
PHYSICAL REVIEW B 88, 165420 (2013)

Energy-momentum dispersion relation of plasmarons in bilayer graphene
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The relation between the energy and momentum of plasmarons in bilayer graphene is investigated within the
Overhauser approach, where the electron-plasmon interaction is described as a field theoretical problem. We find
that the Dirac-like spectrum is shifted by �E(k) ∼ 100 ÷ 150 meV depending on the electron concentration ne

and electron momentum. The shift increases with electron concentration as the energy of plasmons becomes
larger. The dispersion of plasmarons is more pronounced than in the case of single layer graphene, which is
explained by the fact that the energy dispersion of electrons is quadratic and not linear. We expect that these
predictions can be verified using angle-resolved photoemission spectroscopy (ARPES).
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I. INTRODUCTION

Coulomb interaction and plasmarons in both single layer
graphene1–4 and bilayer graphene5,6 have recently attracted
a lot of interest. One of the reasons is that it was found
experimentally that, for instance in monolayer graphene,4

the accepted view of linear (Dirac-like) spectrum does not
provide a sufficiently accurate picture of the charge carrying
excitations in this material. The concept of a quasiparticle
named “plasmaron,” was introduced which is in fact a bound
state of charge carriers with plasmons. The motivation behind
the interest in this kind of studies is that exploring the
physics of interaction between electrons and plasmons may
lead to realizations of “plasmonic” devices which merge
photonics and electronics. In earlier experiments, this more
complicated picture of the band structure was not observed
because of the low quality and low mobility of old samples. The
interest in similar phenomena in bilayer graphene is equally
high.

Coulomb interaction and electronic screening was probed
in bilayer and multilayer graphene using angle-resolved
photoemission spectroscopy (ARPES) in Ref. 7. Recently,
Sensarma et al.6 investigated plasmarons and the quantum
spectral function in bilayer graphene theoretically. The authors
of that reference predicted a broad plasmaron peak away
from the Fermi surface. Similar findings were reported in
Ref. 5 where thermal Green’s functions in both random phase
approximation and self-consistent GW approximation were
used to determine the spectral function. Bilayer graphene
shares some properties with both graphene and the two-
dimensional electron gas found in common semiconduc-
tors. While the energy dispersion in graphene is linear in
momentum, in bilayer graphene it is nearly quadratic. The
advantage of bilayer graphene over usual semiconductors
is that its charge carrier density can be controlled by the
application of a gate voltage over orders of magnitude
and this from electrons to holes. Furthermore, the band
gap can be tuned to meet requirements for several device
applications.

In this paper, we employ an alternative approach in order
to determine the energy spectrum of bilayer graphene. The
approach is based on second order perturbation theory of
the electron-plasmon interaction, and the problem is cast

into a field theoretical problem. By doing so, one is able to
evaluate the correction to the band structure which comes
as a consequence of the interaction of charge carriers with
plasmons. As far as the interaction between plasmons and
charge carriers is concerned, we generalize the Overhauser
approach8,9 to the two-dimensional electron gas in bilayer
graphene.

We organize the paper as follows. In Sec. II we present
the theoretical model and give pertinent expressions for the
interaction and the coupling between electrons and plasmons
in bilayer graphene. In the subsequent section, Sec. III, the
numerical calculations of the energy correction due to the
interaction with plasmons are presented for various doping
levels, i.e., charge carrier density. The influence of the doping
level is analyzed and discussed. Finally, we summarize our
results and present the conclusions in Sec. IV.

II. THEORETICAL MODEL

If the relevant energy scale in bilayer graphene is smaller
than the interlayer hopping parameter t⊥, one may use the low
energy limit. In this limit, the problem can be reduced to the
effective two-band model and the corresponding Hamiltonian
reads10

H0 = −v2
F

t⊥

(
0 π †2

π2 0

)
, (1)

where vF is the Fermi velocity and π = px + ipy . The eigen-
values of Eq. (1) are well known and read E(0)

s = sh̄2k2/2me

where s = ±1. Here we introduced the effective mass me =
t⊥/(2v2

F ) in the low energy limit, and me ≈ 0.034m0. Please
note that we are interested in energies larger than 1–5 meV
such that the usual warping is not important. It is well known
that graphene structures may sustain quanta of collective
charge excitations of the electron gas, i.e., plasmons, due to
the restoring force of the long-range 1/r Coulomb interaction.
However in contrast to the usual two-dimensional electron
gas, the “Dirac plasma” is manifestly of quantum nature.11

For instance, in single layer graphene the plasma frequency
is proportional to 1/

√
h̄, and does not have a classical limit

independent of the Planck constant. As far as bilayer graphene
is concerned the plasma frequency (in the long wavelength
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limit) is given by12

ωq =
(

2πnee
2

κme

) 1
2 √

q, (2)

where κ is the dielectric constant of the material and is related
to the one of the substrate, κ = (1 + κs)/2 ≈ 2.5 for SiO2

substrate. The excitations of the electron gas are represented
by a scalar field previously described by Overhauser8 for the
3D electron gas. The corrections in the electron spectrum are
calculated analogously as for the polaron problem, where now
a test charge interacts with the plasmon field. The interaction of
an electron displaced from the graphene layer with plasmons
was treated in our earlier work,9 and the interaction term of
the Hamiltonian is given by

Hint =
∑

q

Vq√
�

exp(iq · r)(aq + a
†
−q), (3)

where the electron-plasmon interaction matrix element is13

Vq = 2πe2

√
�κq

λq. (4)

Its value can be determined using the f -sum rule applied to the
case of interest. The starting point is the fact that the expecta-
tion value of the double commutator 〈n|[n−q,[nq,H ]]|0〉 can
be evaluated in two different ways.14 First, it is known that the
relation 〈n|C|m〉 = (En − Em)〈n|A|m〉 holds for an arbitrary
commutator with the Hamiltonian, C = [H,A]. Second, it can
easily be proven that

〈n|[n−q,[nq,H ]]|0〉 = 2
∑

n

h̄ωn0|〈n|nq|0〉|2, (5)

where h̄ωn0 = En − E0. Further, the explicit evaluation of the
double commutator yields

∑
n

h̄ωn0|〈n|nq|0〉|2 = N
h̄2q2

2me

. (6)

The f -sum rule then reduces to

h̄ω′
qλ

2
q = N

h̄2q2

2me

. (7)

Upon combining relations in Eqs. (4)–(7) we arrive at the
expression for the interaction matrix element

Vq = 2πe2

κ

√
h̄ne

2meω′
q
, (8)

where ne is the electron concentration, ne = N/�. Note that
ω′

q is not the bare plasmon frequency but is altered by the
polarization of the electron gas. We need the dielectric function
of the electron in order to determine ω′

q. It can be shown that
in the long wavelength limit (q → 0) and within the random
phase approximation (RPA) the dielectric function can be
approximated by the following relation15

ε(q) = 1 + qs

q
, (9)

where qs is the screening wave vector12 and given by qs =
2πe2/κD0, while D0 is the density of states of bilayer
graphene,16 D0 = gsgvme/(2πh̄2). Here gs and gv are the

degeneracy factors for spin and valley degrees of freedom. The
previous relation, Eq. (9), is obtained from the general relation
ε(q,ω) = 1 + vc(q)	(q,ω), where vc(q) = 2πe2/(κq) is the
Fourier transform of the two-dimensional Coulomb interac-
tion, and 	(q,ω) is the 2D polarizability. Finally, the actual
plasmon frequency is given by9

ω′2
q = ω2

q
ε(q)

ε(q) − 1
. (10)

Now, we are ready to evaluate the correction in the
energy spectrum due to the interaction between electrons and
plasmons. This will be carried out by employing second order
perturbation theory, and for the case of bilayer graphene it
reads

�E0(k) = −P
1

�

∑
q

|Vq|2
h̄ωq + E0(k − q) − E0(k)

, (11)

where P (·) stands for the principal value. The cutoff value for
the momentum q was taken to be qc = 1/a0, where a0 is the
lattice constant. Note that this correction is given within non-
degenerate Rayleigh-Schrödinger perturbation theory (RSPT).
However, for certain values of the plasmon wave vector q a
degeneracy occurs when E0(k) = h̄ωq + E0(k − q). Because
of this degeneracy, improved Wigner Brillouin perturbation
theory13 (IWBPT) can be employed to tackle this problem.
The main idea behind this method is to ensure enhanced
convergence when the denominator in Eq. (11) approaches
zero, which is realized by adding the term �(k) = �E(k) −
�E0(k) [�E0(k) is evaluated within RSPT],

�E(k) = −P
∑

q

|Vq|2
h̄ωq + E0(k − q) − E0(k) − �(k)

. (12)

Equation (12) should be solved self-consistently since �E

appears on both sides of the equation. Note that E(k) = E(k)
due to the isotropic nature of the spectrum. In the following
section the value of �E(k) will be calculated numerically
for concrete values of the doping level, permittivity, and
other parameters of the material. As pointed out in Ref. 3,
the plasmon excitation in graphene of the Dirac sea remains
pretty much well defined even when it penetrates the interband
particle-hole continuum. This is because the transitions near
the bottom of the interband particle-hole continuum have
almost parallel wave vectors k and k + q and therefore carry
negligible charge-fluctuation weight. A similar conclusion
holds for bilayer graphene. In practice, the damping can
be important for very large momentum q, but then the
contribution to the energy shift, i.e., to the integral in Eq. (12) is
small.

III. NUMERICAL RESULTS

The numerical calculations are carried out for doped bilayer
graphene, with varying electron concentration. First we give
in Fig. 1 the results for the energy correction �E(k) for
three levels of doping:17 ne = 3 × 1012 cm−2 (solid curve),
5 × 1012 cm−2 (dashed curve), and 1013 cm−2 (dotted curve).
As can be seen from the figure, the shift increases with the
electron momentum. The increase with k is more rapid than
in the case of single layer graphene.18 This is qualitatively
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FIG. 1. The correction to the energy �E(k) vs electron momen-
tum k for three values of the doping level ne = 3 × 1012 cm−2 (solid
curve), 5 × 1012 cm−2 (dashed curve), and 1013 cm−2 (dotted curve).

similar to what was found in Refs. 5 and 6 where a broad peak
was attributed to plasmarons. While the explicit dependence
on the concentration is the same Vq ∝ √

ne, the interaction
matrix element is related to the doping level also through
the plasmon frequency. The latter in single layer graphene
is mainly proportional to n

1/4
e while in bilayer graphene is√

ne. Further, the effective plasmon frequency is modulated
through the polarization of the surrounding electron gas.
One should not forget that a property of bilayer graphene,
important for the present analysis, is the fact that the coupling
parameter is a function of the carrier density rs ∝ n

−1/2
e

(while in single layer graphene it is independent of ne). More
precisely, the strength of the Coulomb interaction is tunable
and depends on the level of doping. As for the comparison with
earlier theoretical findings, we got �E(k = kF ) = 0.12 eV for
ne = 3 × 1012 cm−2 while the authors of Ref. 6 obtained the
value �E(k = kF ) = 0.18 eV.

Unlike the case of polarons in conventional semiconductors,
here it is not straightforward to derive any approximate
analytical relation for �E(k) at small k. This is due to the
fact that plasmons here have a more complicated dispersion
relation, and the fact that the interaction strength Vq depends
on q in a nontrivial manner. Thus we will treat Eq. (11)
numerically and one may write for small k

�E(k) = �E(0) + αk2 + βk4. (13)

We fitted Eq. (13) to our numerical results within the range
0 < k < 0.5 nm−1. For instance, for ne = 3 × 1012 cm−2 the
fitting parameters are α = −9.09 × 10−16 eV cm and β =
−4.73 × 10−29 eV cm2.

In Fig. 2 we present the result for the energy correction
�E(0) at k = 0 vs doping of bilayer graphene, i.e., the
electron concentration ne. As can be seen, the absolute value
of �E(0) increases with the electron concentration. This is
mainly the consequence of the dependence of the matrix
element Vq on ne [see Eqs. (8) and (10)]. As mentioned
earlier the relation is complicated since the plasmon frequency
is modified through the polarization of the electron gas.
We note that the obtained results for the energy shift on
the concentration can be fitted (for 0 < ne < 1013 cm−2)
to �E(0) = anα

e /(1 + bn
γ
e ), where α = 0.53, γ = 0.36, and
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FIG. 2. The correction to the energy �E(0) for k = 0 vs the
electron concentration ne.

a = −4.7 × 10−8, b = 2.53 × 10−5 [ne is given cm−2 and
�E(0) in eV]. It would be instructive to determine the
effective mass of the plasmaron band defined by E(k) =
E0(k) + �E(k) = h̄2k2/2m′. Figure 3 shows the dependence
of the effective mass ratio m′/me on the electron concentration.
The ratio starts from a value around 2 and drops rapidly to
1.2, while for ne > 2 × 1012 cm−2 it converges slowly to 1.
The low and high density behavior fits are shown by dashed
lines in Fig. 3 and were fitted respectively to the following
expressions: 2.1 − 1.2 × 10−12 cm2 · ne + 5.1 × 10−26 cm4 ·
n2

e for ne � 8 × 1011 cm−2 and 1.2 − 3.9 × 10−14 cm2 · ne +
2.4 × 10−27 cm4 · n2

e , for ne > 8 × 1011 cm−2. Note that
the large dispersion of the plasmaron band was also re-
vealed in recent theoretical investigation of the spectral
function,6 where it was determined that plasmarons do have a
broad peak.

IV. CONCLUSION

In this paper we investigated the interaction between an
electron and the collective excitation of the electron gas, i.e.,
plasmons, in bilayer graphene by using a field-theoretical
approach. This interaction is modeled by generalizing the
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FIG. 3. Ratio between the effective mass of the plasmaron band
and the electron as a function of the electron concentration ne. The
dashed curves show the low and high density asymptotics.
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Overhauser approach8 to the 2DEG in this material. We
evaluated the energy correction, that is the shift in the energy
spectrum as a result of this interaction. We employed second
order perturbation theory in order to determine the energy of
the plasmaron, which is a composite quasiparticle, i.e., a bound
state of an electron with plasmons.

The motivations behind the present study were the increased
interest in the spectral function of bilayer graphene,5,6 and the
prediction of the existence of a broad plasmaron peak away,6

but near the Fermi surface. First we evaluated the correction
to the energy as a result of the interaction between electron
and plasmons. The shift is appreciable and lies in the range
of 100–150 meV depending on the electron concentration and
electron wave vector.

Further, we investigated the influence of the doping level
on the shift �E(0), and it is shown that it increases with ne

which is more pronounced than in the case of single layer
graphene.18 The difference with single layer graphene lies
in the actual dependence of the interaction strength Vq on
the electron concentration. This should be revealed in future
angle-resolved photoemission spectroscopy.
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