 264 

Importantly, the approach we took in this study, to examine all compounds which 265 

exerted at least 50% parasite growth inhibition in vitro, in parallel with their effects in an in vivo 266 

infection model, allowed us to observe a therapeutic potential that would have gone unnoticed 267 

had we chosen the usual approach to examine in vivo only those compounds with an IC50 lower 268 

than that of the control drug. This observation also suggests that there may have been drug 269 

candidates in the past that had been missed because of the approach. It is to be hoped that highly 270 

advanced techniques including high-throughput technologies will help leave such unfortunate 271 

events in the past. 272 

A look at the chemical structures of the four most effective compounds (Table 3) shows 273 

that the carrier in ClAQ4 and ClAQ5 is benzothiophene, while it is adamantane in the case of 274 
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ClAQ1 and FClAQ1. Since our results showed that both compounds with adamantane afforded 275 

cure of mice, it appears that the higher in vivo activity may be attributed to its use as a carrier. 276 

Among its many biological properties, adamantane has been shown to substantially increase drug 277 

solubility in lipophilic membranes and may thus increase the compound uptake [25].  278 

In summary, the presented results illustrate the enormous potential of aminoquinoline 279 

derivatives bearing an adamantane group as antimalarials whose metabolites and mechanisms of 280 

action warrant further investigation and put adamantane into the spotlight as a carrier which 281 

enhances the antimalarial effect of aminoquinolines. 282 
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Fig. 1. Effect of a 3-day treatment with 160 mg/kg/day of the investigational compounds on the 367 

survival of mice infected with P. berghei ANKA strain.  treatment days 368 

Fig. 2. Effect of a 3-day treatment with 80 mg/kg/day of the investigational compounds on the 369 

survival of mice infected with P. berghei ANKA strain.  treatment days 370 

Fig. 3. Effect of a 3-day treatment with ClAQ in the full dosage regimen on the survival of mice 371 

infected with P. berghei ANKA strain.  treatment days 372 

Fig. 4. Effect of a 3-day treatment with FClAQ1 in 3 dosage regimens (40, 80, 160 mg/kg) on the 373 

survival of mice infected with P. berghei ANKA strain.  treatment days 374 

 375 
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Table 1. Investigated compounds grouped according to the modifications at the aminoquinoline 376 

moiety 377 

GROUP COMPOUND ACRONYM 
Number 

in  
ref. [19] 

AQ 

N
1
-(1-adamantylmethyl)-N

3
-quinolin-4-ylbutane-1,3-diamine,  

C24H33N3 
AQ1 24 

N
1
-[2-(1-adamantyl)ethyl]-N

3
-quinolin-4-ylbutane-1,3-diamine AQ2 44 

N-(1-adamantylmethyl)-N-methyl-N'-quinolin-4-ylpropane-1,3-

diamine 
AQ3 

not 
previously 

published 

ClAQ 

N
1
-(1-adamantylmethyl)-N

3
-(7-chloroquinolin-4-yl)butane-1,3-

diamine 
ClAQ1 23 

N
2
-(1-adamantylmethyl)-N

1
-(7-chloroquinolin-4-yl)propane-1,2-

diamine 
ClAQ2 10 

N-(7-chloroquinolin-4-yl)-N'-[(5-fluoro-1-benzothiophen-3-

yl)methyl]propane-1,3-diamine 
ClAQ3 58 

N-(7-chloroquinolin-4-yl)-N'-[(5-fluoro-1-benzothiophen-3-

yl)methyl]butane-1,4-diamine 
ClAQ4 63 

N-(7-chloroquinolin-4-yl)-N'-[(6-fluoro-1-benzothiophen-3-

yl)methyl]propane-1,3-diamine 
ClAQ5 59 

N
1
-[2-(1-adamantyl)ethyl]-N

3
-(7-chloroquinolin-4-yl)butane-1,3-

diamine 
ClAQ6 36 

FAQ 

N
1
-(1-adamantylmethyl)-N

3
-(3-fluoroquinolin-4-yl)butane-1,3-

diamine 
FAQ1 26 

N
1
-[2-(1-adamantyl)ethyl]-N

3
-(3-fluoroquinolin-4-yl)butane-1,3-

diamine 
FAQ2 39 

FClAQ 

N
1
-(1-adamantylmethyl)-N

3
-(7-chloro-3-fluoroquinolin-4-yl)butane-

1,3-diamine 
FClAQ1 25 

N
4
-(7-chloro-3-fluoroquinolin-4-yl)-N

1
,N

1
-diethylpentane-1,4-

diamine 
FClAQ2 74 

N
1
-(1-adamantylmethyl)- N

2
-(7-chloro-3-fluoroquinolin-4-

yl)propane-1,2-diamine 
FClAQ3 20 

N
2
-(1-adamantylmethyl)-N

1
-(7-chloro-3-fluoroquinolin-4-

yl)propane-1,2-diamine 
FClAQ4 21 

N
1
-[2-(1-adamantyl)ethyl]-N

3
-(7-chloro-3-fluoroquinolin-4-

yl)butane-1,3-diamine 
FClAQ5 38 

N
1
-(1-adamantylmethyl)-N

4
-(7-chloro-3-fluoroquinolin-4-yl)pentane-

1,4-diamine 
FClAQ6 32 

N
1
-[2-(1-adamantyl)ethyl]-N

4
-(7-chloro-3-fluoroquinolin-4-

yl)pentane-1,4-diamine 
FClAQ7 45 

N'-(7-chloro-3-fluoroquinolin-4-yl)-N,N-diethylpropane-1,3-diamine FClAQ8 73 

FCl2AQ 

N
1
-(1-adamantylmethyl)-N

2
-(7-chloro-3-fluoroquinolin-2-

yl)propane-1,2-diamine 
FCl2AQ1 68 

N
1
-(1-adamantylmethyl)-N

3
-(7-chloro-3-fluoroquinolin-2-yl)butane-

1,3-diamine 
FCl2AQ2 69 

N
1
-[2-(1-adamantyl)ethyl]-N

3
-(7-chloro-3-fluoroquinolin-2-

yl)butane-1,3-diamine 
FCl2AQ3 71 
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N
1
-(1-adamantylmethyl)-N

4
-(7-chloro-3-fluoroquinolin-2-yl)pentane-

1,4-diamine 
FCl2AQ4 70 

N
1
-[2-(1-adamantyl)ethyl]-N

4
-(7-chloro-3-fluoroquinolin-2-

yl)pentane-1,4-diamine 
FCl2AQ5 72 

N
4
-(7-chloro-3-fluoroquinolin-2-yl)-N

1
,N

1
-diethylpentane-1,4-

diamine 
FCl2AQ6 76 

N'-(7-chloro-3-fluoroquinolin-2-yl)-N,N-diethylpropane-1,3-diamine FCl2AQ7 75 

 378 

 379 
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Table 2. Antimalarial effect of experimental aminoquinolines examined in vitro and in vivo 380 
  

 
In vitro (LDH assay) In vivo (Thompson test) 

GROUP COMPOUND 

3D7 

(geomeans, 

 nM) 

Dd2 

(geomeans,  

nM) 

TOXICITY 

160 

mg/kg/day 

TREATMENT 

DOSE 

(mg/kg/day) 

EFFECT on d31 p.i. 

  IC50 IC50    

AQ 

AQ1 14.08 118.2 NT 80 prolonged time to death* (P=0.0031) 

AQ2 99.86 195.3 T   

AQ3 67.33 223.0 T   

ClAQ 

ClAQ1 34.75 58.4 NT 

160, 80
 

100% cure  

40, 20, 10 
prolonged time to death* 

(P=0.0031, 0.0067, 0.0031)
 

ClAQ2 142.70 >500 NT 80 prolonged time to death* (P=0.0031) 

ClAQ3 43.48 34.8 T 80 prolonged time to death* (P=0.0067) 

ClAQ4 32.53 13.7 NT 
160

 
75% survival** (P=0.0067) 

80 80% survival** (P=0.0031) 

ClAQ5 34.13 16.7 NT 160 60% survival** (P=0.002) 

ClAQ6 67.07 35.9 T   

FAQ FAQ1 185.38 >500 NT 80 prolonged time to death* (P=0.0290) 

FClAQ 
FClAQ1 41.13 >500 NT 

160, 80
 

100 % cure  

40
 

prolonged time to death*(P=0.0031) 

20, 10 NS (P>0.05)
 

FClAQ2 145.36 >500 NT 160 prolonged time to death* (P=0.0020) 

CONTROL CQ 18.74 249.1 NT 160 100% cure  

AQ : 4-aminoquinoline ; ClAQ : 7-chloro-4-aminoquinoline ; FAQ : 3- fluoro-4-aminoquinoline ; FClAQ : 3- fluoro-7-chloro-4-aminoquinoline ; 381 
AQ1: N

1
-(1-adamantylmethyl)-N

3
-quinolin-4-ylbutane-1,3-diamine; AQ2: N

1
-[2-(1-adamantyl)ethyl]-N

3
-quinolin-4-ylbutane-1,3-diamine; AQ3: 382 

N-(1-adamantylmethyl)-N-methyl-N'-quinolin-4-ylpropane-1,3-diamine; ClAQ1: N
1
-(1-adamantylmethyl)-N

3
-(7-chloroquinolin-4-yl)butane-1,3-383 

diamine; ClAQ2: N
2
-(1-adamantylmethyl)-N

1
-(7-chloroquinolin-4-yl)propane-1,2-diamine; ClAQ3: N-(7-chloroquinolin-4-yl)-N'-[(5-fluoro-1-384 

benzothiophen-3-yl)methyl]propane-1,3-diamine; ClAQ4: N-(7-chloroquinolin-4-yl)-N'-[(5-fluoro-1-benzothiophen-3-yl)methyl]butane-1,4-385 
diamine; ClAQ5: N-(7-chloroquinolin-4-yl)-N'-[(6-fluoro-1-benzothiophen-3-yl)methyl]propane-1,3-diamine; ClAQ6: N

1
-[2-(1-adamantyl)ethyl]-386 

N
3
-(7-chloroquinolin-4-yl)butane-1,3-diamine; FAQ1: N

1
-(1-adamantylmethyl)-N

3
-(3-fluoroquinolin-4-yl)butane-1,3-diamine;  FClAQ1: N

1
-(1-387 

adamantylmethyl)-N
3
-(7-chloro-3-fluoroquinolin-4-yl)butane-1,3-diamine;  FClAQ2: N4-(7-chloro-3-fluoroquinolin-4-yl)-N1,N1-diethylpentane-388 
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1,4-diamine; CQ: chloroquine; 3D7: P. falciparum CQ-sensitive strain; Dd2: P. falciparum CQ-resistant strain; IC50: 50% inhibitory 389 
concentration; T: toxic; NT: nontoxic; * vs. infected untreated (control) mice; **with residual parasitemia; NS: not significant 390 
 391 

 392 
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Table 3. Chemical structures of the most active investigational compounds 393 

COMPOUND CHEMICAL STRUCTURE 

ClAQ4 

S

F

NH
NH

N

Cl

 

ClAQ5 

S

NH NH
F

N

Cl 

ClAQ1 

N

NH NH

Cl  

FClAQ1 

N

NH NH
F

Cl  
 394 

 395 
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Table 4. Survival and parasitemia of P. berghei-infected mice treated with ClAQ1 and FClAQ1 at different doses  396 

COMPOUND 

mg/kg/day 
No. of mice 

dead on day 

No. of mice  alive and parasitemia (range, in %) at time point 
Mice 

alive on 

day 

31/total 

(% 

survival) 

Before 

treatment 
Day 7 Day 10 Day 14 Day 17 Day 21 Day 24 Day 28 

CQ 

160 - 
5 

(0.4-0.9) 

5 

(0) 

5 

(0) 

5 

(0) 

5  

(0) 

5 

(0) 

5  

(0) 

5 

(0) 

5/5  
(100) 

80 1/17, 1/18 
5 

(0.5-0.9) 

5 

(0) 

5 

(0) 

3 

(0) 

3 

 (0) 3 

(0) 

3 

 (0) 

3 

(0) 

3/5 
(60) 2  

(0.1-0.2) 

1  

(4) 

 ClAQ1 

  

160  - 
5 

(0.7-1.2) 

5 

(0) 

5 

(0) 

5 

(0) 

5 

(0) 

5 

(0) 

5 

 (0) 

5 

 (0) 

5/5 
(100) 

80 - 
5 

(0.4-0.5) 

5 

(0) 

5 

(0) 

5 

(0) 

5 

(0) 

5 

(0) 

5  

(0) 

5 

(0) 

5/5 
(100) 

40 
1/16, 2/17, 

2/18 

5 

(0.3-2.4) 

5 

(0) 

5 

(0) 

5 

(0.2-1.2) 

2 

(2.1-4.6) 
-   

0/5 
(0) 

20 
2/14, 1/15, 

1/18 

4 

(0.5-3.5) 

4 

(0) 

4 

(0.2-0.4) 

2 

(1-3.9) 

 

1 

(3.5) 
-   

0/4 
(0) 

10 
1/11, 3/13, 

1/15 

5 

(0.4-1.6) 

5 

(0.18-0.5) 

5 

(1.6-8.9) 
1 (4.3) -    

0/5 
(0) 

FClAQ1 

160 - 
4 

(0.3-0.5) 

4 

(0) 

4 

(0) 

4 

(0) 

4 

(0) 

4 

(0) 

4 

 (0) 

4 

(0) 

4/4 
(100) 

80 - 
6 

(0.3-1) 

6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

6 

(0) 

6  

(0) 

6 

(0) 

6/6 
(100) 

40 
2/12, 1/21, 

1/23,1/24 

5 

(0.5-3) 

5 

(1-4.7) 

5 

(3.1- 16.3) 

3 

(5.6-23) 

3 

(30-52.4) 

2 

(37.5-62.4) 
- - 

0/5 
(0) 

20 2/7, 1/8, 1/14 4 2 1 -     0/4 
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(0.3-2.3) (3.8-4) (10) (0) 

10 
2/7, 1/8, 1/11, 

1/12 

5 

(0.6-2.3) 

3 

(2.3-5) 

2 

(3.2-13.9) 
-     

0/5 
(0) 

 397 

 398 

 399 
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Figure 1 400 

 401 

 402 

 403 

Figure 2 404 

 405 

 406 
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Figure 3 408 

 409 
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Figure 4 413 
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