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ABSTRACT  

Magnetic macroporous crosslinked copolymer glycidyl methacrylate (GMA) and ethylene 

glycol dimethacrylate (EGDMA) samples with different magnetite content were prepared by 

suspension copolymerization and functionalized with diethylene triamine. Samples were 

characterized by elemental analysis, mercury porosimetry, Fourier transform infrared 

spectroscopy (FTIR) analysis, scanning electron microscopy with energy-dispersive X-ray 

spectroscopy, transmission electron microscopy, SQUID magnetometry and X-ray 

photoelectron spectroscopy (XPS). The selected amino-functionalized sample was tested as a 

potential sorbent for the Mo(VI) and Re(VII) oxyanions from aqueous solutions. The 

influence of pH, ionic strength and possible interfering of cations and anions was 

investigated. Equilibrium data were analyzed with Langmuir, Freundlich and Tempkin 

adsorption isotherm models. Sorption studies were carried out in a batch competitive 

experiments, in the pH range 1-8, at 298 K. Obtained results indicate that 92 % of Re(VII) 

and 98 % of Mo(VI) were sorbed at pH 2. 

 

Keywords: Magnetic macroporous copolymer; Diethylene triamine, Mo(VI) and Re(VII) 

sorption.
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1. Introduction 

Molybdenum (Mo) is a transition metal that occurs in the range of oxidation states from 

+2 to +6 with the predominance of Mo(IV) and Mo(VI) species. In aqueous environment, Mo 

exists mainly as molybdate and/or other molybdenum polyanions, depending on the solution 

pH and the initial metal concentration [1]. Elevated molybdenum levels can cause serious 

health problems, anemia, liver and kidney abnormalities, bone and joint deformities, sterility, 

etc.[2].  

Rhenium (Re) as a rare metal with high melting point, superior high-temperature 

strength and room-temperature ductility is an excellent choice for many applications 

demanding high-temperature, corrosion and wear resistance [3,4]. Re is widely used for high 

temperature superalloy productions, preparation of bimetallic catalysts for chemical and 

petrochemical industry, thermocouples, etc.[3,5]. However, rhenium has no mineable ore 

naturally and invariably exists in rocks, pegmatites, and especially in molybdenites [4]. It is 

especially difficult to separate rhenium from molybdenum in an actual aqueous solution 

because of their similar ionic radius and anion species (mainly MoO4 
2− and ReO4 

−) [6,7]. 

Recovery and separation of rhenium from molybdenite or industrial wastewater has become 

an urgent problem to be solved and is of great importance from an economical point of view. 

Several methods of separating molybdenum and rhenium have been described in the 

literature, like ion exchange, precipitation, adsorption and solvent extraction [8]. Among 

them, adsorption is accepted as one of the most effective and economic method for 

wastewater treatment [4,7–9]. 

The iron oxide nanoparticles are increasingly applied for heavy metals removal from 

wastewaters since they exhibit excellent adsorption properties and can be easily separated 

using magnetic field [10–12]. Their drawbacks like small particle size, excessive pressure 

drops and coaggregation observed in flow-through systems could be avoided by supporting 

magnetite nanoparticles on polymers. Magnetic polymer microspheres combining a polymer 

and inorganic magnetic nanoparticles have been successfully used as carriers for enzyme 

immobilization, protein purification [13], separation of toxic and radioactive pollutants [14], 

etc. 

Glycidyl methacrylate (GMA) based copolymers have versatile applications due to the 

presence of epoxy groups which offers numerous functionalization possibilities in mild 

reaction conditions. Amino-functionalized macroporous crosslinked copolymers of GMA and 

ethylene glycol dimethacrylate (EGDMA), PGME, prepared by suspension copolymerization 
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in the shape of regular beads and specific pore size [15] have been utilized as matrix for 

enzyme attachment [16], sorbents for removal of textile dyes [17], radionuclides [18], 

precious and heavy metals, etc. [19–21]. 

In this paper the variation of the magnetite content on the porosity parameters, 

morphology and magnetic properties of magnetic macroporous PGME copolymer (mPGME) 

synthesized by suspension copolymerization was studied. The sample with the higher 

magnetite content was functionalized with diethylene triamine and evaluated as a potential 

Mo(VI) and Re(VII) sorbent from their binary solutions. To our best knowledge, this type of 

macroporous and magnetic amino-functionalized copolymer was not used for simultaneous 

Mo(VI) and Re(VII) ions separation. In this study, the influence of pH, ionic strength, as well 

as the effect of coexisting cations (Ni2+, Cd2+ and Cu2+) and anions (Cl−, NO3−and SO4
2−) on 

Mo(VI) and Re(VII) oxyanion sorption on PGME-deta was investigated. The Langmuir, 

Freundlich and Tempkin adsorption isotherm models were used to fit the experimental 

equilibrium data. Also, selectivity of mPGME-deta for Re(VII) sorption was studied at 

different contact time and Re/Mo ratio. In order to elucidate mechanism of Mo(VI) and 

Re(VII) oxyanion sorption, the Fourier transform infrared spectroscopy (FTIR) analysis and 

X-ray photoelectron spectroscopy (XPS) were used. The surface morphology of mPGME 

before and after metal ions sorption was investigated by scanning energy-dispersive X-ray 

spectroscopy (SEM-EDX). 

 

2. Experimental 

2.1.   Materials and reagents  

All the chemicals used for copolymer synthesis were analytical grade products and used 

as received. Glycidyl methacrylate (GMA), diethylene triamine, 2,2'-azobisiso-butyronitrile 

(AIBN), cyclohexanol and 1-tetradecanol were purchased from Merck (Germany). Ethylene 

glycol dimethacrylate (EGDMA) and magnetite (iron(II,III) oxide, nanopowder, <50 nm 

particle size (TEM), ≥98% trace metals basis) were obtained from  Sigma-Aldrich 

(Germany). Poly(N-vinyl pyrrolidone) (PVP, Kollidone 90) was purchased from BASF 

(Germany). 

Molybdenum and rhenium stock solutions were prepared by dissolving reagent grade 

(NH4)Mo7O24·4H2O and NaReO4 (Sigma-Aldrich, Germany) in deionized water (Milli-Q 

Millipore, 18 MΩcm-1 conductivity). The pH values of the working solutions were adjusted 

by adding of appropriate amounts of 1M HCl and 1M NaOH. All solutions for the 
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investigation of the effect of coexisting cations (NiCl2·6H2O, CdCl2 and CuCl2·2 H2O) and 

anions (NaCl, NaNO3 and Na2SO4) were prepared with deionized water (Milli-Q) and 

reagent-grade chemicals. The solutions of different concentrations used in various 

experiments were obtained by diluting the stock solutions. 

 

2.2.   Preparation of mPGME 

Two magnetic macroporous mPGME samples with different magnetite content (2 and 

10 mass%) in the reaction mixture were prepared by a radical suspension copolymerization 

(samples 2MAG-SGE60 and 10MAG-SGE60). Reaction mixtures consisted of the monomer 

phase suspended in the aqueous phase (225.0 ml of deionized water and 2.25 g of PVP). The 

monomer phase contained monomer mixture (29.2 g GMA and 19.5 g EGDMA), AIBN as an 

initiator (0.5 g), inert component (51.0 g of cyclohexanol and 12.8 g of tetradecanol) and 

magnetite (Fe3O4) nanoparticles (1.2 g for sample 2MAG-SGE60 and 4.8 g for sample 

10MAG-SGE60). The aqueous phase was placed in polymerization reactor and heated to 70 

°C. The monomer phase was sonicated for about 30 min at 300/600W within an ultrasonic 

water bath (Sonic 12GT). The resulting mixture was dropped into polymerization reactor. 

The content of reactor was stirred at 300 rpm during the monomer addition and heating was 

started. The copolymerization was carried out under nitrogen atmosphere at 75°C for 2 h and 

at 80°C for 2 h with a stirring rate of 250 rpm. After the reaction, the magnetic copolymer 

particles were washed with water and ethanol, kept in ethanol for 12 h and dried in vacuum 

oven at 50°C.  

 

2.3.   Functionalization of mPGME with diethylene triamine 

Sample 10MAG-SGE60 (particles with diameters in the range 0.15-0.30 mm) was 

amino-functionalized as follows: 7.2 g of mPGME, 31.4 g of diethylene triamine and 350 

cm3 of toluene was left at room temperature for 24 h and then heated at 80°C for 6 h with a 

stirring rate of 250 rpm in a round bottom flask equipped with a mechanical stirrer and a 

reflux condenser. The amino-functionalized sample was filtered, washed with ethanol, dried 

in vacuum oven for 24h at 40°C and labeled as 10MAG-SGE60-deta. 

 

2.4.    Instrumentation and characterization 

Elemental analysis (C, H, N) was performed by Vario EL III device (GmbH Hanau 

Instruments). Elemental composition was calculated from multiple determinations of 
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elemental analysis within ± 0.2% agreement. Fourier transform infrared (FTIR) spectra were 

taken in ATR mode using a Nicolet 380 spectrometer. The scanning electron microscopy 

(SEM) micrographs were obtained on JEOL JSM-6460LV instrument (Tokyo, Japan). 

Samples were coated with gold in a high-vacuum evaporator.  The energy dispersive 

spectroscopic (EDS) analysis was performed on Jeol JSM 5800 instrument. Pore size 

distributions were determined by a high pressure mercury intrusion porosimeter Carlo Erba 

Porosimeter 2000 (Washington, USA, software Milestone 200). The porosity parameters, i.e. 

the values of specific pore volume, Vs, and pore diameter which corresponds to half of pore 

volume, DV/2, were read from the pore size distribution curves determined by mercury 

porosimetry (Carlo Erba 2000, software Milestone 200), while the specific surface area, Ss,Hg, 

was calculated as the sum of incremental specific surface areas from the pore size distribution 

curves as described in the literature [22]. Field dependance of isothermal magnetization M(H) 

at room temperature was measured on a SQUID-based commercial magnetometer Quantum 

Design MPMS-XL-5, in the applied DC fields up to 5 T.  Microstructural (morphological) 

characterization of selected samples was performed on a transmission electron microscope 

(TEM) JEM–1400. Mo(VI) and Re(VII) concentrations were determined using inductively 

coupled plasma optical emission spectrometry ICP-OES (Perkin Elmer, Model ICP 400). 

 XPS analysis was carried out on a SPECS customized UHV surface analysis system 

containing sputter ion gun, PHOIBOS 100 spectrometer for energy analysis, dual anode 

Al/Ag monochromatic source and electron flood gun. XPS spectra were taken using 

monochromatic Al Kα line (photon energy of 1486.74 eV) in FAT 40 mode with energy step 

of 0.5 eV and dwell time of 0.2 s (survey spectra) i.e. in FAT 20 mode with energy step of 

0.1 eV and dwell time of 1s (high resolution spectra).  

The points of zero charge (pH PZC values) of selected samples were determined by the 

pH drift method [23]. For this purpose, the pH of test solutions (20 cm3 of 0.01M NaCl in a 

series of Erlenmeyer flasks) was adjusted in the range between 2 and 12 using 0.1M NaOH 

and 0.1M HCl. The initial pH of the solutions (pHi) was determined and 50.0 mg of the 

10MAG-SGE60 and 10MAG-SGE60-deta were added to each of the flasks and equilibrated 

for 24 h. The final pH values of the solutions (pHf) were measured and plotted against the 

initial pH (pHi). The pH at which the curve crosses pHi = pHf line was taken as pHpzc [24]. 

pH was measured by Hanna HI 2210 pH meter calibrated before every measure. 

For determination of the amino groups content, 100 mg of 10MAG-SGE60-deta was 

immersed in 5.2 cm3 0.1 M HCl solution for 24 hours. After this period 2 cm3 of the solution 
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was taken and the excess of acid was titrated with 0.052 M NaOH in the presence of 

phenolphthalein solution until the solution turned violet [25]. The content of amino groups, 

CAG (mmol g-1) was calculated from [26]: 

1 1 2 2( 2 )
AG

CV C V
C

m

− ⋅
=  (1) 

Where: C1 is the initial HCl concentration (0.105 M), V1 is the initial volume of the HCl 

solution (5.2 cm3), C2 is the concentration of the NaOH solution (0.052 M), V2 is the volume 

of the NaOH solution used for the titration, and m is the mass of the copolymer sample. 

 

2.5.    Sorption experiments 

The effect of pH on the sorption capacity of 10MAG-SGE60-deta was investigated in 

mixed Mo(VI) (Ci = 0.01 M) and Re(VII) (Ci = 0.005 M) aqueous solutions in batch static 

experiments, in the pH range 1-8, at room temperature (298 K). The same volume of the 

mixed Mo(VI)/Re(VII) solution (V =10.0 cm3) and copolymer mass of 0.1 g was used in all 

the experiments. The desired pH was adjusted by adding the appropriate amounts of 1M HCl 

and 1M NaOH, pH values were monitored with the pH-meter. Metal analysis of the aliquots 

withdrawn at 3h and 24 h was carried with ICP-OES.  

The effect of initial concentration of Mo(VI) ions (Ci = 0.01, 0.02, 0.05 and 0.1 M) at 

constant initial concentration of Re(VII) ions (Ci = 0.005 M) on the sorption capacity of 

10MAG-SGE60-deta from mixed Mo(VI)/Re(VII) solutions was investigated after 180 min 

at pH=4 and 298 K. The same volume of the mixed Mo(VI)/Re(VII) solution (V =5.0 cm3) 

and copolymer mass of 0.05 g was used in all the experiments. 

In order to investigate the sorption efficiency of 10MAG-SGE60-deta for Mo(VI) and 

Re(VII) in the presence of various coexisting cations, 0.1 g of 10MAG-SGE60-deta was 

contacted with 10 cm3 of mixed solution (5 cm3 of NiCl2·6H2O, CdCl2 or CuCl2·2 H2O and 5 

cm3 of Mo(VI) or Re(VII) single solution). The initial concentration of Mo(VI) and Re(VII) 

solutions were 0.01M and 0.005M, respectively. The ratio of metal to cation concentrations 

was 2:1 and 4:1. The experiments were performed in batch static experiments, at pH=4, and 

room temperature (298 K). After 3 h, the mixture was filtered and the Mo(VI) and Re(VII) 

concentrations in the supernatant were analyzed with ICP-OES. 

To investigate the sorption efficiency of 10MAG-SGE60-deta for Mo(VI) and Re(VII) 

in the presence of various coexisting anions, 0.1 g of 10MAG-SGE60-deta was contacted 

with 10 cm3 of mixed solution (5 cm3 of NaCl, NaNO3 or Na2SO4 and 5 cm3 of Mo(VI) or 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

8 
 

Re(VII) solution). The initial concentration of Mo(VI) and Re(VII) solutions were 0.01M and 

0.005M, respectively. The anions concentration was in the range 0.01-0.04 M. The ratio of 

metal to anions concentration was 1:2 and 1:4. The experiments were performed in batch 

static experiments, at pH=4, and room temperature (298 K). After 3 h, the mixture was 

filtered and the Mo(VI) and Re(VII) concentrations in the supernatant were analyzed with 

ICP-OES. 

For investigations of the solution ionic strength, 0.1 g of 10MAG-SGE60-deta was 

contacted with 10 cm3 of mixed solution (5 cm3 of NaCl and 5 cm3 of Mo(VI) or Re(VII) 

single solution). The initial concentration of Mo(VI) and Re(VII) solutions were 0.01M and 

0.005M, respectively. The NaCl concentration was in the range 0.005-0.01 M. The ratio of 

metal to NaCl concentration was 1:1, 1:5 and 1:10. The experiments were performed in batch 

static experiments, at pH=4 and room temperature (298 K). After 3 h, the mixture was filtered 

and the Mo(VI) and Re(VII) concentrations in the supernatant were analyzed with ICP-OES. 

In the adsorption isotherm experiments, 0.1g of 10MAG-SGE60-deta was contacted 

with 10 cm3 of Mo(VI) (Ci = 0.002; 0.005; 0.01 and 0.02M) and Re(VII) (Ci = 0.001; 0.002; 

0.005 and 0.01M) single solutions, at pH=4 and T=298 K, for 24h. 

In order to estimate the amount of leachable magnetite from the 10MAG-SGE60-deta, 

0.1 g of copolymer particles, was contacted with 10 mL of deionized water at pH 2 and 4 for 

24 h. The amount of leached magnetite was determined by ICP-OES. The experiments 

showed that there was no measurable magnetite release. 

Standard statistical methods were used to determine the mean values and standard 

deviations for each set of data. Each experiment was repeated three times or more if 

necessary. Relative standard deviations did not exceed 5.0 %. 

The amount of Mo(VI) and Re(VII) sorbed at any time t, per unit mass of the sorbent 

beads (m, g) was calculated as the difference between the initial and final concentration by 

the equation: 

m

VCC
Q ti

t

)( −
=  (2) 

Where: Qt is sorption capacity (mmol g-1), Ci and Ct are concentrations of Mo(VI) ions in the 

initial solution and in aqueous solution at time t (min), V is the volume of the aqueous phase 

(dm3). 

Distribution factor (D) and separating factor (βRe/Mo) were calculated from Equations 3 

and 4 [8]: 
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t

e

Q
D =

C  (3) 

Re
Re/Mo

Mo

D
β =

D  (4) 

Where Ce is equilibrium concentrations of Mo(VI) and Re(VII) ions. 

 

3. Results and discussion 

3.1.   Characterization of mPGME samples 

The obtained magnetic copolymer samples were sieved with 0.15, 0.30 and 0.63 mm 

sieves. The results of sieve analysis are presented in Fig. 1. 

As can be seen, the particle fraction with diameter in 0.15–0.30 mm range is highly 

dominant, with 70 mass% and 75 mass% for the samples with 2 and 10 % of magnetite, 

respectively.  

The elemental analysis of the samples 10MAG-SGE60 and 10MAG-SGE60-deta is 

presented in Table 1. The amino group concentration (CAG) of 10MAG-SGE60-deta 

calculated from the elemental analysis was 4.21 mmol g-1, while the value obtained by 

titration was 3.56 mmol g-1. This difference can be ascribed to the fact that some epoxy 

groups (and amino groups after functionalization) remain trapped inside the copolymer 

particle, being not accessible for titration [27]. 

The cumulative pore volume distribution curves for selected samples are presented in 

Fig. 2. The porosity parameters (specific pore volume, VS, specific surface area, SHg, and pore 

diameter that corresponds to half of the pore volume, DV/2) of the mPGME and mPGME-deta 

samples were calculated from the cumulative pore volume distribution curves as described in 

the literature [22] and presented Table 2. 

The increase of magnetite content in the reaction mixture from 2 to 10 mass% caused a 

shift in the pore size distribution curves of the synthesized samples towards smaller pores, 

which consequently led to the increase of SHg (for 1.6 times) and the decrease of DV/2 (for 1.8 

times). However, the influence of amino-functionalization on the porosity parameters was not 

so significant. 

In order to confirm the presence of magnetite on the outer and inner surface of hybrid 

PGMA microspheres, the FTIR spectra of 2MAG-SGE60, 10MAG-SGE60 and 10MAG-

SGE60-deta were recorded and presented in Fig. 3. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

10 
 

In the FTIR spectra of magnetic copolymer samples the characteristic absorption bands 

at ~2990 cm-1, 2950cm-1 and 2830 cm–1 [methyl and methylene stretching vibrations, 

ν(C−H)],  ~1730 cm-1 [ν(C=O)], ~1390 and 1460 cm-1 [δ(C-H)asym and δ(C-H)sym] and 1150 

cm-1 [ν(C-O-C)] were observed. Also, the epoxy peaks were found in the 2MAG-SGE60 and 

10MAG-SGE60 spectrum at ~850 and ~910 cm-1 (epoxy ring vibrations) and ~1260 cm-1 

[δ(C-H) epoxy]. 

The characteristic stretching frequencies of the amino-functionalized sample 10MAG-

SGE60-deta appeared at 3700-3050cm–1 [ν(N–H)+ν(O–H)], 1582 cm-1 [δ(NH)] and 1655 cm-

1 [δ(NH2)]. The characteristic peak at ~590 cm-1 that originates from Fe-O vibrations in 

magnetite [28] present in the spectra of 2MAG-SGE60 (weak peak), 10MAG-SGE60 and 

10MAG-SGE60-deta confirms the incorporation of magnetite nanoparticles onto the 

mPGME microspheres. 

The morphology of particle surface and cross-section for selected magnetic samples 

was examined by SEM analysis (Fig. 4. and Fig. 5.). For further analysis, the energy-

dispersive X-ray spectroscopy (SEM-EDS) was performed on both surface and cross-section 

of 2MAG-SGE60, 10MAG-SGE60 and 10MAG-SGE60-deta particles. The results were 

presented in Fig. 4. and Table 3. 

These micrographs clearly demonstrate three dimensional porous structure of the 

samples, composed of a large number of globules and interconnected with channels and 

pores. Highly developed internal porous structure decreases the mass transfer resistance, 

facilitates the diffusion of metal ions and consequently provides high adsorption rate and 

capacity [29]. The SEM-EDS analysis confirmed the presence of all expected elements (C, O, 

N and Fe). As can be seen, the N percentage was higher on the particles surface then in the 

cross-section indicating that the reaction of epoxy groups with diethylene triamine occurs 

predominantly on the particle surface. 

Surface characterization with scanning electron microscopy indicates that, although 

predominantly present at the particle surface, the iron nanoparticles were also embedded in 

the bulk to a certain extent. 

Fig. 6. shows the TEM micrographs of magnetic 2MAG-SGE60 and 10MAG-SGE60 

samples. 

The TEM images show a distribution of dark magnetic nanoparticles throughout the 

gray copolymer matrix. Similar was reported for magnetic nanocomposite based on 
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functionalized cross-linked poly(methylacrylate) [30] and magnetic porous poly(MMA-co-

DVB) microspheres [31]. 

The magnetization measurements of mPGME samples having 2% and 10% mass 

content of magnetite nanoparticles were performed at room temperature (300 K) on a 

SQUID-based magnetometer in the ± 5T field range. The so recorded M–H curves for 

samples 2MAG-SGE60 and 10MAG-SGE60 are presented in Fig. 7. 

Both mPGME samples showed superparamagnetic behavior with negligible hysteresis 

loop. Magnetization curves showed an expected increase in the magnetization value with 

increasing magnetite content. The obtained values of saturation magnetization (1.2 and 5.8 

emu g-1 for samples 2MAG-SGE60 and 10MAG-SGE60, respectively) and their ratio close to 

1:5 showed that nominal magnetite content has been achieved in the synthesized composites. 

This ratio also points to the fact that magnetite nanoparticles do not agglomerate within 

mPGME particles thus preserving favorable superparamagnetic behavior.    

 

3.2.   Molybdenum (VI) and rhenium (VII) sorption on mPGME-deta 

It is generally known that initial pH of the sorbate/sorbent system is a critical process 

parameter because the aqueous chemistry and the surface binding sites of the sorbent are 

dependent on the pH value of the mixture. In aqueous solution, perrhenate species (ReO4
−) 

shows stability in pH range 1–10, however, the structure of Mo(VI) strongly depends on pH 

values and the total metal concentration [9]. In pH range pH 2-6, heptamolybdate anion 

Mo7O24
6− predominates in aqueous solutions [32]. This polyanion can be protonated at low 

pH values forming polynuclear hydrolyzed species such as Mo7O21(OH)3
3−, Mo7O22(OH)2

4− 

and Mo7O23(OH)5− . In alkaline and neutral aqueous solutions, molybdenum oxyanions exist 

in the form of monomeric [MoO4]
2− ion. 

The functional groups and pHPZC of the sorbent surface are important because they 

indicate the acidity/basicity of the sorbent, i.e. the surface charge of the sorbent, which in turn 

is influenced by the solution pH. To determine the pHPZC of the initial and amino-

functionalized magnetic copolymer samples 10MAG-SGE60 and 10MAG-SGE60-deta the 

pH drift method was used and the experimental results are shown in Fig. 8. 

The pHPZC is the point where the curve of pHf vs. pHi intersects the line pHi = pHf. The 

pHPZC values of 10MAG-SGE60 and 10MAG-SGE60-deta determined by the pH drift 

method were 6.0 and 7.2, respectively. As already observed, when the solution pH was lower 

than pHPZC, the removal of oxyanions was relatively high, possibly due to the presence of 
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more positive charges on the PGME-deta surface [33]. Namely, at acidic pH values, the 

attraction between the protonated amino groups of mPGME-deta and the Mo(VI) and Re(VII) 

oxyanions could be expected. In contrast, negatively charged sorbent surface sites do not 

promote the anions sorption, due to the electrostatic repulsion. Also, the pKa value of amine 

groups typically lies within the range 8–10 [34], implying that the amine groups are fully 

protonated at pH< 5 and that the extent of protonation slowly decreases with the increase in 

pH.  

The effect of pH on the Re(VII) and Mo(VI) sorption from mixed solutions was 

investigated by varying pH in the range 1-8 and the results were presented in Fig. 9. 

As seen from Fig. 9. the similar sorption profiles were obtained for both sorption times, 

180 min and 24 h. The maximum Mo(VI) and Re(VII) sorption capacities were attained at pH 

2.0 and declined with further pH increase. Due to the fact that the separating factor (βRe/Mo) 

reached its maximum at pH 4.0, all further tests were conducted at this pH value.  

In order to study the selectivity of 10MAG-SGE60-deta for Re(VII) sorption from 

the Mo(VI)/Re(VII) mixed solutions, the experiments with different Re:Mo molar ratio (1:2, 

1:4, 1:10 and 1:20) were performed. Also, the effect of time for pH 2.0, 4.0 and 6.0 value on 

the sorbent selectivity was studied for Re:Mo molar ratio (1:2) and the results were presented 

in Table 4. The selectivity for Re(VII) sorption was expressed through the separation factor, 

βRe/Mo. 

The selectivity for Re(VII) sorption expressed through βRe/Mo shows increase with the 

increase of initial Mo(VI) concentration and reaches the maximum at Re:Mo=1:20. At the 

lowest Re:Mo ratio (1:2) βRe/Mo shows undesired variations within contact time of 30 minutes, 

time too short for equilibrium sorption. According to obtained results 180 min would be 

sufficient to attain equilibrium which is considered as adequate and economical for 

wastewater treatment [35]. 

 

3.3.    Effect of coexisting background cations and anions 

The effect of coexisting background anions and cations on Mo(VI) and Re(VII) 

sorption capacity examined by using three anions (Cl−, NO3
− and SO4

2−) and three divalent 

(Ni2+, Cd2+ and Cu2+) cations are presented in Fig. 10 and Fig. 11. The alkali and alkaline 

earth metals (such as Na+, Mg2+ and Ca2+, i.e. the common ions in natural waters) were not 

used as background cations. Namely, amino-functionalized PGME is selective towards heavy 

metals and exhibits low (or none) sorption of alkali and alkaline earth metals. 
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As can be seen, the molybdate and perrhenate sorption is affected by the background 

anions and cations. The background anions compete with Mo(VI) and Re(VII) oxyanions for 

available binding sites on the 10MAG-SGE60-deta thus reducing the sorption of molybdate 

and perrhenate anions to some degree. The most pronounced effect i.e. significant reduction 

of sorption capacity was observed in the presence of SO4
2-. The competition of Ni2+, Cd2+ and 

Cu2+with molybdate and perrhenate anions for adsorption sites of 10MAG-SGE60-deta 

resulted in the increase of Mo(VI) and Re(VII) sorption capacities. 

 

3.4.    Effect of ionic strength 

The ionic strength of an aqueous solution is a very important parameter that influences 

the metal ions sorption at the solid–liquid interface [36]. The effect of ionic strength on 

Mo(VI) and Re(VII) sorption at different NaCl concentrations is shown in Fig. 12. 

From the obtained equilibrium results a decrease in Re(VII) and Mo(VI) sorption onto 

10MAG-SGE60-deta by increasing the ionic strength can be noticed, which could be 

ascribed to the decrease of positive charge of 10MAG-SGE60-deta surface, resulting in a 

lower attraction molybdenum and perrhenate anions [37]. 

 

3.5.    Sorption isotherms 

In order to determine model that is most appropriate to describe obtained equilibrium 

data, the sorption isotherms presented in Fig. 13 were analyzed with the linear Langmuir, 

Freundlich [38] and Tempkin [39] equations: 

max max

1e e

e L

C C

Q Q K Q
= +

 
(5) 

1
ln ln lne F eQ K C

n
= +

 

(6) 

ln lne T e
T T

RT RT
Q K C

b b
= +

 
(7) 

where Qe and Ce are the amount of sorbed metal ions and equilibrium concentration of 

Mo(VI) and Re(VII), Qmax is the monolayer capacity of the adsorbent, KL is the Langmuir 

isotherm constant, KF and n are the Freundlich constant and isotherm exponent, bT is constant 

related to the heat of adsorption from Tempkin isotherm model respectively. 
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The characteristics of Langmuir isotherm can be expressed by dimensionless constant called 

Langmuir equilibrium parameter RL given in Eq. 8: 

0

1

1L
L

R
K C

=
+

 (8) 

where C0 is the initial concentration of Mo(VI) and Re(VII). The value of RL indicates the 

type of the isotherm either to be unfavorable (RL > 1), linear (RL = 1), favorable (0 < RL < 1) 

or irreversible (RL = 0). 

Although the regression coefficients (R2) (Table 5) were high for all investigated 

linearized isotherm models, it can be concluded that Langmuir model is the most appropriate 

for the Mo(VI) and Re(VII) sorption onto 10MAG-SGE60-deta assuming monolayer 

adsorption at specific homogenous sites. The RL values for Mo(VI) and Re(VII) sorption 

were in the range of 0.09 to 0.60 and 0.04 to 0.30, respectively at 298K, indicating that the 

sorption of Mo(VI) and Re(VII) onto 10MAG-SGE60-deta is favorable. The maximum 

adsorption capacities for Mo(VI) and Re(VII) calculated by the Langmuir equation are given 

in Table 5. 

 
3.6.    FTIR analysis 

The FTIR spectra of the sample with adsorbed Mo(VI) and Re(VII) ions 10MAG-

SGE60-deta/Mo(VI)/Re(VII) was recorded in the frequency range of 4000-400 cm-1 and 

presented in Fig. 14. 

The bands for ester vibrations at ~1720 cm-1 [ν(C=O)], the bands characteristic for the 

crosslinked copolymer at ~1160 cm-1 [ν(C−O)], ~1450 cm-1 [δ(CH)2], 2990 cm-1, ~2950 cm-1 

and 2830 cm–1 [methyl and methylene stretching vibrations, ν(C−H)] as well as the 

characteristic peak for Fe-O vibrations at ~590 cm-1 can be observed in 10MAG-SGE60-

deta/Mo(VI)/Re(VII) spectra [40]. The disappearance of the peak at 1580 cm–1 [δ(NH)], as 

well as the shift of the δ(NH2) peak from ~1670 cm–1 to ~1650 cm–1 observed in the 10MAG-

SGE60-deta/Mo(VI)/Re(VII) spectra clearly indicate the Mo(VI) and Re(VII) binding to 

amino-groups of 10MAG-SGE60-deta. According to Golcuk et al. the binding with the metal 

alters the hybridization type around nitrogen and weakens NH bond [41]. According to Jin 

and Bai, this can suggest that O atoms in –OH groups might also be involved in metal ions 

sorption, yet in a lower extent then N atoms [42]. The most significant part of the FTIR 

spectra regarding Mo(VI) and Re(VII) binding is positioned in the 1000–700 cm−1 region 

(Me-O absorption bands). The clear evidence of the Mo(VI) and Re(VII) binding to 10MAG-
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SGE60-deta/Mo(VI)/Re(VII) is the appearance of strong υ(Me=O) band detected at 910 cm−1 

and medium υ(Me−O) bands at 750 cm−1 and 640 cm−1 [43,44]. 

 

3.7.    XPS analysis 

XPS analysis was used to investigate the changes in the elemental and chemical 

composition and functional groups of the samples surface prior and after sorption of Mo(VI) 

and Re(VII) ions. 

Fig. 15(a) illustrates the XPS wide scan spectra of 10MAG-SGE60-deta and 10MAG-

SGE60-deta/Mo(VI)/Re(VII) over a wide binding energy range from 0 to 900 eV showing 

surface elemental composition. As expected, C1s, O1s, N1s and Fe2p were identified in the 

XPS wide scan spectra of sample 10MAG-SGE60-deta. The presence of Mo3d and Re4f 

peaks indicates molybdenum and rhenium ions bonding with reactive sites onto the sorbent.  

The Fe2p core-level spectrum of sample 10MAG-SGE60-deta (Fig. 15(b)) shows two 

peaks at around 710.5 eV and 724.6 eV which are related to Fe2p3/2 and Fe2p1/2 respectively, 

indicating the formation of Fe3O4 [45]. Fig.15(c) shows the O1s high resolution (HRES) 

spectrum of sample 10MAG-SGE60-deta. The O1s core-level spectrum was fitted into two 

components having binding energies (BEs) at 529.9 eV for Fe3O4 (O1s lattice oxide) [46] and 

peak at 532.4 eV which corresponds to C=O, C-OH and C-O-C. 

In order to reveal more about the interaction between metal ions and amino groups, 

HRES spectra of   C1s, N1s (Fig. 16), Mo3d (Fig. 17(a)) and Re4f (Fig. 17(b)) were 

measured. The peaks of both samples in the C1s core-level spectrum (Fig. 16(a) and 

Fig.16(b)) were fitted into two components at 284.7 and 286.8 eV corresponding to C-C and 

C-O/C-NHx, respectively [47,48]. It was observed that the intensity of C-O/C-NHx location of 

the peak had a shift to 286.6 eV, which indicates that C-NHx is involved in the sorption of 

metal ions onto the adsorbent. The N1s core-level spectrum of sample 10MAG-SGE60-deta 

(Fig. 16(c)) has a nitrogen peak positioned at 398.8 eV assigned to non-protonated (NH2) 

amino groups [48]. The spectra of 10MAG-SGE60-deta/Mo(VI)/Re(VII) (Fig. 16(d)) 

exhibited two peaks, i.e. peak for amino group at 398.5 eV and a new peak at 414.7 eV 

assigned to N–O bond [7]. 

The Mo3d core-level spectrum of sample (Fig. 17(a)) was fitted into two components 

for Mo3d5/2 at 231.8 eV and 229.4 eV indicating molybdenum binding with reactive sites 

onto the 10MAG-SGE60-deta surface. The first peak can be ascribed to Mo5+ [49], and the 

second one to MoO2 phase [50].  
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The Re4f narrow scan XPS spectra of 10MAG-SGE60-deta/Mo(VI)/Re(VII) (Fig. 

17(b)) shows Re4f5/2 and Re4f7/2 doublet positioned at 45.7 eV and 39.2 eV indicating 

perrhenate binding with reactive sites onto the 10MAG-SGE60-deta surface. The more 

intense Re 4f7/2 peak can be deconvoluted into three components at 44.8, 46.6 and 48.1 eV 

which indicates the complexation and the existence of rhenium different oxidation states in 

the sample [4,51–53]. 

 

4. Conclusion 

In this study, magnetic macroporous crosslinked copolymers of glycidyl methacrylate 

(GMA) and ethylene glycol dimethacrylate (EGDMA) samples (mPGME) with different 

magnetite content were synthesized and functionalized with diethylene triamine (mPGME-

deta). Samples were characterized by elemental analysis, mercury porosimetry, scanning 

electron microscopy with energy-dispersive X-ray spectroscopy, transmission electron 

microscopy and SQUID magnetometry. The influence of pH, ionic strength and possible 

interfering of cations and anions was investigated. Obtained results indicate that 92 % of 

Re(VII) and 98 % of Mo(VI) were sorbed at pH 2. It was observed that Mo(VI) and Re(VII) 

sorption is affected by the background anions and cations, as well as ionic strength. 

Equilibrium data were analyzed with Langmuir, Freundlich and Tempkin adsorption isotherm 

models. Langmuir model is the most appropriate for the Mo(VI) and Re(VII) sorption onto 

10MAG-SGE60-deta assuming monolayer adsorption at specific homogenous sites. FTIR 

and XPS analysis spectra confirmed Mo(VI) and Re(VII) binding to amino-groups in 

mPGME-deta, suggesting that O atoms in –OH groups might also be involved in metal ions 

sorption. SEM-EDS results show that although predominantly present at the particle surface, 

the iron nanoparticles were also embedded in the bulk to a certain extent. The TEM images 

show a uniform distribution of dark magnetic nanoparticles throughout the gray copolymer 

matrix. The magnetization measurements showed superparamagnetic behavior with 

negligible hysteresis loop and an expected increase in the magnetization value with 

increasing magnetite content. The ratio of saturation magnetization values obtained for 

2MAG-SGE60 and 10MAG-SGE60 close to 1:5 suggests that nominal magnetite content has 

been achieved as well as that magnetite nanoparticles do not agglomerate within mPGME 

particles thus preserving favorable superparamagnetic behavior. 
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Figure captions 

Fig. 1. Sieve analysis of mPGME samples. 

Fig. 2. Cumulative pore volume distribution curves for (a) 2MAG-SGE60, (b) 10MAG-

SGE60 and (c) 10MAG-SGE60-deta. 

Fig. 3. FTIR spectra of (a) 2MAG-SGE60, (b) 10MAG-SGE60 and (c) 10MAG-SGE60-deta. 

Fig. 4. SEM microphotographs of particle surface and SEM/EDS spectra for (a) 2MAG-

SGE60, (b) 10MAG SGE-60 and (c) 10MAG-SGE60-deta (magnification 5000x). 

Fig. 5. SEM microphotographs of particle cross-section for 2MAG-SGE60 (a), 10MAG 

SGE-60 (b) and 10MAG-SGE60-deta (c) (magnification 20000x). 

Fig. 6. TEM images of magnetic samples: (a) 2MAG-SGE60 and (b) 10MAG-SGE60. 

Fig. 7. Magnetic hysteresis curves of 2MAG-SGE60 and 10MAG-SGE60 recorded at 300 K. 

Inset: 10MAG-SGE60 precipitate completely attracted by the external permanent magnet. 

Fig. 8. Point of zero charge (pHpzc) of 10MAG-SGE60 and 10MAG-SGE60-deta 

determined by the pH drift method. Standard errors are shown as vertical error bars. 

Fig. 9. Effect of pH on the sorption Mo(VI) and Re(VII) capacity onto 10MAG-SGE60-deta 

and separating factor (βRe/Mo) for 10MAG-SGE60-deta for (a) 180 min and (b) 24 h (T= 298 

K, Mo(VI): Ci = 0,01M and Re(VII): Ci = 0.005 M). Standard errors are shown as vertical 

error bars. 

Fig. 10. Effects of background anions on Re(VII) (a) and Mo(VI) (b) sorption onto 10MAG-

SGE60-deta (metal to anions concentration ratio 1:2 and 1:4, Ci = 0.01M for Mo(VI), Ci 

=0.005M for Re(VII), pH=4, T= 298 K, t=3 h). 

Fig. 11. Effects of background cations on Re(VII) (a) and Mo(VI) (b) sorption onto 10MAG-

SGE60-deta (metal to cations concentration ratio 4:1 and 10:1, Ci = 0.01M for Mo(VI), Ci 

=0.005M for Re(VII), pH=4, T= 298 K, t=3 h). 

Fig. 12. Effect of NaCl concentration on Re(VII) and Mo(VI) (inset figure) sorption onto 

10MAG-SGE60-deta (Ci = 0.01M for Mo(VI), Ci =0.005M for Re(VII), ratio of metal to 

NaCl concentration was 1:1, 1:5 and 1:10, pH=4, T= 298 K, t=3 h). Standard errors are 

shown as vertical error bars. 

Fig. 13. Sorption isotherms for Re(VII) and Mo(VI) (inset figure) sorption on 10MAG-

SGE60-deta (conditions: T=298 K, pH=4, t=24h, C0 [Mo(VI)]= 0.002; 0.005; 0.01 and 

0.02M, C0 [Re(VII)]= 0.001; 0.0025; 0.005 and 0.01M). Standard errors are shown as vertical 

error bars. 
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Fig. 14. FTIR spectra of (a) 10MAG-SGE60-deta and (b) 10MAG-SGE60-

deta/Mo(VI)/Re(VII).  

Fig. 15. Wide scan XPS spectra of 10MAG-SGE60-deta and 10MAG-SGE60-

deta/Mo(VI)/Re(VII) (a), HRES Fe2p core-level spectrum (b) and HRES O1s core-level 

spectrum (c) for 10MAG-SGE60-deta. 

Fig. 16. HERS  spectra (a) C1s of 10MAG-SGE60-deta, (b) C1s of 10MAG-SGE60-

deta/Mo(VI)/Re(VII), (c) N1s of 10MAG-SGE60-deta, (d) N1s of 10MAG-SGE60-

deta/Mo(VI)/Re(VII). 

Fig. 17. HERS spectra (a) Mo3d and (b) Re4f of 10MAG-SGE60-deta/Mo(VI)/Re(VII). 
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Table 1 Elemental analysis of 10MAG-SGE60 and 10MAG-SGE60-deta. 

Sample Found 

% C % H % N 

10MAG-SGE60 51.4±0.103 6.1±0.012 - 

10MAG-SGE60-deta 50.9±0.102 7.4±0.015 5.9±0.012 
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Table 2 Porosity parameters of 2MAG-SGE60, 10MAG-SGE60 and 10MAG-SGE60-deta. 

Sample Vs, cm3g-1 Ss, m
2g-1 DV/2, nm 

2MAG-SGE60 1.14 42 182 

10MAG-SGE60 1.08 67 100 

10MAG SGE60-deta 0.99 59 104 
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Table 3 Results of SEM-EDS analysis of 2MAG-SGE60, 10MAG-SGE60 and 10MAG-SGE60-deta particle surface and cross-section. 

 2MAG-SGE60 10MAG-SGE60 10MAG-SGE60-deta 

Element 

Particle surface Cross-section Particle surface Cross-section Particle surface Cross-section 

Weight 

% 

Atomic 

% 

Weight  

% 

Atomic 

 % 

Weight 

% 

Atomic 

% 

Weight 

% 

Atomic 

% 

Weight 

% 

Atomic 

% 

Weight 

% 

Atomic 

% 

C-K 60.1 67.9 63.9 69.6 45.5 57.9 70.3 77.0 61.2 67.7 75.6 80.4 

O-K 37.0 31.4 36.6 30.3 38.0 37.1 27.3 22.4 21.4 17.8 14.9 11.9 

N-K - - - - - - - - 14.5 13.7 8.1 7.4 

Fe-K 2.9 0.71 0.49 0.12 16.5 5.0 2.4 0.61 2.9 0.70 1.5 0.39 
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Table 4 Selective sorption of Re(VII) and Mo(VI) from mixed solutions (pH=4.0, 298 K, 

Mo(VI): Ci = 0.01, 0.02, 0.05 and 0.1 M, Re(VII): Ci = 0.005 M). 

  βRe/Mo 

pH=4 Re:Mo=1:2 2.6 

 Re:Mo=1:4 1.7 

 Re:Mo=1:10 3.8 

 Re:Mo=1:20 8.4 

  βRe/Mo 

  pH=2 pH=4 pH=6 

Re:Mo=1:2 5 min 1.9 0.8 3.3 

 15 min 1.6 0.7 4.0 

 30 min 1.7 1.9 2.8 
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Table 5. Langmuir, Freundlich and Tempkin adsorption isotherm parameters, correlation 

coefficients and Qmax values for Mo(VI) and Re(VII) sorption on 10MAG-SGE60-deta at 298 K. 

 

Models Parameters 
Metal 

Mo(VI) Re(VII) 
Langmuir Qmax, mmol g-1 1.55 0.272 

KL, L mmol-1 0.514 2.89 
R2 0.986 0.986 

Freundlich n 1.70 3.73 
KF, (mmol g-1)/(mmol L-1)1/n 0.433 0.172 
R2 0.977 0.956 

Tempkin BT·103 8.94 63.5 
KT, L mmol-1 8.82 118 
R2 0.963 0.974 
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Highlights 

• Magnetic macroporous copolymer samples were prepared by suspension 

copolymerization 

• Amino-functionalized sample was tested as Mo(VI) and Re(VII) oxyanions sorbent 

• Sorption was studied in batch competitive experiments, in the pH range 1-8, at 298 K 

• Results indicate that 92 % of Re(VII) and 98 % of Mo(VI) were sorbed at pH 2 

 

 


