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Abstract 

The mixed-mode dynamical states found experimentally in the concentration phase space 
of the iodate catalyzed hydrogen peroxide decomposition (The Bray-Liebhafsky oscillatory 
reaction) are discussed theoretically in a related multiple-time-scale model, from the 
viewpoint of tourbillion. With aim to explain the mixed-mode oscillations obtained by 
numerical simulations of the various dynamical states of a model for the Bray-Liebhafsky 
reaction under CSTR conditions, the folded singularity points on the critical manifold of the 
full system and Andronov-Hopf bifurcation of the fast subsystem are calculated. The 
interaction between those singularities causes occurrence of tourbillion structure. 
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1. Introduction 
The tourbillion is common phenomenon in mixed-mode dynamical states of complex 

nonlinear reaction systems. It is predicted by mathematicians and recognized in some reaction 

systems of significant interest for chemical engineers [1–3]. However, although the 

mathematical explanation could be quite precise, this phenomenon cannot be easily identified 

in real system. The question arises: What is tourbillion and how shall we recognize it in 

complex nonlinear reaction systems? In the following we are trying to answer this question 

analyzing the complex iodate catalyzed hydrogen peroxide decomposition known as the Bray-

Liebhafsky (BL) oscillatory reaction [4, 5]. 

Any reaction system starting from some arbitrary initial conditions tends to final 

steady or equilibrium state that plays the role of an attractor, passing through distinct regions 

of the phase space while its different chemical species simultaneously transform through the 

reaction network. A reaction network may consist of several reaction routes. The competition 

between them sometimes results in alternating dynamical states of a system during its 

transformation from initial to final state. This dynamical feature of the considered nonlinear 

process, known as oscillatory evolution, depends very much on the external conditions. [6], 

[7] Moreover, the complexity of reaction networks depends on the number of species and 

reactions between them. 

The dimension of an attractor in a phase space is function of the number of 

independent intermediate species whose concentrations plays a role of variables in 

mathematical expressions. In almost all real systems that can be described by stoichiometric 

model, even if they are chemical, biochemical, social or other ones, there are more than three 

such variables resulting in deep mathematical problems during theoretical analysis of the 

dynamical states and evolution of the system in function of the external parameters. However, 

with aim to predict desirable dynamical state, it is rarely necessary to know all details of the 

reaction mechanism of the analyzed process proceeding under selected conditions. In most 

cases, without loosing generality, reaction dynamics of an overall process can be considered 

in lower dimensional phase space where reduced attractors are defined by lower number of 

variables, that is, in two or three dimensional projection of n-dimensional space, simplifying 

the initial mathematical models and relevant calculations. [8], [9]  

Since, almost all complex many variable dynamical systems are characterized by 

multiple-time-scales, various forms of attractors and transitions between different dynamical 

states were studied in such systems, [10]–[14] for example: the Bray-Liebhafsky oscillatory 

-806-



reaction (first reported homogeneous oscillatory chemical reaction) [4]–[5], [15]–[26] and 

references cited therein, the Belousov-Zhabotinsky (the most popular one) [27]–[34], the 

Briggs-Rauscher [35]–[39], the birhythmic Hypothalamic-Pituitary-Adrenal axis dynamics 

[40]–[42] and references cited therein, the intracellular calcium dynamics [43], the periodic 

CO oxidation at Pt surfaces [1] and [44], methylen blue oscillator [45]–[47] and references 

cited therein, chlorite-iodide oscillator [48] and other ones [49]. 

Thus, already in the first report about the BL reaction, [4] where Bray analyzed dual 

role of hydrogen peroxide as an oxidizing and reducing agent, the domination of different 

reaction routes during one reaction process was announced. More precisely, he noticed that 

the hydrogen peroxide decomposition to water and oxygen in the presence of iodate and 

hydrogen ions  
 

 3IO , H
2 2 2 22H O 2H O O

� �
����� � , (D) 

 

is the result of the reduction (R) of iodate to iodine and the oxidation (O) of iodine to iodate 

by the following complex reaction scheme 

 

 3 2 2 2 2 22IO 2H 5H O I 5O 6H O� �� � � � �  (R) 

 2 2 2 3 2I 5H O 2IO 2H 4H O� �� � � � . (O) 
 

Their rates tend to become equal and we usually observe only a smooth decomposition 

described by reaction (D) where iodine, as intermediate species, does not appear in this 

stoichiometric relation. However, in a narrow range of concentrations, the alternating 

domination of processes R and O is also possible resulting in periodic increase and decrease 

of the iodine concentration during stepwise decrease of the hydrogen peroxide and increase of 

the oxygen concentrations. This, apparently simple oscillatory reaction, known as the Bray-

Liebhafsky one, consists of a complex homogeneous catalytic oscillatory process involving 

numerous iodine intermediates such as I-, HIO, HIO2 and I2O beside already mentioned iodine 

(I2) that all oscillates. [21] The concentrations of mentioned species in the considered process 

differ for several orders of magnitudes among themselves. Thus, typical concentration of 

hydrogen peroxide during oscillatory state of the system is between 10�2 and 10�1, the 

concentration of iodine is between 10�5 and 10�4, whereas the concentrations of other species 

are much lower, between 10�9 and 10�6. Consequently, their simultaneous time variations are 
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different, resulting in dissimilar behaviors characteristic of multiple-time-scale systems with, 
at least, slow (large-concentration) and fast (low-concentration) species. In the chemistry, 

physical chemistry and biochemistry, the slow and fast variables are also known as external 

and internal ones, respectively. [50] More precisely, in such range of concentrations the 

middle concentration species are common. Depending on external conditions, they often can 

change their properties during reaction from slow to fast ones and vice versa, and although 
they have characteristics of slow or fast variables, we shall identify them as slow-fast ones. 

Particularly, during the smooth decomposition described by reaction (D), iodine is an internal 

species just as all other intermediary species. However, according to the stoichiometry of 

reaction pathways R and O, I2 is an external compound while the other intermediary 

compounds are internal.  
In systems, where concentrations of crucial species differ significantly, the relaxation 

oscillations are common. There, fast variables always quickly adjust to any change in slow 

variables, which act as the parameters for the fast subsystem. Thus, in a phase space of two 

slow and several fast variables, the stationary values of fast variables are positioned on the 

two-dimensional surface in multi-dimensional space. In the domain where relaxation 

oscillations are present this surface is folded having at least two stable and one unstable 

branch. It is known as manifold. Such a manifold calculated with the studied model can be 

seen in Fig. 5. Fast variables in that case often alternate between two stable branches resulting 

in relaxation oscillatory evolution of considered dynamical system.  
In singular perturbation theory all variables are usually classified just as slow or fast 

ones, such that we are dealing, there, with the models having two fast and one slow, or one 

fast and two slow types of them. These models exhibit different dynamical characteristics. 

However, dynamical system with two slow and one fast variable can often be rescaled to 

system with one slow and two fast variables [51] and [52]. Our aim here is just to explain that 

the considered model is selforganized in such manner that its dynamical states can alternate 

during the course of reaction, between the ones characteristic for two slow and one fast 

variable to the others characteristic for one slow and two fast variables (ref. [51], page 22).  
In chemical, physicochemical and biochemical nonlinear dynamical systems the 

multiple-time-scale models consist commonly of three-time scale types of variables. There 

are, usually, several slow ones (external species, generally, reactants and products), several 

fast ones (internal species, intermediates) and often a middle one (the slow-fast one) having 

either internal or external characteristics in different regions of phase space. Necessary 

condition for such alternations is that some species belong to middle scale in both, 
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concentration and time scale. Besides, in such reaction systems, two additional kinds of 

species can appear, both unimportant for present discussion of mixed-mode oscillations 

(MMO-s) and tourbillions. They are (a) structural control variables [6] with concentrations 

that can be considered as constant (pool approximation), [53] and (b) flow through reactants 

[54] with very low concentrations that can be considered as being in the steady state during 

whole process and, therefore, do not entering in reduced differential equations.  

Between several models [4], [5], [15], [21], [22], [55]–[64] proposed to describe the 

above mentioned Bray-Liebhafsky oscillatory reaction, we used here the one given in Table I 

[61] to explore multiple-time-scale behavior of the BL reaction. First eight reactions, where 

three of them are reversible, describe the mechanism of the process under batch conditions 

whereas all of them must be taken into account in an open continuous stirred tank reactor 

(CSTR) where only hydrogen peroxide is the inflow species. (The reaction system can be 

open with respect to other species, too. However, in that case, the number of intermediate 

species and related reactions increases importantly resulting in large mathematical problems 

without essentially important results.) In the model under consideration, where hydrogen 

peroxide is taken as the only inflow species, there are six independent species: H2O2, I2, I-, 

HIO, HIO2 and I2O and they are all dynamically important. Thus, mathematically speaking, 

we are dealing with six-dimensional problem. This model is able to describe almost all 

features of BL reaction, including regular simple oscillatory evolution, periodic mixed-modes 

with large-amplitude oscillations (LAO-s) and small-amplitude oscillations (SAO-s), as well 

as the chaotic occurrence of LAO-s and SAO-s and their combinations. [65] 

In multiple-time-scale systems with more than one slow variable, mixed-mode 

oscillations may appear in the region with simple sustained oscillations. They generally 

consist of two types of oscillations with distinct amplitudes: LAOs and SAOs. The LAOs are 

global phenomena, generated by the geometry of the critical manifold having an unstable 

branch between two stable ones. They are well known as relaxation type dynamics governed 

by slow sliding of the system over the stable branches of critical manifold, periodically 

interrupted by much faster jumps from one to another stable branch of this hyper-surface in 

phase space. These fast jumps usually occur at some special points (fold points) of the critical 

manifold where the stable branch is connected with unstable one.  
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Table 1. Model of the BL reaction used in numerical simulations [62] 

Reaction   Reaction ratea No. 

3IO I 2H� � �� �  ������  2HIO HIO�  
r1 = k1 [I�] 
r�1 = k�1 [HIO] [HIO2] 

(R1) 
(R-1) 

2HIO I H� �� �  ���  2 2I O H O�  r2 = k2 [HIO2] [I�] (R2) 

2 2I O H O�  ������  2HIO  
r3 = k3 [I2O]  
r�3 = k�3 

2[HIO]  
(R3) 
(R-3) 

HIO I H� �� �  ������  2 2I H O�  
r4 = k4 [HIO] [I�] 
r�4 = k�4 [I2] 

(R4) 
(R-4) 

2 2HIO H O�  ���  2 2I H O H O� �� � � r5 = k5 [HIO] [H2O2] (R5) 

2 2 2I O H O�  ���  2HIO HIO�  
r6 = k6 [I2O] [H2O2] 
 (R6) 

2 2 2HIO H O�  ���  3 2IO H H O� �� �  r7 = k7 [HIO2] [H2O2] (R7) 

3 2 2IO H H O� �� �  ���  2 2 2HIO O H O� �  r8 = k8 [H2O2] (R8) 

( 2 2H O )in ���  2 2H O  r9 = j0 [H2O2]in (R9) 

2 2H O  ���  ( 2 2H O )out r10 = j0 [H2O2] (R10) 

I�  ���  (I�)out r11 = j0 [I�] (R11) 

HIO ���  (HIO) out r12 = j0 [HIO] (R12) 

HIO2 ���  (HIO2) out r13 = j0 [HIO2] (R13) 

I2O ���  (I2O) out r14 = j0 [I2O] (R14) 

I2 ���  (I2) out r15 = j0 [I2] (R15) 
a Reaction rate constants at 60°C: k1 = 1.383 � 102 min�1; k�1 = 7.91 � 107 mol�1 � dm3 � min�1; k2 = 4.79 � 1010 

mol�1 � dm3 � min�1; k3 = 5.00 � 103 min�1; k�3 = 3.15 � 108 mol�1 � dm3 � min�1 ; k4 = 3.00 � 1011 mol�1 � dm3 � 

min�1; k�4 = 46.97 min�1; k5 = 1.487 � 104 mol�1 � dm3 � min�1; k6 = 5.00 � 105 mol�1 � dm3 � min�1; k7 = 2.00 � 

103 mol�1 � dm3 � min�1; k8 = 2.2303 � 10�4 min�1. In CSTR we distinguish inflow species (Xi)in and outflow 

species (Xi)out. The concentrations of iodate and hydrogen ions, taken as constant in simulations ([ 3IO�
] = 0.0474 

mol × dm-3 and [H+] = 0.0958 mol × dm-3) are included in corresponding rate constants. The inflow 

concentration of hydrogen peroxide was [H2O2]in = 0.155 mol × dm-3. Flow rate as control parameter is 

designated as j0.  
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However, in mixed-mode, LAOs are mixed with SAOs of different nature. They occur 

at the fold points as a local phenomena generated by some folded singularities. In the mixed-

mode region we can expect the occurrence of phenomena known as canards and tourbillion. 

[14], [51], [66]– [68]  

Here particular attention is focused on the dynamical structures that appear in the 

mixed-mode region of the BL oscillatory reaction in a CSTR: particularly tourbillion as 

specific time-evolution pattern in one mixed-mode period. Our aim is to explore the 

selforganization of dynamical states with tourbillion that alternate during the course of 

reaction, with changes in number of slow and fast variables. 

 

 

2. Materials and methods 
2.1 Experimental 

A schematic diagram of the instrumental setup is shown in ref. [69]. The experiments 

were conducted in the CSTR where inflow concentration of sulfuric acid is a control 

parameter. Under the following experimental conditions: [KIO3]0 = 0.059 mol dm-3, [H2O2]0 = 

0.15 mol dm-3; the specific flow rate j0 = 0.0295 min-1, T = 56 oC and the inflow concentration 

of H2SO4 varied from 0.0422 mol dm-3 to 0.09 mol dm-3. Temporal evolution of the system 

was followed potentiometrically, by means of a Pt electrode connected to the Ag/AgCl 

reference electrode.  

 

2.2 Numerical simulations and analysis 

We have analyzed time series obtained by numerically simulating the model of the 

Bray-Liebhafsky oscillatory reaction under isothermal CSTR conditions (T = 60 oC), Table 1. 

All calculations were performed using MATLAB program package. System of the ordinary 

differential equations was solved by means of ode15s solver. Relative and absolute error 

tolerance values 3 � 10-14 and 1 � 10-20, respectively, were used in all simulations. 

Initial values of concentrations were [ -
3IO ]0 = 0.0474 mol × dm-3, [H+]0 = 0.0958 mol × 

dm-3 and [H2O2] 0 = 0.155 mol � dm-3. Flow rate j0 and inflow hydrogen peroxide 

concentration [H2O2]in, as control parameters, were varied in wide region of values. 
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3. Calculations 
 During typical relaxation oscillations, considered system has two slow (H2O2, and I2 

concentrations, although species I2 is sometimes fast variable) and four fast variables (HIO, 

HIO2, I2O and I– concentrations). In such system the fast variables are almost always in a 

nonequilibrium stationary (or steady) state (more precisely: in a quasi steady state). Their 

steady-state values are determined by the concentrations of the slow variables. In the general 

case, during one full period of system evolution in the phase space that can consists of one or 

many oscillations, the concentrations of the slow species change significantly governing the 

steady state concentrations of fast species in such a manner that they are positioned in one 

hyper surface or very close to it. The critical manifold of the BL reaction model under 

consideration is a two- dimensional surface placed in a six-dimensional phase space. It is 

completely determined by steady-state equations of four fast species. Hence, we have to solve 

the system of four equations with six variables. Obviously, there is no unique solution in this 

case, unless we fix two variables. For any pair of fixed values, we will obtain new solution, 

corresponding to another point on the critical manifold. Hence, we can say that two chosen 

variables determine the solution in parametric fashion. Moreover, as far as we use same four 

rate equations for fast species, final solution, the critical manifold, will not depend on our 

choice of two parametric variables. Therefore, for the reasons of simplicity, instead the more 

natural parameters: the concentrations of H2O2 and I2, the concentrations of H2O2 and HIO are 

selected to be the parametric variables in our calculations. The points on the manifold are 

obtained by symbolic calculations (see Appendix).  

  Points at the fold line were determined according to ref. [51], from the condition:  
 

iDet(J(X )) 0� , (1) 

 

where Xi denotes the fast species HIO, HIO2, I2O and I– and J is the Jacobian of 

corresponding fast subsystem. This request must be fulfilled on the border between stable and 

unstable branch of the critical manifold. Concentrations of slow species are treated here (in 

evaluation of the Jacobian for fast subsystem) as they are constant. This assumption seems to 

be appropriate since they are changing on much slower time scale then the fast ones. 

Dynamics of the slow subsystem on the critical manifold can be reduced. 

Concentrations of all fast species are connected by their steady state equations. It means that 

if beside two slow ones, one fast variable is known too, the others are also uniquely 
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determined, even if the critical manifold is folded. Hence, the situation in our system is 

analogous to dynamical systems with two slow and only one fast species, and therefore, the 

singularity point on the fold line was calculated according to ref. [51], from the condition: 
 

1 2

1 2

d d 0
d d

	 	

 � 
 �
	 	

f fg g
t x t x , (2) 

 

where x1 and x2 are concentrations of slow species, f1 and f2 are their corresponding rates and 

g is a rate of the fast variable. In our case this gives for e.g. [HIO]: 

 

� �
� �

� � � �
� �

� �2 2 2

2 2 2

d H O d HIO d I d HIOd d 0
d d H O d d d I dt t t t t t
 �  �  �  �	 	


 � 
 �� � � � � � � �	 	� � � � � � � �
. (3) 

 

Furthermore, two nullclines were evaluated from corresponding rate equations for sets 

of all four fast species combined with each of two slow ones. Hence, we have one nullcline 

that describe the steady state condition of species I2, HIO, HIO2, I2O and I– (the iodine 

nullcline) and the other one for the combination H2O2, HIO, HIO2, I2O and I– (the hydrogen 

peroxide nullcline). Each one of two subsystems gives as a solution a line, located in the 

critical manifold of the fast species. Steady state of the full system is placed in the point 

where two nullclines intersect, and it will be shortly referred below as the equilibrium 

(therminology common in mathematical papers), keeping in mind that our system is of non-

equilibrium type. More precisely, in our papers this is known as disproportionation steady-

state. [61] 

Finally, Andronov-Hopf point was identified numerically on the iodine nullcline using 

simple test ensuring that the real part of two complex eigenvalues (corresponding to five 

dimensional Jacobian) is passing through zero. 

 

4. Results and discussion 
4.1 Dynamical structures in mixed mode region 

 The various dynamical states obtained by numerical simulations of the model for the 

BL nonlinear reaction system given in Table 1 are presented in Figure 1. Considering the 

oscillatory region as a function of two external parameters: the flow rate j0 and hydrogen 

peroxide concentration in inflow [H2O2]in we can see narrow mixed-mode region (between + 
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and �) that appear inside phase space, but very close to the upper-right border of the simple 
sustained oscillations.  
 More precisely, we can clearly distinct three regions of initial hydrogen peroxide 

concentrations. In the first one we cannot obtain oscillations for any flow rate; the main 

steady state is always stable. In other two regions, oscillations can be found for middle values 

of flow rates, that is, “inside” the curved line in Fig, 1, while outside of these bounds, only 

stable steady state remains. More precisely, in the second one, we can find only simple 

sustained oscillations, whereas in the third one we have various kinds of periodic and 
aperiodic (chaotic) oscillations. In this third region, for the lowest values of the control 

parameter j0, there is only stable steady state (Fig. 1). With increase of the flow rate j0, the 

stable steady state transforms to the unstable one through supercritical Andronov-Hopf 

bifurcation, where the stable limit cycle emerges. With further increase of the flow rate j0, 

dynamics of the system is featured with different forms of oscillations: simple quasi-

sinusoidal oscillations are observed first; they quickly rise in amplitude, changing waveform 
to that typical for simple relaxation LAO-s. With additional increase of the flow rate, mixed-

mode dynamics with complex sequences of both LAO-s and SAO-s emerges, in which the 

ratio between numbers of SAO-s and LAO-s is increased (Fig. 1, periodic states between + 

and �). [65] Finally, mixed-mode oscillations suddenly disappear and only dynamical states 

with SAO-s rest until second Andronov-Hopf bifurcation where the system reaches the stable 

steady state once more. All periodic mixed-mode states are separated by chaotic transitions 

between them. [70]  
 Numerically obtained oscillations are of the same type as the experimental ones 

(Fig. 2) consisting of various mixtures of LAO-s and SAO-s. Observability of experimental 

MMO-s testify that phenomena are robust in spite of rather narrow oscillatory region where 

they could be found. Moreover, although oscillatory region with or without mixed mode 

oscillations and chaotic states inside it appear often in narrow region of phase space, lot of 

natural reaction systems such as many biological ones [40]–[42] are for a long period or 

permanently in such states. 
Obviously, in the mixed-mode region several relaxation LAO-s are always combined 

with only one SAO, and vice versa (Figs. 1, 2 and 3). Whereas the LAO-s are result of global 

phenomena, the SAO-s are determined by local conditions near the fold line of the critical 

manifold. Since we are here looking for tourbillion, the phenomenon that appears at the local 

level, we shall consider the cases with one LAO and several SAO-s as it is the case in Fig. 3 

(a) and (b). 
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Figure 1. The dynamical states of the BL reaction as a function of two external parameters: 

the flow rate j0 and hydrogen peroxide concentration in inflow [H2O2]in. The oscillatory 

dynamical states are “inside” the curved line: there are no oscillations in region I for any j0, 

there are only sustained relaxation oscillations in region II and all kind of oscillations 

including mixed-mode and chaotic ones in region III, depending on the j0. The empty squares 

(�) denote the left supercritical Andronov-Hopf bifurcation points, the empty circles (�) 

denotes the right supercritical Andronov-Hopf bifurcation points, whereas the mixed-mode 

oscillations are between + and �. The full square (�) at the left side of the last considered 

oscillatory state between regions I and II denotes subcritical Andronov-Hopf bifurcation 

point, whereas the full circles (�) on the right side denote the saddle loop bifurcation point. 

The typical periodic dynamical states in region III are presented at the right-upper corner.  
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Figure 2. Experimental time series of the BL oscillatory reaction; [KIO3] = 0.059 mol dm-3, 

[H2O2] = 0.15 mol dm-3; j0 = 0.0295 min-1, T = 56 oC. The inflow concentrations of sulfuric 

acid [H2SO4] was (a) 0.0774 mol / dm3 and (b) 0.0761 mol / dm3. 
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In Fig. 3 we have presented separately slower and faster species. The slower species 

have higher concentrations than the faster ones. The iodine concentration is between the 

hydrogen peroxide and fast internal species ones, and, hence, it can be sometimes considered 

as the fast one. More precisely, iodine behaves as the fast variable when its concentration is in 

the stationary state, which is approximately satisfied in maxima and minima of the time-

evolution concentration curve (Fig. 3). This phenomenon is easier to note in maxima where 

we can see numerous small oscillations in Fig 3 (a) and only one, or no one, in Fig. 3 (c). 

Moreover, comparing hydrogen peroxide with iodine time evolutions, we can see that iodine 

concentration is more likely in its global stationary state: the maxima of iodine concentrations 

do not depend on the position of an oscillation in a sequence during one period if there are 

lots of them.  
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Figure 3. Mixed-mode oscillations of all internal species in BL reaction system for [H2O2]in = 

0.155 M and j0 = 5.0810 � 10-3 min–1 for (a) and (b), and j0 = 4.82593 � 10-3 min–1 for (c) and 

(d). 

 

Described reaction dynamics characteristic for a system with multiple time scales in 

CSTR is strongly related to the dynamics of the corresponding system in batch reactor [71] 

and [72]. Both dynamical systems are organized by principally identical hypersurface in 

phase space. The main difference between them is caused by inflow of hydrogen peroxide that 
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exists only in CSTR. Hence, when the system is in the oscillatory state under batch 

conditions, the hydrogen peroxide decomposes monotonously but in stepwise form, while in 

CSTR the concentration of hydrogen peroxide, although constant in average, periodically 

decreases and increases in each SAO and in each LAO (Fig. 3 (a) and (c)). Analyzing Fig. 3 

(a), we can see that hydrogen peroxide globally decreases during almost whole period, and 

after that increases just for a moment, to reach once more maximal value, whereas in the case 

given in Fig 3 (c), where several large-amplitude oscillations can be noted in one period, it 

globally increases until the last maximum before appearing a single small-amplitude 

oscillation. In other words, in one period obtained under CSTR conditions, depending on 

hydrogen peroxide inflow the concentration of hydrogen peroxide decreases and increases 

governing the whole system through phase space, over the trajectory described by the limit 

cycles as are the ones presented in Fig. 4.  

Phase shifts between variables that can be noted in Fig. 4, is appropriate to study by 

means of two-dimensional projections of the phase space attractors. Species oscillating 

mainly in the same phase (Fig 4 a), have 2D attractors highly stretched out along the main 

diagonal. Phase shifts are connected with the order of reactions in reaction pathways 

generating oscillations. 

Species oscillating mainly in the opposite phase (Fig 4 b) are also characterized by 

highly elongated phase portraits but transversally to the main diagonal. As we said before, in 

our case, the iodide concentration typically changes in the opposite phase with other fast 

species HIO, HIO2 and I2O, while they are almost synchronized among themselves and 

oscillate in the same phase. Slight banding of the phase portraits in Figs 4 (a) and 4 (b) is 

caused by slight phase shift among them. However, SAO-s are almost invisible at this graphic 

representation, since they are developed in a very thin slide of phase space along the LAO 

trajectory. Since fast species are so highly correlated, we can choose anyone of them to 

examine relations between slow and fast ones. 

Phase portraits of couples with one slow and one fast species, (Fig 4 (c) and (d)) show 

distinct phase shift between species, since their limit cycles deviate significantly from the 

main diagonal and its transversal in both cases. However, there is a significant difference 

between two slow species. In the iodine phase portraits with fast species SAO-s are localized 

to relatively small neighborhood of the point where iodine concentration reaches its maximum 

value on the limit cycle. However, in hydrogen peroxide portraits with fast species, the SAO-s 

are stretched along wide range of hydrogen peroxide values. 
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Figure 4. Phase portraits of the attractor for the BL reaction system simulation given in Fig. 3 

(a) and (b). (a) HIO2 vs. HIO, (b) I– vs. HIO, (c) HIO vs. I2, (d) HIO vs. H2O2, (e) I2 vs. H2O2, 

with enlarged SAO-s in the inset part.  

 

Moreover, in Figure 4 (e), the phase portrait of two slow species together with 

enlarged SAO-s in the inset part, is presented to illustrate distortion between two species in 

the insert, which are mainly in the same phase otherwise. Finally, the strong distortion of the 

limit cycle and apparent trajectory overlapping present in Fig. 4 (a)-(e) indicate that two-
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dimensional projections of the limit cycle are not adequate representation for further analysis 

of the attractor, embedded in six dimensional phase space. 

However, six-dimensional nonlinear dynamical system can be successfully considered 

(similarly many other multidimensional cases) as three-dimensional problem, since 

corresponding model consist of three-time scale types of variables: slow, fast and slow-fast. 

Therefore, three-dimensional projections of the phase space trajectory can be used to explore 

the mechanism of MMO-s in relation to the critical manifold of the slow-fast system. 

 

4.2 Tourbillion 

In Fig. 5 we can see the trajectory of the system from Fig. 3 (a) and (b) in three 

dimensional space including concentrations of three representative species with respect to 

their time-scale: hydrogen peroxide, iodine and HIO. 

 

 
Figure 5. Part of the critical manifold for the BL model in CSTR, with attractor in the form of 

tourbillion. Parameters are as in Fig. 3 (a) and (b). 
 

Generally, at all points along the fold line the determinant of the Jacobian matrix for 

fast species, passes through zero value – the matrix is singular [51]. This is also true for 

Jacobian matrix of four fast species in the model considered. Hence, the rank of the Jacobian 

is three on this line, and therefore, only three eigenvalues have non-zero values. The fourth 

value passes through zero on the fold line. It means that points on the fold line are of the 

saddle-node type with respect to the fast subsystem. 

During an oscillatory period, dynamical system moves over one stable branch of 

critical manifold surface governed by its slow subsystem defined by H2O2 and iodine, until it 
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reaches the fold line, which is the solid line separating stable branch from the middle unstable 

one in Fig 5. At this point, we should expect the simple jump of the system to another stable 

branch of the surface. Instead this, in the transient state from the one to the other stable branch 

of the folded surface, the SAO-s of the canard form emerges. [1] This kind of the behavior is 

usually connected with some special point on the fold line: folded singularity. 

At mentioned folded singularity, total differential of the rate equation for the fast 

species in slow (reduced) subsystem change its sign (equation (3)). Consequently, at such 

point, the trajectory of the slow subsystem over the stable branch of the manifold surface 

changes its direction, with respect to the fold line. More precisely, on one side of this point 

the trajectory of the slow subsystem is directed toward the fold line, and on the other side it 

goes away from the fold line. We used the equation (3) to locate the singularity on the fold 

line and found that it is placed at the intersection of the fold line with iodine nullcline (Figures 

6 and 7). Then we evaluate eigenvalues of the slow subsystem at the singular point. It happens 

that both singular values in our case are real and negative, and hence, folded singularity 

should be of the folded node type. 
 

 
Figure 6 Part of the critical manifold for the BL model in CSTR, with indicated fold line 

(solid line) and two nullclines (dashed line for iodine and dash-dotted one for hydrogen 

peroxide). Parameters are as in Fig. 3 (a). 

 

From Fig 6, we can see that the steady state of the full system (point at the crossing of 

two nullclines on the manifold surface – equilibrium) is near the fold line for parameter 

values used in this case, indicating possible Singular Andronov-Hopf bifurcation. It occurs 

when equilibrium of slow-fast system crosses the fold line. In the model considered, it could 
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be shown that for some higher values of the flow rate, equilibrium really crosses the fold line 

and goes to the other stable branch of the manifold becoming stable and suppressing any 

oscillations in the system. For mixed-mode oscillations to evolve from Singular Andronov-

Hopf bifurcation mechanism, it would be expected that equilibrium be of the saddle-focus 

type, and SAO should increase in amplitude after they first come close to the equilibrium. 

However, equilibrium in our case is of the focus-node type. Moreover, SAO-s are in our case 

increasing while they are approaching to the equilibrium, not leaving from it. 

Furthermore, singularities of the Andronov-Hopf type are not found for the subsystem 

which includes fast species only. However, five-dimensional (5D) fast subsystem including 

iodine species, too, really has the Andronov-Hopf point, on the corresponding iodine 

nullcline, in the near vicinity of the fold line. (Figure 7) We then evaluate the eigenvalues of 

the five-dimensional system along the iodine nullcline, and it happens that all but two are real 

and negative. Remaining two eigenvalues are complex conjugate, with changing sign of the 

real part in the Andronov-Hopf point. Due to the complex pair of eigenvalues in the 5D fast 

subsystem, trajectories spiral around the iodine nullcline, which gives rise to SAO-s. The 

amplitude of such an oscillation initially decreases (while system is moving along branch of 

the nullcline where the real part of the complex eigenvalues is negative) and then increases 

again (after the system goes beyond the Andronov-Hopf bifurcation and follows the part of 

the nullcline where real part becomes positive). This corresponds to a dynamical Andronov-

Hopf bifurcation. [51] From this situation mixed-mode oscillations can occur by delayed 

Andronov-Hopf bifurcation or by the tourbillion mechanism. However, the difference among 

them is fuzzy and in practice they can be distinguished by subjective evaluation of the 

amplitude. [51] Namely, if the amplitude of the SAO-s is large enough that they are visible, 

then we have tourbillion and otherwise we have delayed Andronov-Hopf bifurcation. In the 

paper of Desroches et al there is distinguishing remark: “We adopt the term tourbillion from 

Wallet [68] to describe the trajectories passing through a Dynamical Andronov-Hopf 

bifurcation with oscillations whose amplitude remains above an observable threshold.” In the 

case considered we could say that SAO-s are visible, and tourbillion is more probable variant. 
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Figure 7. Folded singularity (FS) and Andronov-Hopf bifurcation point (AH) of the fast 

subsystem with iodine, found on the iodine nullcline (dashed line). Steady state (SS) of the 

full system is in the crossing of two nullclines. (a) Whole limit cycle in two dimensions. (b) 

Enlarged part in three dimensions with a fold line (solid line) and two nullclines (dashed and 

dotted lines). Parameters are as in Fig. 3 (a). 

 

Iodine plays the most important role in this system being in a part fast, and otherwise 

slow variable. In the model discussed here, dynamical Andronov-Hopf bifurcation is present 

only in the five dimensional fast subsystem where iodine is included also. Therefore, the 

SAO-s emerging from dynamical Andronov-Hopf bifurcation, are developed only if the limit 

cycle of LAO-s, governed by folded singularity is close enough to iodine nullcline, so that 

iodine can behave like fast species. 
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5. Conclusion 
Analyzing a model for the BL reaction in open reactor, with six independent 

intermediate species, with concentrations that differ for several orders of magnitudes, 

resulting therefore in multiple-time-scale evolution, we have found tourbillion.  

The key detail for appearance of the tourbillion, the phenomenon that appear in the 

system with one slow and two fast variables at least, is the existence of slow-fast variable 

(iodine in the case considered) that change its property in mixed-mode oscillatory region 

transforming to fast species at the moment when system would jump from one to the other 

stable branch of the manifold. Thus a tourbillion occurs when considered BL reaction system 

having two slow and four fast variables, in the mixed-mode oscillatory region transforms for 

instant to the system with one slow and five fast variables.  

The conclusion does not depend on the number of fast variables since all of them are 

interrelated and consequently they appear in the discussion as one. 

The necessary condition to obtain tourbillion is that fast subsystem cross the 

Andronow-Hopf bifurcation near fold line. We demonstrate that appropriate Andronow-Hopf 

bifurcation occurs in slow-fast system, when one slow-fast variable transforms from the slow 

to the fast one near the fold. Critical role in the mechanism of the tourbillion shaped mixed-

mode oscillations is the position of the Andronow-Hopf bifurcation, which ought to be 

located on the fast nullcline, between the steady state of the full system on one side and folded 

singularity on the other. 

In the case of considered model of the BL reaction, the concentration of iodine species 

plays the role of slow-fast variable, changing its characteristics near the fold of the critical 

manifold. There, the Andronow-Hopf bifurcation occurs in the five dimensional fast 

subsystem, with appearance of two complex conjugate eigenvalues changing the sign of their 

real part. Lower dimensional fast subsystem posses no complex eigenvalues.  

Hence, we come to the general statement that the tourbillion is a phenomenon that can 

emerge in the system with at least two slow and one fast variable when one slow variable 

changes to the fast one near the fold line. 
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Appendix   
The time evolutions of intermediary species are described by the six following differential 
equations  
 d[H2O2]/dt = – r5 – r6 – r8 + j0 ([H2O2]in – [H2O2]) 
 d[I2]/dt = r+4 – r–4 – j0 [I2] 
 d[I–]/dt = – r+1 + r–1 – r2 – r+4 + r–4 + r5 – j0 [I–] 
 d[HIO]/dt = r+1 – r–1 + 2 r+3 – 2 r–3 – r+4 + r–4 – r5 + r6 – j0 [HIO]  
 d[HIO2]/dt = r+1 – r–1 – r2 + r6 + r8 – j0 [HIO2] 
 d[I2O]/dt = r2 – r+3 + r–3 – r6 – j0 [I2O]. 
 
Where rate expresions ri are given in Table 1 of the main text. This system of ordinary 
differential equations defines our model of the BL reaction mechanism as a dynamical 
system.  
We introduce new variables to make equations as shortest as possible: 
 

2 2a = [H O ] , 2b = [I ] , -c = [I ] , d = [HIO] , 2g = [HIO ] , 2f = [I O] . 
 
Now, symbolic calculation from steady state equations of four fast species gives following: 
 
g =  – 1/2 (k6 k7 a2 jo + 2 k1 k3 jo + k3 jo

2 – 2 k2 k -3 k6 a d2 – 3 k2 k3 k8 a + 2 k1 k6 k7 a2 – 2 k2 k6 k8 a2  
+ 2 k2 k -3 d2 jo + 2 k1 k6 a jo + k2 d jo

2 + k -1 d jo
2 + k7 a jo

2 + k6 a jo
2 + 2 k1 k3 k7 a + jo

3 + 2 k1 k7 a jo  
+ k2 k3 d jo + k -1 k3 d jo – k2 k8 a jo + k3 k7 a jo + k -1 k6 a d jo + 2 k1 jo

2 – (4 k2 k5 a d jo
4 + 4 k -1 k6 a d jo

4  
+ 4 k2 k -3 k6 a d2 jo

3 + 2 k2 k6 a d jo
4 + 2 k2 k7 a d jo

4 + 16 k1 k2 k6 k7 a2 d jo
2 + 4 k2

2 k -3 d3 jo
3 + 4 k1 k6

2 a2 jo
3 + 4 

k1 k3
2 k7

2 a2 jo + 4 k2 k3
2 k5 k7 a2 d jo + 8 k2 k3 k -3 k6 k7 a2 d2 jo + k7

2 a2 jo
4 + k -1

2 d2 jo
4 + 4 k1

2 k3
2 jo

2  
+ k6

2 a2 jo
4 + k2

2 d2 jo
4 + 2 k7 a jo

5 + 2 k -1 d jo
5 + 2 k6 a jo

5 + 2 k2 d jo
5 + 8 k1

2 k3 jo
3 + 4 k1 k3

2 jo
3 + 8 k1 k3 jo

4  
+ 6 k2 k3

2 k8 a jo
2 + 4 k2 k3 k -3 d2 jo

3 + 10 k2 k3 k6 k8 a2 jo
2 + 8 k2 k3 k5 a d jo

3 + 8 k1 k3 k6 a jo
3  

+ 4 k -1 k3 k6 a d jo
3 + 8 k1 k3

2 k7 a jo
2 + 16 k1 k3 k7 a jo

3 + 4 k2 k3
2 k5 a d jo

2 + 8 k2 k3 k -3 k6 a d2 jo
2  

+ 24 k1k2 k3 d jo
3 + 2 k2 k3 k6 a d jo

3 + 16 k1 k2 k3
2 d jo

2 + 4 k -1 k2 k3 d2 jo
3 + 4 k2 k3 k7 a d jo

3  
– 6 k2

2 k3
2 k8 a d jo + 24 k1 k2 k3 k6 k7 a2 d jo + 4 k1

2 jo
4 + 8 k1 k -1 k2 k6

2 a2 d2 jo + 16 k1 k2 k5 k6
2 k7 a4 d  

+ 8 k1 k2 k6
2 k7 a3 d jo + 8 k1

2 k3 k7
2 a2 jo + 32 k1 k2 k3

2 k5 k7 a2 d + 28 k1 k2 k3 k -3 k6 k7 a2 d2  
+ 4 k1 k -1 k6

2 a2 d jo
2 + 48 k1 k2 k3 k5 k6 a2 d jo + 16 k1 k2 k -3 k6

2 a2 d2 jo + 60 k1 k -1 k2 k3 k -3 k6 a d3  
+ 20 k1 k -1 k2 k3

2 d2 jo + 40 k1 k -1 k2 k3 k -3 d3 jo + 56 k1 k -1 k2 k3 k6 k8 a2 d + 40 k1 k -1 k2 k3
2 k8 a d  

+ 64 k1 k -1 k2 k3 k8 a d jo + 56 k1 k -1 k2 k3 k5 k6 a2 d2 + 40 k1 k -1 k2 k3
2 k5 a d2 + 32 k1 k -1 k2 k3 d2 jo

2  
+ 8 k1 k -1 k3 k6 k7 a2 d jo + 28 k1 k2 k -3 k6 k7 a2 d2 jo + 8 k1 k2 k6

2 k7 k8 a4 + 32 k1 k2 k5 k6 k7 a3 d jo  
+ 8 k1

2 k6
2 k7 a3 jo + 4 k1 k -1 k6

2 k7 a3 d jo + 8 k1
2 k3 k6 k7

2 a3 + 8 k1
2 k6 k7

2 a3 jo + 48 k1 k2 k3 k5 k6 k7 a3 d  
+ 16 k1 k2 k -3 k6

2 k7 a3 d2 + 2 k -1 k7 a d jo
4 + 8 k1 k -1 k6 k7 a2 d jo

2 + 4 k -1 k2 k -3 d3 jo
3 + 4 k -1 k2 k5 a d2 jo

3  
+ 2 k -1

2 k6 a d2 jo
3 + 4 k -1 k3 k7 a d jo

3 + 8 k1 k -1 k3 k7 a d jo
2 + 4 k1 k -1 k7 a d jo

3 + 8 k -1 k2 k3 k5 a d2 jo
2  

+ 12 k -1 k2 k -3 k6 a d3 jo
2 + k -1

2 k6
2 a2 d2 jo

2 + 4 k -1 k2 k3 k5 k6 a2 d2 jo + 4 k -1 k2 k -3 k6
2 a2 d3 jo  

+ 8 k1
2 k3

2 k7 a jo + 32 k1 k2 k3
2 k5 a d jo + 28 k1 k2 k3 k -3 k6 a d2 jo + 2 k -1

2 k3 d2 jo
3 + 2 k3 k7

2 a2 jo
3  

+ 4 k1 k7
2 a2 jo

3 + 9 k2
2 k3

2 k8
2 a2 + 4 k1

2 k6
2 k7

2 a4 + k -1
2 k3

2 d2 jo
2 + 4 k -1 k3 d jo

4 + 4 k3 k7 a jo
4  

+ 2 k -1 k3
2d jo

3 + 2 k3
2 k7 a jo

3 + k2
2 k3

2 d2 jo
2 + 2 k2

2 k3d2 jo
3 + 8 k1 k2 d jo

4 + 8 k1 k6 a jo
4 + 4 k1 k -1 d jo

4  
+ 8 k1 k7 a jo

4 + 8 k1
2 k6 a jo

3 + 8 k1
2 k7 a jo

3 + 4 k2 k -3 d2 jo
4 + 2 k -1 k2 d2 jo

4 + 2 k -1 k2 k3
2 d2 jo

2  
+ 4 k2

2 k3 k -3 d3 jo
2 – 4 k2

2 k3 k6 k8 a2 d jo + 8 k2
2 k3 k5 a d2 jo

2 + 24 k1 k2 k3 k6 a d jo
2 + 2 k -1 k2 k3 k6 a d2 jo

2 + 2 k2 
k3

2 k7 a d jo
2 + 16 k1 k2 k3

2 k7 a d jo + 24 k1 k2 k3 k7 a d jo
2 + 4 k2

2 k3
2 k5 a d2 jo – 4 k2

2 k3 k -3 k6 a d3 jo + 16 k1
2 k6 

k7 a2 jo
2 + 8 k1 k -1 k3 d jo

3 + 16 k1 k2 k -3 d2 jo
3 + jo

6 + 2 k2 k3 k6 k7 a2 d jo
2 + 16 k1 k6 k7 a2 jo

3  
+ 2 k2 k6 k7 a2 d jo

3 + 16 k1 k3 k6 k7 a2 jo
2 + 4 k -1 k6 k7 a2 d jo

3 + 10 k2 k3 k6 k7 k8 a3 jo + 4 k1 k6
2 k7

2 a4 jo  
+ 4 k -1 k3 k6 k7 a2 d jo

2 + 4 k2 k -3 k6 k7 a2 d2 jo
2 + 4 k2 k6

2 k7 k8 a4 jo + 4 k2 k5 k6 k7 a3 d jo
2 + 8 k1 k6

2 k7 a3 jo
2 + 2 k -

1 k6
2 k7 a3 d jo

2 + 2 k3 k6 k7
2 a3 jo

2 + 8 k1 k3 k6 k7
2 a3 jo + 8 k1 k6 k7

2 a3 jo
2 + 4 k2 k3 k5 k6 k7 a3 d jo  

+ 4 k2 k -3 k6
2 k7 a3 d2 jo + k3

2 jo
4 + 2 k3 jo

5 + 4 k1 jo
5 + k3

2 k7
2 a2 jo

2 + 4 k1
2 k3

2 k7
2 a2 + 4 k1

2 k7
2 a2 jo

2  
+ 16 k1 k2 k5 a d jo

3 + 8 k1 k -1 k6 a d jo
3 + 16 k1

2 k3 k7 a jo
2 + 48 k1 k2 k3 k5 a d jo

2 + 28 k1 k2 k -3 k6 a d2 jo
2  

+ 28 k1 k -1 k2 k3 k6 a d2 jo + 64 k1 k -1 k2 k3 k5 a d2 jo – 8 k2
2 k5 k6 k8 a3 d jo + 8 k1 k2 k6

2 k8 a3 jo  
+ 4 k -1 k2 k6

2 k8 a3 d jo – 8 k2
2 k3 k5 k6 k8 a3 d + 8 k2

2 k -3 k6
2 k8 a3 d2 + 4 k2

2 k3
2 k5

2 a2 d2 + 8 k2 k3 k8 a jo
3  

– 8 k2
2 k3 k8 a d jo

2 + 4 k1 k2 k8 a jo
3 + 2 k2 k8 a jo

4 + k6
2 k7

2 a4 jo
2 + 4 k6 k7 a2jo

4 + 2 k6
2 k7 a3 jo

3  
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+ 2 k6 k7
2 a3 jo

3 + 2 k2 k3
2 jo

3 d + 4 k2 k3 jo
4 d + 2 k3 k6 a jo

4 – 2 k2
2 k8 a d jo

3 + 4 k -1 k2 k3 k -3 d3 jo
2  

+ 2 k -1
2 k3 k6 a d2 jo

2 + 2 k -1 k3
2 k7 a d jo

2 + 4 k1 k -1 k3
2 k7 a d jo + 4 k -1 k2 k3

2 k5 a d2 jo  
+ 16 k -1 k2 k3 k -3 k6 a d3 jo + 4 k2

2 k -3
2 d4 jo

2 + 4 k2 k -3 k7 a d2 jo
3 + 4 k2 k5 k7 a2 d jo

3 + 8 k1 k3 k7
2 a2 jo

2  
+ 8 k2 k3 k5 k7 a2 d jo

2 + 16 k1 k2 k5 k6
2 a3 d jo + 8 k1 k2 k6

2 a2 d jo
2 + 12 k1 k -1 k2 d2 jo

3  
+ 52 k1 k -1 k2 k -3 k6 a d3 jo + 24 k1 k -1 k2 k -3 d3 jo

2 + 40 k1 k -1 k2 k6 k8 a2 d jo + 24 k1 k -1 k2 k8 a d jo
2  

+ 40 k1 k -1 k2 k5 k6 a2 d2 jo + 20 k1 k -1 k2 k6 a d2 jo
2 + 24 k1 k -1 k2 k5 a d2 jo

2 + 4 k2
2 k5

2 a2 d2 jo
2  

+ 32 k1 k2 k5 k6 a2 d jo
2 + 4 k -1 k2 k5 k6 a2 d2 jo

2 + 48 k1 k2 k3 k5 k7 a2 d jo + 16 k1 k2 k5 k7 a2 d jo
2  

+ 8 k2
2 k3 k5

2 a2 d2 jo – 8 k2
2 k -3 k5 k6 a2 d3 jo + 4 k1

2 k6
2 a2 jo

2 + 4 k2
2 k -3

2 k6
2 a2 d4 – 4 k2

2 k6 k8 a2 d jo
2  

+ 4 k2
2 k5 a d2 jo

3 + 16 k1 k2 k6 a d jo
3 + 2 k -1 k2 k6 a d2 jo

3 + 8 k1 k2 k7 a d jo
3 – 4 k2

2 k -3 k6 a d3 jo
2  

+ 4 k2 k6
2 k8 a3 jo

2 + 4 k2 k5 k6 a2 d jo
3 + 2 k -1 k6

2 a2 d jo
3+ 4 k2 k3 k5 k6 a2 d jo

2 + 4 k2 k -3 k6
2 a2 d2 jo

2  
+ 12 k1 k2 k3

2 k8 a jo + 16 k1
2 k3 k6 k7 a2 jo + 4 k1 k -1 k3

2 d jo
2 + 32 k1 k2 k3 k -3 d2 jo

2 + 20 k1 k2 k3 k6 k8 a2 jo  
+ 8 k1

2 k3 k6 a jo
2 + 8 k1 k -1 k3 k6 a d jo

2 + 6 k2 k6 k7 k8 a3 jo
2 – 8 k2

2 k3 k -3 k5 k6 a2 d3 + 8 k2
2 k3 k -3 k5 a d3 jo  

– 8 k2
2 k -3

2 k6 a d4 jo + 4 k2
2 k6

2 k8
2 a4 + k2

2 k8
2 a2 jo

2 + 8 k2
2 k -3 k5 a d3 jo

2 + 4 k2 k -3 k3 k7 a d2 jo
2  

+ 32 k1 k2 k3 k -3 k7 a d2 jo + 16 k1 k2 k -3 k7 a d2 jo
2 + 24 k1 k -1 k2 k -3 k6

2 a2 d3 + 16 k1 k -1 k2 k6
2 k8 a3 d  

+ 16 k1 k -1 k2 k5 k6
2 a3 d2 + 6 k2 k6 k8 a2 jo

3 + 16 k1 k2 k3 k8 a jo
2 + 10 k -1 k2 k8 a d jo

3+ 2 k2 k7 k8 a2 jo
3  

+ 6 k2
2 k3 k8

2 a2 jo + 12 k1 k2 k6 k7 k8 a3 jo + 24 k -1 k2 k3 k8 a d jo
2 – 4 k2

2 k -3 k8 a d2 jo
2 + 4 k2

2 k6 k8
2 a3jo  

– 4 k2
2 k5 k8 a2 d jo

2 + 12 k1 k2 k6 k8 a2 jo
2 + 14 k -1 k2 k6 k8 a2 d jo

2 + 8 k2 k3 k7 k8 a2 jo
2  

+ 16 k1 k2 k3 k7 k8 a2 jo + 4 k1 k2 k7 k8 a2 jo
2 – 16 k2

2 k3 k5 k8 a2 d jo – 4 k2
2 k -3 k6 k8 a2 d2 jo + 4 k3 k6 k7 a2 jo

3  
+ 20 k1 k2 k3 k6 k7 k8 a3 + 14 k -1 k2 k3

2 k8 a d jo – 12 k2
2 k -3 k3 k8 a d2 jo + 12 k2

2 k3 k6 k8
2 a3  

+ 18 k -1 k2 k3 k6 k8 a2 d jo + 6 k2 k3
2 k7 k8 a2 jo + 12 k1 k2 k3

2 k7 k8 a2 – 12 k2
2 k3

2 k5 k8 a2 d  
+ 12 k2

2 k3 k -3 k6 k8 a2 d2)1/2 + 2 k2 k3 k5 a d + 2 k2 k5 a d jo) / (k2 (5 k -1 k3 d + 3 k3 jo + a k7 jo + 2 k6 a jo  
+ 3 k -1 d jo + jo

2 + 3 k3 k7 a + 2 k -1 k6 a d + 2 k6 k7 a2) );  
 
c = d (2 k -1 k3 g + 2 k -1 k6 a g + 2 k -1 g jo + 2 k3 k5 a + 2 k5 k6 a2 + 2 k5 a jo + k -3 k6 a d + 2 k -3 d jo + k3 jo + k6 a 
jo + jo

2) / (2 k1 k3 + 2 k1 k6 a + 2 k1 jo + 3 k2 k3 g + 2 k2 k6 a g + k2 g jo + k3 jo + k6 a jo + jo
2); 

 
f = (k2 c g + k -3 d2) / (k3 + k6 a + jo); 
 
b = (– k1 c + k -1 d g – 2 k3 f + 2 k -3 d2 + k4 c d + k5 a d – k6 a f + d jo) / k -4; 
 
Hence, variables b, c, g and f are given as a functions of variables a and d, only. 
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