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Analytical expression for the Hall conductivity ryx in graphene is derived in more general case,

in which magnetic field is not perpendicular to the plane of the sample. The derivations were

carried out using Kubo-Greenwood formulism, which is more suitable when the spectrum is

discrete. The results are analyzed as a function of the angle between the magnetic field vector

and the normal of the graphene plane. Contrary to the previous theoretical studies, we show that

the plateau levels are independent of the direction of the magnetic field. The positions of the

plateaus, however, depend on the orientation of the magnetic field. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4818605]

I. INTRODUCTION

The discovery of graphene1 is certainly one of the most

important events in condensed matter physics in recent time.

The reason in increased interest in this material lies in its re-

markable properties2 such as high (room temperature) elec-

tron mobility,3 good thermal conductivity,4 and exceptional

mechanical properties.5 One of the most striking phenomena

observed is the anomalous and integer quantum Hall effect

(QHE) which is astonishingly attainable phase in this mate-

rial even at room temperature.6 The latter is possible due to

the large inter Landau level spacings compared to the ther-

mal energy kBT. However, QHE in graphene has somewhat

different manifestation than in conventional semiconductors,

one of the most important being the absence7,8 of a Hall pla-

teau when the Fermi level crosses the Dirac point. This is

due to the fact that the zeroth level is equally shared by the

conduction and the valence band.

In this paper, we investigate the more general case of ex-

perimental setup for QHE, in which the magnetic field has an

arbitrary orientation with respect to the sample plane. It was

shown that the expression for the Hall conductivity is analo-

gous to that in the usual case, but of course depends on the

angle h between the field and the plane normal. This some-

what contradicts the previous theoretical investigation,9 where

the derivations were done under certain approximations.

The paper is organized as follows. The theoretical model

for quantum Hall state in a graphene with arbitrary magnetic

field orientation is presented in Sec. II. Subsequently, a

detailed derivation of the expression for the Hall conductiv-

ity ryx is given. Numerical results for ryx and longitudinal re-

sistivity qxx as a function of parameters are presented and

discussed in Sec. III. Finally, Sec. IV summarizes the main

results.

II. THEORETICAL MODEL

Let us assume that the graphene sample lies in the x–y
plane while the magnetic field forms an angle h with the nor-

mal to the plane, thus, with the z-axis. The magnetic field

will inevitably induce a gap in the energy spectrum, and one

should treat the two valleys, K and K0 separately. The

Hamiltonian written in (2þ 1) dimensions reads

Hn ¼ vFðnrxpx þ rypyÞ þ Dzrz; (1)

where vF is the Fermi velocity, ra with a ¼ x; y; z are the

Pauli matrices, while n is the valley pseudospin number with

n ¼ þ1 for the K valley and n ¼ �1 for the K0 valley.

Further px;y are the momenta in the presence of a magnetic

field with px;y ¼ px;y þ eAx;y. The Landau gauge is chosen

and A ¼ ð�Bcos h � y; 0Þ. The second term in Eq. (1) repre-

sents the pseudo-Zeeman term, and may also include the

mass term D0 induced by the substrate Dz¼�lBBcoshþD0,

where lB is the Bohr magneton. The normalized eigenvec-

tors of the eigenvalue problem HnW¼EW are (see the

Appendix)

Wsnkx
¼ 1ffiffiffiffiffi

Lx

p asnUn�1

sbsnUn

� �
eikxx; (2)

where Unðy0Þ are the quantum oscillator functions

with y0 ¼ ðy� l2ckxÞ=lc. Here, the magnetic length is

lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�h=ðBcos hÞ

p
. The index n will be suppressed form now

on. The quantum number n (n ¼ 0; 1; 2; ::) labels the discrete

Landau levels while s labels the conduction (s ¼ þ1) and the

valence bands (s ¼ �1). The latter is related to the valley

pseudospin quantum number by s ¼ ng where g is the chiral-

ity. The eigenvalues of Eq. (1) are expressed in terms of the

cyclotron frequency which in its turn (in case of graphene) is

proportional to the square root value of the magnetic field

xc ¼
ffiffiffi
2
p

vF=lc /
ffiffiffiffiffiffiffiffiffiffiffiffiffi
Bcos h
p

. They are given by

Esn ¼ s½D2
z þ n�h2x2

c �
1=2ð1� dn0Þ; Es0 ¼ �nDzdn0: (3)

In the presence of a gap Dz, the coefficients asn and bsn are

related to the energy Esn in the following manner:

asn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esn þ Dz

2Esn

s
; bsn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esn � Dz

2Esn

s
: (4)
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The case of the zeroth level js; 0; kxi requires special

care and will be considered separately. The value of the

usual Zeeman term glBBcosh is (at most) on the order2 10 K

for B � 10 T, and thus, negligible. Further, if one neglects

the influence of substrate the zero-energy level is placed at

the Dirac point and is then equally shared between the con-

duction and valence bands. However, in the case of interest,

one should consider both valleys separately. The normalized

eigenvector that corresponds to this state has the form:

Ws0kx
¼ 1ffiffiffiffiffi

Lx

p 0

U0

� �
eikxx: (5)

Notice that jþ; 0; kxi and j�; 0; kxi denote the same state. The

sign of Es0 that corresponds the zeroth level energy is negative

for the K valley and positive for the K0 valley.

The electric, source-drain field is usually weak and one

may employ linear response theory10 and obtain the Hall

conductivity in the form:11

rnd
l� ¼

i�he2

S0

X
f 6¼f0

ðff � ff0 Þv�ff0vlf0f

ðEf � Ef0 ÞðEf � Ef0 þ iCfÞ
; (6)

where S0 is the area of the sample, and v�;lff0 are the matrix

elements of the velocity operator with l; � ¼ x; y. Further

ff ¼ f ðEfÞ is the Fermi-Dirac distribution function,

f ðEfÞ ¼ ð1þ expbðE� EFÞÞ�1
, while the symbol b denotes

the Boltzmann factor b ¼ 1=kBT (T is the temperature). The

sum runs over all quantum numbers jfi ¼ js; n; kxi and

jf0i ¼ js0; n0; k0xi provided that f 6¼ f0. The infinitesimal quan-

tity � in the usual form10 has been replaced by Cf in order to

take into account the finite broadening of the Landau levels.

The broadening of the levels is mainly caused by the colli-

sions on impurities. It can be proven that the imaginary part

of Eq. (6) vanishes under assumption that the broadening is

approximately the same for all states,12 Cf ¼ C. Further, it

was shown12,13 that C increases with the magnetic field like

/
ffiffiffi
B
p

, or more precisely12 C ¼
ffiffiffiffiffiffiffiffi
2=A

p
�hxc. Here, the dimen-

sionless and phenomenological parameter A depends on the

concentration of scattering centers and has values in the

range 50� 100. In order to obtain a transparent result for

ryx, we assume that C ¼ 0.

One needs to evaluate the product of the velocity matrix

elements which are diagonal in kx

Pss0

nn0 ¼ hsnkxjvxjs0n0k0xihs0n0k0xjvyjsnkxi: (7)

The quantum number kx is suppressed from now on. An

explicit evaluation of the product Pss0

nn0 yields

Pss0

nn0 ¼ iv2
Fðjasnbs0n0 j2dn�1;n0 � jas0n0bsnj2dn;n0�1Þ: (8)

The matrix elements between the zeroth level and the

other levels should be treated separately.11 Using Eqs. (7)

and (8), one arrives at

Pss0

0n0 ¼ �iv2
Fjas0n0 j2d0;n0�1; Pss0

n0 ¼ iv2
Fjasnj2dn�1;0: (9)

Since the relation jEsnj > Dz holds for n > 0 and moder-

ate magnetic fields, one may omit the complex modulus

signs in Eq. (9). First, we assume that Cf ¼ C ¼ 0. The sum-

mation in Eq. (6) should include all combinations of the ma-

trix elements, which is to encompass both the conduction/

valence band and the two valleys. The Hall conductivity rn

for a particular valley can be expressed as a sum of two

terms, in one of which the prefactor is independent of Dz and

a term in which it is linear in Dz, rn ¼ rn0 þ drn. It can be

proven14 that for the valley K and for n > 0, the relevant

expressions are

rK0 ¼
gse

2

h

X
n¼1

nþ 1

2

� �
ðfþn � fþnþ1 þ f�n � f�nþ1Þ; (10)

while the term proportional to the mass term Dz is

drK ¼
gse

2

h
Dz

X
n¼1

fþn � f�n
En

�
fþnþ1 � f�nþ1

Enþ1

 !
: (11)

The factor gs is the spin degeneracy, gs ¼ 2. One should

remember that these derivations are given for carriers in the

vicinity of the K point only. In order to include the carriers

near the K0 point as well, one should replace Dz by �Dz in

Eq. (11). Since the factor Dz appears in the first and odd

power in Eq. (11), the terms drK will cancel for n > 0. For

n¼ 0, it can be proven that the contribution from the zeroth

level is r0;n
yx ¼ gse

2=hf n
0 ¼ gse

2=ð2hÞðfþ;n0 þ f�;n0 Þ. Bear in

mind that fþ;n0 ¼ f�;n0 ¼ f n
0 for each valley n, while the super-

script 6 in f 6;n
0 is not to be confused with the actual sign of

the zeroth level in a particular valley. Therefore, this level

can be included in the final expression for ryx, without wor-

rying that some terms will be summed twice. Finally,

rnd
yx ¼

gse
2

h

X
n¼0;n

nþ 1

2

� �
ðfþ;nn � fþ;nnþ1 þ f�;nn � f�;nnþ1Þ: (12)

The summation over n has been performed as the zeroth lev-

els of the K and K0 valleys do not coincide. Note that the

form of Eq. (12) is the same as in the case of a perpendicular

magnetic field. The degeneracy with respect to the spin

degree of freedom is, as usual gs ¼ 2. Note that Eq. (12)

turns into expression derived by Gusynin and Sharapov8 by

virtue of the identity tanhðbðE� EFÞ=2Þ ¼ 1� 2f ðEÞ.
Furthermore, at low temperatures and at moderate magnetic

fields, Eq. (12) assumes a simple form7,11 ryx ¼ 6ð4e2=hÞ
ðN þ 1=2Þ, where N is a non-negative integer and is in fact

the number of filled levels. This expression for the Hall con-

ductivity can be written in terms of the filling factor �,

ryx ¼ �e2=h, and therefore,15 � ¼ 4N þ 2. The presence of

the factor 1/2 is an obvious manifestation of the anomalous

IQHE in (gapless) samples of graphene. This phenomenon

can be explained by the existence of a Landau level at the

Dirac point equally shared by the conduction and valence

bands. However, since early days of research of quantum

Hall phenomena in semiconductors, a particular attention is

given to disorder and imperfections. It is known that the ex-

istence of plateaus cannot be explained without the assump-

tion that there are impurities and disorder present in the
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material.16 A detailed study made by Ostrovsky17 empha-

sized the role of the symmetry of the disorder in the preser-

vation of the quantum Hall state in graphene.

Next we consider the longitudinal conductivity rxx,

which is another parameter that characterizes magnetotran-

sport properties of materials. In the presence of a magnetic

field, the diffusive contribution to the conductivity vanishes

rdif
xx ¼ 0 and only the collisional contribution rcol

xx is relevant.

The latter is given by10

rcol
xx ¼

be2

2S0

X
f;f0

f ðEfÞ½1� f ðEf0 Þ�Wff0 ðyf � yf0 Þ2; (13)

where Wff0 is the transition rate between the states jfi and

jf0i, while yf ¼ hfjyjfi is the expectation value of the coordi-

nate y. It is assumed that scattering by impurities is assumed

to be elastic, while the impurity potential is screened

UðrÞ ¼ U0e�ksr, where ks is the screening wavevector. The

concentration of impurities is ni. It can be proven14 that lon-

gitudinal conductivity is

rcol
xx ¼

gse
2

h

bniU
2
0

4ucs�hxc

X
s;n;n

Isnf ðEn
snÞ½1� f ðEn

snÞ�; (14)

where ucs ¼ l2
ck2

s =2, and

Isn ¼ ð2nþ 1Þjbsnj4 � 2njasnj2jbsnj2 þ ð2n� 1Þjasnj4: (15)

In case when Dz ¼ 0, the expression for Isn reduces to 2n=4,

and it means that the minima of rxx occur at odd filling fac-

tors � ¼ 2nþ 1. Bear in mind that in common semiconduc-

tors the minima occur at even filling factors � ¼ 2n, and that

rxx / ð2nþ 1Þ.

III. NUMERICAL RESULTS

First, the Hall conductivity ryx vs the magnetic field

is shown in Fig. 1 for fixed electron concentration ne

¼ 1012 cm�2, for two different values of the angle h. The

solid curve corresponds to the usual case when the magnetic

field is perpendicular to the sample plane, h ¼ 0� while the

dashed to the case in which h ¼ 45�. The difference between

the two curves is mostly pronounced in the positions of the

plateaus, i.e., in the values of magnetic field when a new pla-

teau emerges. This is consequence of the presence of the fac-

tor cos h in the cyclotron radius lc, cyclotron energy, etc. The

influence through the mass term Dz is less marked since its

value is on the order of several meV. As it can be seen from

the figure for the larger angle h ¼ 45�, the plateaus are

shifted to the right, since higher magnetic fields are needed

to compensate the factor cos h. On the other hand, the heights

of the plateaus are integer multiplies of e2=h regardless of

the angle h.

In the next figure, Fig. 2 is shown the conductivity ryx

as a function of the electron concentration ne, but for various

values of the angle h: 0� (solid line), 30� (dotted line), 45�

(dashed line), and 60� (dashed-dotted line). The magnetic

field is kept constant at B ¼ 14T. As can be seen from the

figure, the plateaus again come in multiple integers of e2=h,

but their onset (as ne rises) depends on the angle h. This can

be explained by the fact that the areal density of states for

each level is NLL ¼ gdeBcos h=h while there are ne electrons

(per unit area) available to fill these levels. Here, gd is the

degeneracy, which for n¼ 0 and n > 0 takes on values 2 and

4, respectively. Therefore, with the increase h, the density

NLL decreases, and consequently, the number of filled levels

rises. That is why the curves with higher h look as if moved

to the origin with respect to the standard case h ¼ 0. Note

the absence of a plateaux at ne ¼ 0 in contrast what was

found in Refs. 11 and 14. The reason is that the main subject

of this paper is to investigate the influence of the tilted mag-

netic field on QHE state and thus the scattering on impurities

is neglected. Therefore, there is no shift in the energy spec-

trum at the Dirac point.

Next figure, Fig. 3 shows the conductivity ryx as a func-

tion of the Fermi energy EF, for three different values of the

angle h like in the previous case. The magnetic field is kept

constant at the value B ¼ 14T. This kind of graph is impor-

tant when the value of the Fermi energy is known with a

good accuracy, or when the dependence EFðneÞ is not known

precisely. For illustrative purposes, we also give the case

FIG. 1. The Hall conductivity ryx vs the magnetic field at fixed electron con-

centration ne ¼ 1012 cm�2, but for two different values of the angle h: 0�

(solid black curve) and 45� (dashed red curve).

FIG. 2. The Hall conductivity ryx vs the electron concentration ne, at fixed

magnetic field B ¼ 14 T, but for various values of h: 0� (solid line), 30� (dot-

ted line), 45� (dashed line), and 60� (dashed-dotted line).
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when the substrate induces additional gap between the con-

duction and the valence band, that is when D0 > 0. Namely,

in recent time, there is a growing interest in graphene placed

on hexagonal boron nitride (h-BN)18–22 and silicon carbide

(SiC)23,24 both of which induces an appreciable gap. The gap

can be important since the device based on this kind of gra-

phene samples may have rectifying properties as much as if

they were made of a conventional semiconductor. As it can

be seen from the figure, the gap induces a plateau at the

EF ¼ 0, a phenomenon that is also suggested by available

experimental data.18 In the present graph, we have chosen h-

BN substrate with a moderate value21 of 2D0 ¼ 53 meV. It

can be deduced from the figure that cases with D0 6¼ 0 follow

the usual case when D0 ¼ 0, but the curves are bit moved

due to different energy level positions.

As far as longitudinal transport quantities are concerned,

we note that longitudinal resistivity qxx is experimentally

measurable quantity and is given by

qxx ¼
rxx

r2
xx þ r2

yx

: (16)

Due to the presence of the Hall conductivity in the previous

relation, Eq. (16), the value of qxx is influenced by the pla-

teau values in ryx. Figure 4 shows the resistivity qxx as a

function of the electron concentration ne for two values of

the angle h: 0� (solid curved) and 45� (short dashed curve).

The value of the magnetic field is kept constant B ¼ 14T.

The oscillatory behavior is apparent as a function of the elec-

tron concentration. The position of peaks coincide closely to

transitional phases or onsets of plateaus in ryx. The values of

qxx are higher when perpendicular magnetic field is applied

(h ¼ 0�) while peaks are moved to the left for finite angle h.

The latter fact can also be deduced from Fig. 2 where pla-

teaus arise for smaller ne.

IV. CONCLUDING REMARKS

In this work, we investigated the Hall conductivity in

graphene when the magnetic field is not perpendicular to the

plane of graphene. It was shown that its value comes in mul-

tiple integers of e2=h like in the usual case, but the onset of

the plateaus appears for higher magnetic field and lower

electron concentrations if the angle between B and the plane

normal is increased. This is due to the fact that the (avail-

able) density of states of each state is gdeBcos h=h and thus

decreases with the increase of the angle h. This was also

shown analytically by summing the contribution of both val-

leys carefully, when the influence of the gap is canceled. We

also give the case when there is an additional source of gap

(apart from the magnetic field). Namely, when a graphene is

placed on a substrate like h-BN or SiC a staggered potential

is formed in the crystal structure. This means that the on-site

energies of the carbon atoms belonging to the A and B sub-

lattices have different values, denoted by þD0 and �D0,

respectively. The calculations given here indicate that this

kind of substrate induces an additional plateau at EF ¼ 0,

while other properties of ryx remain qualitatively the same as

in case when D0 ¼ 0. At the end, we evaluate and plot the

longitudinal resistivity as a function of the electron concen-

tration. It was shown that the positions and the values of

maxima of qxx depend on the value of the angle between the

magnetic field and the normal of the graphene plane.

ACKNOWLEDGMENTS

This work was supported by the Serbian Ministry of

Education and Science, within the Project No. TR 32008.

APPENDIX: EIGENVECTORS IN TILTED MAGNETIC
FIELD

The Hamiltonian, Eq. (1) can be expressed in terms of

the annihilation and creation operators, and for the K valley,

it reads

H ¼ Dz �hxca

�hxca† �Dz

� �
; (A1)

FIG. 3. The Hall conductivity rxy vs the Fermi energy EF, for three different

values of h: 0� (solid curve), 30� (dashed curve), 45� (dotted curve), and 60�

(dashed-dotted curve). For comparison, another arrangement when the sub-

strate induces an additional gap, (D0 ¼ 27 meV) is given by the red (short)

dashed (h ¼ 0�) and dotted curve (h ¼ 30�). In all cases, the magnetic field

is kept constant at the value B ¼ 14T.

FIG. 4. The longitudinal resistivity qxx vs the electron concentration ne, for

two values of h: 0� (solid curve) and 45� (short-dashed curve). The magnetic

field strength is kept constant at the value B ¼ 14T.
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where a¼ lc=ð
ffiffiffi
2
p

�hÞðpx� ipyÞ and a†¼ lc=ð
ffiffiffi
2
p

�hÞðpxþ ipyÞ.
Here, momenta pl are defined as pl¼ plþ eAl with l¼ x; y.

If the general form of the eigenvector W¼ðun;vnÞT is inserted

in the equation HW¼EW, one obtains

a†avn ¼
E2

sn � D2
z

ð�hxcÞ2
� vn: (A2)

Thus, vn is the eigenfunction of the number operator a†a,

while un / avn. This suggests the following form for eigen-

vectors when n > 0:

Wsnkx
¼ 1ffiffiffiffiffi

Lx

p asnUn�1

sbsnUn

� �
eikxx: (A3)

The eigenvalue problem leads to the system of two

equations for the coefficients asn and bsn

asnDz þ s
ffiffiffi
n
p

�hxcbsn ¼ Esnasn; (A4a)

asn

ffiffiffi
n
p

�hxc � sDzbsn ¼ sEsnbsn: (A4b)

Now one can determine the coefficients in the eigenvector

given the normalization condition jasnj2 þ jbsnj2 ¼ 1. The

expressions read

asn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esn þ Dz

2Esn

s
; bsn ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Esn � Dz

2Esn

s
: (A5)

The eigenenergies can be obtained by eliminating asn and bsn

in Eqs. (A4a) and (A4b) and read Esn ¼ s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

z þ n�h2x2
c

q
. The

case of the zeroth level should be treated separately. One may

infer from Eq. (A3) that the first component should be zero and

Ws0kx
¼ 0

U0

� �
eikxx; (A6)

while the corresponding energy is E0 ¼ �Dz. The eigenvec-

tors for the another valley K0 can be obtained by the inter-

change of the spinor components un $ vn which is the

consequence of the chiral symmetry of charge carriers in gra-

phene. The eigenvectors, Eq. (A3) can be brought to the

form given in Ref. 9 by using the trigonometric identities of

half angle (up to the overall phase factor).
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11P. M. Krstajić and P. Vasilopoulos, Phys. Rev. B 83, 075427 (2011).
12Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
13M. E. Raikh and T. V. Shahbazyan, Phys. Rev. B 47, 1522 (1993).
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