Serbian Ceramic Society Conference ADVANCED CERAMICS AND APPLICATION II New Frontiers in Multifunctional Material Science and Processing

Serbian Ceramic Society Institute of Chemistry Technology and Metallurgy Institute for Technology of Nuclear and Other Raw Mineral Materials Institute for Testing of Materials Archeological Institute of SASA

PROGRAM AND THE BOOK OF ABSTRACTS

Serbian Academy of Sciences and Arts, Knez Mihailova 35 Sep 30th - Oct 1st, 2013, Belgrade, Serbia

Book title: Serbian Ceramic Society Conference - ADVANCED CERAMICS AND APPLICATION II: Program and the Book of Abstracts

Publisher:

Serbian Ceramic Society

Editors:

Prof.dr Voja Mitić Dr Nina Obradovic Dr Lidija Mančić

Technical Editor:

Dr Lidija Mačić

Printing:

Serbian Academy of Sciences and Arts, *Knez Mihailova 35, Belgrade* Format *Pop Lukina 15, Belgrade*

Edition:

100 copies

Mosaics: Original Format 30x40 cm Mirjana Milić, Vladimir Skerlić, Maja Opačić, Maša Nicić, Nina Nicić, Milica Konstantinović, Marjan Vesić - Academy od SOC for Fine Arts and Conservation

CIP - Каталогизација у публикацији Народна библиотека Србије, Београд

666.3/.7(048) 66.017/.018(048)

SERBIAN Ceramic Society. Conference (2; 2013; Beograd)

Advanced Ceramics and Application : new frontiers in multifunctional material science and processing : program and the book of abstracts / II Serbian Ceramic Society Conference, Sep 30th-Oct 1st, 2013, Belgrade, Serbia ; organized by Serbian Ceramic Society... [et al.] ; [editors Vojislav Mitić, Nina Obradović, Lidija Mančić]. - Belgrade : Serbian Ceramic Society, 2013 (Belgrade : Serbian Academy of Sciences and Arts). - XVI, 61 str. ; 30 cm

Tiraž 100.

ISBN 978-86-915627-1-7 1. Serbian Ceramic Society (Beograd) а) Керамика - Апстракти b) Наука о материјалима - Апстракти с) Наноматеријали - Апстракти COBISS.SR-ID 201203212 spectroscopy and the incorporation of TMA in the smectite structure was confirmed. Cyclic voltammetry was used for electrochemical investigation. The presence of TMA increased the current density of the *p*-NP oxidation wave in comparison with the oxidation signals obtained using a Na-enriched based electrode. It can be assumed that the increased electrochemical activity of TMA-S based electrodes toward *p*–NP oxidation was achieved due to the adsorption of *p*–NP on the electrode surface, since the adsorption commonly precedes the electro-oxidation process. The adsorption of *p*–NP was favored by the presence of TMA.

P23

Characterization of mechanochemically synthesized CaO·ZnO[·]K₂CO₃

Željka Kesić¹, Ivana Lukić¹, Miodrag Zdujić², Čedomir Jovalekić³, Yong Shao⁴, Hui Liu⁴, Dejan Skala⁵

¹University of Belgrade, Faculty of Technology and Metallurgy, Belgrade, Serbia
²Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
³University of Belgrade, Institute for Multidisciplinary Research, Belgrade, Serbia
⁴University of Geosciences, School of Environmental Studies, Wuhan, PR China
⁵University of Belgrade, IChTM Center for Catalysis and Chemical Engineering, Belgrade, Serbia

The mixed oxide of CaO·ZnO and K₂CO₃ were prepared by ball milling of CaO and ZnO powders and water, with addition of K₂CO₃ and afterward by calcination at 700 °C. Influence of different molar ratio of K₂CO₃ and CaO (x=1, 2 and 4 moles of K₂CO₃ per 10 moles of CaO) was studied. The prepared samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), infrared spectroscopy (FTIR), scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS) and the particle size laser diffraction (PSLD) distribution. The addition of smaller amount of K₂CO₃ at the beginning of ball miling $(x \le 2)$, favors the formation of calcium zinc hydroxide hydrate, while it is not the case when K_2CO_3 larger addition was used (x > 2). A larger amount of potassium carbonate in the initial composition of powder mixture negatively affected formation of CaZn₂(OH)₆·2H₂O. Bimodal distribution were detected for all samples after calcination at 700 °C and the results showed that the distribution of elements in the bulk is not homogeneous and that surface of formed mixed oxide CaO²ZnO (XPS analysis) after calcination is mainly covered by potassium species. That evidence indicate that the K₂CO₃ was not fully incorporated into the matrix. Prepared samples could be used for methanolysis of vegetable oil and fatty acid methyl esters (FAME, i.e. biodiesel) synthesis.