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Phanerochaete chrysosporium cellobiose dehydrogenase was cloned and expressed in S.cerevisiae. 

Enzymatic assay in microtiter plates based on 2,6-dichloroindophenol was optimized. 

Several mutants of cellobiose dehydrogenase with increased activity were found.  

Recombinant cellobiose dehydrogenases were purified and characterized. 

 

Abstract 

 

Cellobiose dehydrogenase (CDH) can be used in industry for lactobionic acid production, as a part of 

biosensors for disaccharides and in wound healing. In fungi it is involved in lignocellulose degradation. 

CDH gene from Phanerochaete chrysosporium has been cloned in pYES2 plasmid for extracellular 

expression and protein engineering in yeast Saccharomyces cerevisiae InvSC1 for the first time. A CDH 

gene library was generated using error-prone PCR and screened by spectrophotometric enzymatic assay 

based on 2,6-dichloroindophenol reduction detection in microtiter plates. Several mutants with increased 

activity and specificity towards lactose and cellobiose were found, purified and characterized in detail. 

Recombinant CDH enzymes showed a broad molecular weight between 120 and 150 KDa due to hyper-

glycosylation and the best S137N mutant showed 2.2 times increased kcat and 1.5 and 2 times increased 

specificity constant for lactose and cellobiose compared to the wild type enzyme. pH optimum of mutants 

was not changed while thermostability of selected mutants improved and S137N mutant retained 30% of 

it’s original activity after 15 minutes at 70oC compared to 10% of activity that the wild type enzyme 

retained.  Mutants M65S and S137N showed also 1.6 and 1.5 times increased productivity of hydrogen 

peroxide in the presence of 30mM lactose compared to the wild type. 

 

Keywords: cellobiose dehydrogenase, directed evolution, lactose, Saccharomyces cerevisiae 

 

1. Introduction 
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Cellobiose dehydrogenase (CDH; E.C. 1.1.99.18; is an extracellular oxidoreductase enzyme produced by 

many white-rot fungi [1], including well explored Phanerocaete chrysosporium. The fungus secretes CDH 

when cellulose is the main nutrient carbon source [2]. CDH oxidizes the reducing end of cellobiose, a 

product of cellulose biodegradation and cello-oligosaccharides to their corresponding 1,5-lactones, which 

are subsequently hydrolyzed to the carboxylic acids in aqueous environments using variety range of 

electron acceptors. CDH, in addition to cellobiose, oxidizes a few other sugars, mostly β-1, 4-linked 

disaccharides with a β-glucose moiety at their reducing end [3]. CDH is an enzyme with one subunit that 

has two distinct domains, one that contains FAD and cytochrome b type heme domain connected to short 

linker region [4].  

The function of CDH is not completely understood. CDH can enhance both cellulose and lignin degradation 

even though the enzyme is not an essential component of the lignocellulose-degrading enzyme complex [3, 

5]. CDH has specificity for β-1,4-linked disaccharides that could enable a range of applications in 

biosensors, bioremediation [1] or biocatalysis. CDH can also be used as a coupling enzyme in colorimetric 

assays [6] and in amperometric biosensors for lactose detection [7]. 

Studies for production of recombinant CDH enzyme in Pichia pastoris showed that this yeast is suitable 

for high-level enzyme production [8]. Aside from protein heterologous expression in Pichia pastoris there 

is a report of successful production of recombinant CDH`s flavin domain in Escherichia coli [9]. Professor 

Sode and his team showed that by expression of CDH`s flavin domain in E.coli protein engineering studies 

of CDH can be performed in prokaryotes as well.  

Heterologous expression of cdh gene in. P. pastoris was done, but use of P. pastoris in directed evolution 

of CDH and high-throughput screening is not favorable because of a low transformation efficiency [8]. Due 

to higher transformation efficiency, Saccharomyces cerevisiae was used instead of P. pastoris as an 

expression system for directed evolution of enzymes that cannot be functionally expressed in prokaryotic 

organisms like glucose oxidase [10], α-amylase [11], laccase [12] and peroxidase [13]. Successful use of S. 
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cerevisiae expressing Myriococcum thermophilum CDH in directed evolution was recently reported by 

Sygmund et al [14]. 

Saccharomyces cerevisiae is a model system for heterologous expression of eukaryotic proteins. E. coli can 

be used as the host for many eukaryotic proteins, but proteins produced from eukaryotic genes in E.coli can 

differ from the normal gene product and lack biological function or they can be insoluble until some 

chemical modification is applied [15]. S.cerevisiae has an advantage over bacteria because it has a secretion 

system similar to higher eukaryotic systems [16], which can be manipulated to produce heterologous 

proteins. The ease of genetic manipulation as well as its accessibility as a production organism, has made 

S. cerevisiae a preferred organism for production of many eukaryotic proteins. Directed evolution involves 

iterative rounds of diversity generation and screening that allows the selection of enzymes with desired 

improved properties [17, 18]. Due to the above mentioned properties, the most desired host for directed 

evolution of eukaryotic proteins is S. cerevisiae [19]. 

The main goal of this article was to clone Phanerochaete chrysosporium cdh gene in S. cerevisiae for 

heterologous expression, so that it can be used in directed evolution of CDH enzyme in order to increase 

its activity and specificity, making it more attractive as a biocatalyst for applications in biosensors and 

biocatalysis. 

 

2. Materials and methods 

 

2.1. Microbial strains and vectors  

 

S.cerevisiae strain INVSc1 (MATa his3D1 leu2 trp1-289 ura3-52) was purchased from Invitrogen 

(Invitrogen BV, Groningen, The Netherlands). Protocols and media for INVSc1 were described in pYES2 

manual [20, 21]. E.coli DH5α strain was chemically transformed. PCR amplified products were cloned in 

pYES2 vector (Invitrogen). 
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2.2. Cloning of cdh gene in vector 

 

The P. chrysosporium CDH gene (U46081.1) was synthetized by GenScript USA Inc. PCR was used for 

gene amplification using forward primer EcoRI_fp_AF (5`-ATC GAA TTC ATG AGA TTT CCT TCA 

ATT TT-3`) and reverse primer XbaI_rp_CBDH1 (5`-ATC TCT AGA TCA AGG ACC TCC CGC AAG 

CG-3`). Before insertion in vector, PCR product and pYES2 vector (Invitrogen) were both digested with 

enzymes EcoRI and XbaI. E.coli DH5α strain was used as a host for cloning the recombinant vector.  

 

2.3. Expression of recombinant enzyme 

 

S.cerevisiae INVSc1 cell was transformed with pYES2-cdh plasmid DNA. The vector pYES2 without 

insert was also used for transformation of competent S.cerevisiae cells and used as a control. Transformed 

colonies were picked from YNB-CAA plates supplemented with glucose (Glc) and transferred to YNB-

CAA plates supplemented with galactose (Gal). Positive colonies identified in the DCIP overlay assay were 

inoculated into YNB-CAA /Glc liquid medium and incubated for 48h at 30ᵒC, 250rpm. Expression of CDH 

was induced by diluting grown cells till OD 0.4 [20] with induction media (YNB-CAA/Gal medium) and 

incubating the culture as above for various durations to optimize the expression protocol. Samples were 

analyzed hourly for CDH activity using DCIP assay. 

 

2.4. Agar plate assay 

 

YNB-CAA /Gal plates with grown colonies were used and 20mL of molten 2% agar containing 0.15mM 

cellobiose, 0.78mM K3[Fe(CN)6] and 0.16mM NH4Fe(SO4)2 in 0.1 M Na-acetate buffer (pH 4.0), cooled 

to 40ᵒC was added [22]. After cooling, the plates were incubated 4h at room temperature and monitored for 
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the development of a blue halo around yeast colonies. Another agar plate assay was used. YNB-CAA / Gal 

plates with grown colonies were overlaid with cooled to 40ᵒC, 20mL of molten 2% agar containing 30mM 

lactose, 0.3mM 2,6-Dichloroindophenol (DCIP; Sigma chemicals) in 0.1M Na-acetate buffer (pH 4.5). 

CDH producing transformants were identified by the presence of colorless halo around the S.cerevisiae 

colonies on plates overlaid with DCIP, resulting from CDH activity. 

 

2.5. Enzyme purification 

 

Recombinant CDH produced by S.cerevisiae was harvested 16h after induction. Culture was grown in 1L, 

centrifuged (3000xg for 30 min) and cell free supernatant was concentrated on Vivaflow50 ultrafiltration 

cell with cut off 50kDa (Vivaflow50, Sartorius AG, Goettingen, Germany) and buffered with 10mM sodium 

phosphate pH 6.0. The concentrate was dialyzed against same the buffer and applied to HiTrap DEAE FF 

5mL column equilibrated with the same buffer. wtCDH was eluted with 0-0.6M NaCl linear gradient in the 

same buffer. Fractions containing wtCDH activity were pooled and concentrated, and further purified on 

the same column with the same conditions. Fractions with wtCDH activity were pooled and dialyzed against 

10mM sodium phosphate pH 6.0 buffer and applied to HiTrap DEAE FF 5mL column equilibrated with 

the same buffer. Elution was done as with previous chromatography and fractions were pooled and stored 

at 4°C. 

2.6. Enzyme activity assay 

 

Assay for measuring CDH activity was accomplished with modified DCIP assay [23]. Reaction was set 

with 0.3mM DCIP, 30mM lactose, and 0.1 M sodium acetate pH 4.5, at 25°C in total reaction volume of 

1mL. Reaction was started by adding purified CDH and reduction of DCIP was followed by measuring 

absorbance decrease at 520nm (ε520=6.80 mM-1 cm-1). Linear range of the slope was used for CDH activity 

ACCEPTED M
ANUSCRIP

T



7 

 

determination. One unit of enzyme activity is defined as the amount of enzyme that reduces 1µmol of DCIP 

per minute under the above mentioned conditions [23].  

 

2.7. Polyacrylamide gel electrophoresis and zymography analysis  

 

The molecular mass and homogeneity of the enzyme preparation were determined by polyacrylamide (10%) 

vertical gel electrophoresis in 0.1% SDS [24] containing 2-mercaptoethanol. Proteins were visualized after 

staining with Coomassie Brilliant Blue R-250 and silver nitrate [25] and were compared to molecular 

weight standards (Thermo Fisher Scientific, MA, USA). Native electrophoresis was carried out under same 

conditions in 10% polyacrylamide gels lacking SDS and 2-mercaptoethanol. For zymography, the gels were 

supplemented with 0.1M sodium acetate buffer (pH 4.5) containing 0.3mM DCIP, 30mM lactose.  

 

2.8. Mutagenesis and creation of the library 

 

EpPCR of cdh was performed using pYES2 vector and before mentioned primers EcoRI_fp_AF and 

XbaI_rp_CBDH1. Different concentrations of MnCl2 (0-0.1mM) were used to obtain higher mutation rates 

with Taq polymerase. The library had thermal cycling parameters 94°C for 4 min (1 cycle), 94°C for 1 min, 

55°C for 1 min, 72°C for 2.15 min (30 cycles), and 72°C for 10 min (1 cycle) as a final extension. The PCR 

products were purified with GeneJET plasmid miniprep kit (Thermo Fisher), digested with EcoRI and 

BamHI enzymes and cloned into pretreated pYES2 vector (digested with the same enzymes) using EcoRI 

and BamHI enzymes. Ligated products were used to transform E.coli DH5α competent cells. The plasmid 

isolated from E.coli library was used to transform competent S.cerevisiae INVsC1 cells. Transformants 

were selected on YNB CAA (GAL) agar plates and transferred into 96-well microtiter plates (MTPs).  

 

2.9. Screening of gene libraries in microtiter plates 
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Fermentation was done in MTP and after 16h of induction activity was measured with DCIP assay. DCIP 

activity assay for microtiter plates(MTPs) was modified from the initial recipe [23] by not adding sodium 

fluoride, reaction volume in each well was 200µL with 0.3mM DCIP, 30mM lactose, 0.1M sodium acetate 

buffer and assay had been started with addition of enzyme. Absorbance decrease was observed at 520nm 

at LKB 5060-006 microplate reader, during half an hour at 25°C.  

 

2.10. Characterization of mutants 

 

mCDH activity as a function of pH for DCIP was measured using McIlvaine`s [26] citrate-phosphate buffer 

in the range 2.0-9.0 at 30ᵒC. mCDH activity as a function of the temperature for DCIP was measured in the 

range 25-90ᵒC in 0.1M sodium acetate, pH 4.5, with lactose as a substrate. Thermal stability of mCDH was 

determined by incubation at 50, 55 and 60ᵒC for up to 3h, depending on the temperature and monitoring 

activity at different time-points using DCIP as the electron acceptor and lactose as a substrate. Protein 

concentration used for kcat calculations of wt and mutants of CDH was determined by measuring absorbance 

at 280nm and using published molar extinction coefficient for CDH from Phanerochaete chrysosporium at 

280nm of Ԑ280nm=217 mM-1cm-1 [8]. 

 

2.11. Peroxide production 

 

2.12. Peroxide production was measured with modified 2,2´-azino bis (3 – ethylbenzthiazoline-6-

sulfonate) (ABTS) – based assay done by Sygmund et al [15]. Reaction mixture (50µL) containing 60mM 

cellobiose in 100mM sodium acetate buffer pH 4.5 was added to 50mL of the sample for the production of 

peroxide. The reaction was incubated at 30°C for 4h before CDH was inactivated at 90°C for 10 minutes. 

This does not influence the peroxide concentration. The addition of 100µL of ABTS reagent containing 
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2mM ABTS and 5.7U/mL peroxidase in 100mM sodium acetate buffer pH 5.5 had started the colorimetric 

reaction. The increase in absorbance was followed by a plate reader on room temperature for 5 min. The 

stoichiometry for this reaction is two since for one mol of peroxide two mol of the green ABTS cation 

radical are formed. The enzymatic activity is given in units (IU) which corresponds to the production of 

1µmol cellobionic acid or 1µmol peroxide per minute.  

 

2.13. Structural analysis 

 

Posible N-glycosylation sites were predicted using NetNGlc 1.0 Server 

(http://www.cbs.dtu.dk/services/NetNGlyc/), while O-glycosylation sites were predicted using NetOGlyc 

3.1 Server (http://www.cbs.dtu.dk/services/NetOGlyc-3.1/). Distances of mutated residues from active site 

and glycosylation sites within each domain were calculated using UCSF Chimera software and published 

crystal structures in UniProt database for  heme (1D7C) [27] and flavin domain (1NAA) [28] of CDH from 

Phanerochaete chrysosporium (Fig. 7.). For multiple alignment of 28 CDH sequences NCBI COBALT 

(https://www.ncbi.nlm.nih.gov/tools/cobalt/cobalt.cgi?CMD=Web) server was used (Supplementary Fig. 

S13). 

 

3. Results 

 

3.1. Cloning of cdh gene in vector and expression of recombinant enzyme 

 

Primers containing EcoRI and XbaI restriction sites were used for gene amplification. The 2.5kb PCR 

product (verified by agarose electrophoresis) was digested with EcoRI and XbaI and inserted into the 

corresponding sites in pYES2 vector. The inserts were verified by colony PCR and by digesting isolated 

plasmid DNA with EcoRI. Length of the obtained PCR product was 2.6 kbp. Gene length of cdh from P. 
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chrysosporium is 2307 bp, while length of α-factor secretion  necessary for secretion of mature protein is 

267 bp, and in total, length of fusion gene is 2574 bp (Supplementary; Fig. S1). Recombinant enzyme was 

cloned into yeast S.cerevisiae and expression of wtCDH was followed by measuring activity. The highest 

activity was achieved after 16h of induction in galactose containing medium. After 16h of induction wtCDH 

activity was slowly decreasing in the fermentation medium (Supplementary; Fig. S2).  

 

3.2. Optimization of DICP enzymatic assay in microtiter plates 

 

Fermentation of 96 samples of wtCDHs was done in MTP and after 16h of induction, activity of wtCDHs 

in 96 wells was measured. Activity of wtCDHs in individual wells of microtiter plates is represented by 

black dots, Fig 1. 

 

Fig. 1. Performance of DCIP microtiter plate assay on wtCDH. S. cerevisiae cells were transformed with 

plasmid pYES2-wtCDH. 96 individual colonies of wtCDH transformants were cultivated under inducing 

ACCEPTED M
ANUSCRIP

T



11 

 

conditions. Centrifuged supernatants were used for the DCIP-based assay. Standard deviation was 23%. 

Standard deviation and mean value are shown in histogram part of the graph. 

 

After optimizing the fermentation time, substrate concentration and liquids handling standard deviation of 

the measured 96 samples of wtCDH in one microtiter plate was 23 %. 

 

3.3. Creation and screening of gene libraries in microtiter plates 

 

Libraries of CDH mutants were generated by error-prone PCR using 0.05mM manganese since it gave in 

average 1 to 2 mutations per cdh gene and about 60% of the clones had active CDH enzyme variants in 

agar plate assay. The PCR products were purified and cloned into pYES2 vector using EcoRI and BamHI 

enzymes. Plasmids from epPCR E.coli library were transformed into S.cerevisiae INvsC1 strain. Positive 

colonies from agar plate assay (around 60% of population) were picked up and screened in MTP for 

increased activity. Fig. 2 shows data obtained from one of MTPs during screening process.  
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Fig. 2. Screening of an error-prone CDH gene library with DCIP microtiter plate assay in MTP. Dashed 

lines indicate the standard deviation, while the solid line represents average wtCDH activity. S. cerevisiae 

cells were transformed with plasmid pYES2-mCDH. 96 individual colonies of each transformant were 

cultivated under inducing conditions. Centrifuged supernatants were used for the DCIP-based assay. 

 

Around 1000 clones that showed activity on agar plates were screened in MTPs and three mutants with the 

highest activities compared to the wild type CDH were sequenced and further characterized (S137N, M65S 

and M685V).  

 

3.4. Enzyme purification 

 

After expression in 1L, cell free fermentation broth was used for purification of the recombinant CDH 

protein. Ultrafiltration with 50kDa molecular weight cut-off cell enriched CDH by 10-fold. Ultrafiltered 

CDH was dialyzed and loaded onto DEAE column. The proteins were eluted using 0-0.6M salt gradient in 
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10mM sodium phosphate buffer. Fractions with CDH activity were pooled and additionally purified by 

rechromatography on DEAE column (Supplementary; Fig. S3-S16).  

Purity of the protein was determined by native polyacrylamide gel electrophoresis and zymography. The 

silver staining of the gels after native electrophoresis revealed that crude sample, as well as purified sample 

had protein bands on the polyacrylamide gel that matched the position of the activity band detected by 

zymography using DCIP and lactose (Fig. 3).  

 

Fig. 3. Native electrophoresis of CDH on 10% gels. 1. wtCDH crude sample, 2. wtCDH sample before 

IEC , 3. wtCDH purified by IEC, 4. wtCDH purified by rechromatography on IEC. A) Protein bands in gel 

after silver staining. B) Activity bands in gel after incubation in buffered substrate solution (30mM lactose 

and 0.3mΜ DCIP). 

 

Protein and activity band overlapping on zymograme and symmetric protein peak during ion exchange 

chromatography (IEC) that corresponded to the wtCDH activity confirmed that wtCDH protein was pure. 

Broad protein band shows that there is microheterogenity of the protein due to hyperglycosylation that 

occurs in yeast. 

The purity and molecular weight of the recombinant CDH was further confirmed by SDS-PAGE, revealing 

a broad band between 120 and 150kDa for enzyme expressed in S.cerevisiae (Fig. 4). 
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Fig. 4. SDS electrophoresis for samples: 1. wtCDH crude sample; 2. wtCDH purified sample; 3. MM-

molecular markers. Gel was done on 8% separating gel, and dyed with Coomassie Brilliant Blue (CBB). 

 

Molecular weight of wtCDH (120-150kDa) is higher than theoretically expected molecular weight for 

native CDH of 90kDa [29], which is a result of hyperglycosylation that occurs during secretion from 

S.cerevisiae [30]. Because of non-uniform hyperglycosylation that is common for extracellulary expressed 

proteins in S.cerevisiae, a broad band usually can be observed on electrophoresis. Non-uniform 

hyperglycosylation in S.cerevisiae with broad bands on SDS electrophoresis was previously reported for 

glucose oxidase from Aspergillus niger [30], laccase from Myceliophthora thermophila [12] and invertase 

[31]. We also determined pI value of expressed enzyme to be 4.7 by isoelectric focusing (Supplementary 

Fig. S7) that corresponds to theoretically calculated from sequence to be 4.61. 

 

3.5. Mutants characterization 
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Activity of purified wtCDH and three purified mutants (Supplementary Fig. S3-S8) was determined in 

different sugar concentrations, allowing the data to be fitted onto a Michaelis-Menten curve (Supplementary 

Fig. S9) to calculate the corresponding kinetic parameters [32], Table 1. 

 

Table 1. Kinetic parameters for the purified wtCDH and its mutants toward lactose (lac) and cellobiose. 

 wtCDH S137N M65S M685V wtCDH S137N M65S M685V 

 Lactose Cellobiose 

Km (mM) 1.08 1.56 1.49 1.17 0.026 0.029 0.054 0.021 

kcat (s-1) 2.59 5.76 4.06 1.37 1.05 2.3 2.06 1.19 

kcat/Km (s-1 mM-1) 2.40 3.69 2.72 1.17 39.8 80 38.2 56.9 

 

 

 Recombinant protein had a lower catalytic activity than the native form. The kcat of the wtCDH was 14-

fold lower than the native enzyme, and Km value of wtCDH enzyme was 1.65-fold higher than the native 

enzyme [33] with cellobiose as substrate. WtCDH showed higher Km values than has been reported in 

literature for cellobiose and lactose oxidation and DCIP reduction. The lower catalytic activity of 

recombinant protein may reflect the impact of the higher molecular weight due to hyper glycosylation [34].  

Mutants S137N and M65S had increased kcat compared to the wild type for both cellobiose and lactose as 

a substrate, while mutant M685V had increased kcat and kcat/Km only for cellobiose which could mean that 

it showed higher activity during screening in MTP with lactose due to higher expression rate. Specificity 

constant for all mutants and both substrates was increased when compared with the recombinant wild type 

CDH. 

 

McIlvaine buffer was used for measuring pH optima. Due to the spectral characteristics of DCIP, who is 

dependent on pH of the reaction medium, different extinction coefficients were used for different pH: pH 
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2.0-4.5 (6.8 mM-1cm-1); pH 5 (6.8 mM-1cm-1); pH 5.5 (8.2 mM-1cm-1); pH 6 (12.7 mM-1cm-1); pH 6.5 (15.7 

mM-1cm-1); pH 7 (16.8 mM-1cm-1); and pH 7.5 – 9.0 (17.7 mM-1cm-1). The activity of purified wtCDH 

enzyme and mutants was determined at different pH values. Enzyme showed activity in wide pH range with 

DCIP as electron acceptor. Activity peak was observed at pH 2.5-5.5, except for S137N whose range went 

from 3.5-6 pH units, and M65S from 3-5.5 pH units (Fig.5).   

 

Fig. 5. Effect of pH on wtCDH and mutant activity using 0.3mM DCIP as the electron acceptor, and 30mM 

lactose in McIlvaine`s buffer pH 2.0-9.0. The values shown are the means of triplicate determinations. 

 

The activity peak was at pH 4.5, and this was the pH used to determine all the activity for other 

characterizations. Enzyme was stable in the pH range of 2.5-5. The pH optimum for the native CDH was 

reported to be pH 6, and pH 4 – 4.5 for direct electron transfer [35]. The highest activity in one study was 

shown to be at pH 4 for flavin domain [9].  

 

The mutants showed higher residual activity than wtCDH with DCIP as the electron acceptor, (Fig.6). 
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Fig. 6. Effect of temperature on wtCDH and mutant activity with assay carried out in 0.1M sodium acetate 

buffer pH 4.5 using 0.3mM DCIP as the electron acceptor and 30mM lactose as the substrate. The samples 

were measured at different temperatures for 15 minutes, and cooled on ice. The values shown are the means 

of triplicate determination. 

 

Thermal stability studies ranged from 50 to 60ᵒC and were carried out at pH 4.5 (see Supplementary Fig. 

S9-S11). At 50oC recombinant wtCDH retained 80% of it’s original activity after 1h while in the case of 

CDH from Trametes versicolor activity dropped to around 43% of it’s original activity. When incubated at 

55ᵒC over a period of 1h, residual activity decreased to approximately 40% of the original value for wtCDH, 

all three mutants had above 90% of residual activity after 2h of incubation, while for CDH from T.versicolor 

activity decreased to approximately 11% [36]. 

  

3.6. Peroxide production 
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One milligram of wtCDH produced 0.273 nmol H2O2 per minute, S137N 0.400 nmol H2O2 per min, M65S 

0.440 nmol H2O2 per min and M685V 0.210 nmol H2O2 per min. Results are lower than reported production 

of recombinant CDH from Myriococcum thermophilum produced in P.pastoris [14]. 

 

4. Discussion  

 

Our study showed successful cloning for the first time of cellobiose dehydrogenase gene from 

Phanerochaete chrysosporium in pYES2 vector and heterologous expression in yeast Saccharomyces 

cerevisiae InvSC1 for the purpose of directed evolution. Production rate of wtCDH in yeast S. cerevisiae 

is poorer than the production of enzyme produced in its natural source, from fungus, while the other yeast, 

Pichia pastoris, produces enzyme in higher quantity [8, 37]. The poor transformation rates and difficult 

recovery process of cloned mutants have made Pichia`s use in evolution less appealing. These difficulties 

have been solved by use of S. cerevisiae since it exhibits high transformation efficiency, performs post-

translational modifications and possesses a developed machinery for the secretion of proteins into the 

culture medium. After expressing active CDH in yeast an error prone PCR gene library was created and 

screened for mutants with increased activity by DCIP enzymatic assay optimized for microtiter plate format. 

Several mutants of CDH with improved properties were found M65S, S137N and M685V. WtCDH 

produced in S.cerevisiae has kcat values for cellobiose and lactose oxidation lower than the same enzyme 

when produced in P.chrysosporium [38], but this is a very well known fact for yeasts and was explained by 

excessive glycosylation that occurs in S.cerevisiae [10]. Using NetNGlyc and NetOGlyc neural network 

based servers for analyzing CDH protein sequence, nine putative N and sixteen O-glycosylation sites were 

predicted and distances of found mutations were calculated using USCF Chimera (see Supplementary Table 

S1). The analysis showed that the most O glycosylation sites were located in the loop region of CDH 

connecting heme and flavin domain. Identified mutations were not in this region or close to any of putative 
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O-glycosylation sites.  Only M685V was close to a putative N-glycosylation site at N517 at a distance of 

7.385 angstroms, but that mutant did not show such a big improvement in the activity compared to the other 

two. Analysis of sequences including M65S and S137N mutations showed that glycosylation pattern did 

not change compared to wild type CDH sequence (see Supplementary). These results showed that CDH 

protein is heavily non-uniformly glycosylated in yeast at found putative glycosylation sites and that our 

mutations did not influenced much that glycosylation. Heavy non uniform glycosylation in S.cerevisiae that 

leads to decreased activity compared to homologously expressed proteins was also previously reported for 

glucose oxidase [30]. 

Nevertheless, due to easier genetic manipulations S.cerevisiae is the preferred host for directed evolution. 

It was also proved that ratio of activity for different mutants of the same enzyme remains the same when 

expressed in different hosts [39]. 

The best mutant S137N had 2.2 times increased kcat for both lactose and cellobiose compared to wtCDH 

and also 1.5 and 2 times increased specificity constant for lactose and cellobiose respectively. 

Calculating distance of found mutations from the active sites in heme and flavin domain of CDH it could 

be seen that M65S mutation is coordinating iron in the heme active site at distance of only 11.1 angstroms 

from other coordinating His163 in the active site [40], (Fig. 7). 
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Fig. 7. Presentation of the structure of the two (separated) domains of P.chrysosporium CDH with shown 

distances of found mutations from the active sites. 

 

M65S mutation did not disrupt CDH activity with DCIP even it was coordinating critical cofactor like heme 

and that was in agreement with results obtained expressing only FAD domain of CDH in E.coli  that showed 

even higher activity than native CDH containing both domains [9]. Also, in multiple sequence alignment 

of 28 CDH sequences (Supplementary Fig. S13) M65T substitution was found in one homolog that can also 

explain why such mutation is tolerated. Other S137N mutation was also in the heme domain at distance of 

around 20 angstrems from the heme active sites, while M685V mutations was in the flavin domain relatively 

close to the catalytic His689 reside at a distance of around 11 angstrems. From this data we could conclude 

that M65S and M685 could influence activity of the CDH due to the proximity to the active site while 

influence of S137N mutations is most likely achieved through long distance interactions and as a surface 

mutation could also contribute to the enzyme stability that was previously shown for surface mutations 

[41]. Multiple sequence alignment (Supplementary Fig. S13) showed that amino acid residues at positions 

S137 and M685 are moderately conserved and substitutions could be found in 30-50% of homologues.  
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pH optimum of mutants was not changed significantly while thermostability of all mutants improved 

compared to wtCDH. The most active mutant S137N retained 30% of it’s original activity after 15 minutes 

at 70oC compared to 10% of activity that wild type enzyme retained.  Also, when incubated at 55ᵒC over a 

period of 1h, residual activity of wtCDH decreased to approximately 40% of the initial activity while all 

three mutants had more than 90% of their original activity. Under the similar conditions activity of CDH 

from T.versicolor decreased to approximately 11% of initial activity [36]. Generally, mutations found by 

screening an epPCR library for increased activity lead to decreased stability, but finding mutations that 

increase both activity and stability is possible and it is often the case when using consensus approach in 

directed evolution experiments [42].  

When tested for hydrogen peroxide production that can be used in wound healing and laundry, all three 

mutants showed increased hydrogen peroxide production in the presence of 30mM lactose compared to the 

wild type. The best mutant for hydrogen peroxide production showed to be M65S and produced hydrogen 

peroxide at rate that is 1.6 times higher compared to wtCDH. Since M65S is very close to the heme in the 

active site this could indicate importance of heme iron in CDH for production of reactive oxygen species 

helping lignocellulose degradation.  

All of these results show that we can use S.cerevisiae InvSC1 as an expression host for directed evolution 

of CDH from P. chrysosporium. Using the optimized microtiter plate DCIP assay we have obtained CDH 

mutants with increased activity and specificity towards lactose and cellobiose. They were also more 

thermostable and were producing higher amounts of hydrogen peroxide than the wild type enzyme. This 

makes them good candidates for applications in biosensors and biocatalysis. 
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