J. Serb. Chem. Soc. 68(11)785–794(2003) JSCS – 3098 UDC 547.992+547.324–31:541.63:66.025.252 Original scientific paper

# Oxidative fragmentations of 5-hydroxy-1-oxo-5α-cholestan-3β-yl acetate

NATALIJA M. KRSTIĆ<sup>a,\*#</sup>, MIRA S. BJELAKOVIĆ<sup>a</sup>, LJUBINKA B. LORENC<sup>a,b#</sup> and VLADIMIR D. PAVLOVIĆ<sup>a,b#</sup>

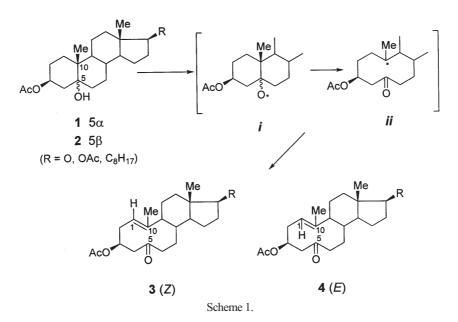
<sup>a</sup>Center for Chemistry, ICTM, P. O. Box 473, 11001 Belgrade and <sup>b</sup>Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, P. O. Box 158, 11001 Belgrade, Serbia and Montenegro

# (Received 22 May 2003)

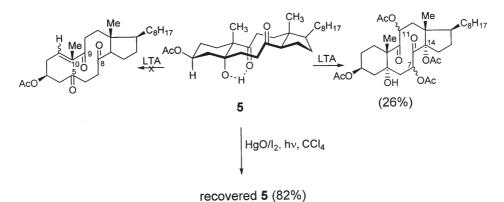
*Abstract*: 5-Hydroxy-1-oxo- $5\alpha$ -cholestan- $3\beta$ -yl acetate (**11**) was prepared in 5 steps starting from (*E*)- $3\beta$ -acetoxy-5,10-seco-1(10)-cholesten-5-one (**6**). Treatment of the 1-oxo-5-hydroxy derivative **11** with lead tetraacetate (LTA) (under thermal or hypoiodite conditions) or with mercuric oxide/iodine (HgO/I<sub>2</sub>) reagent resulted in the oxidative  $\beta$ -fragmentation of the C(5)–C(10) bond affording 1,5-dioxo-5,10-secocholest-10(19)-en- $3\beta$ -yl acetate (**12**), in different yields, depending on the reagent. Also the stereochemistry of the 1 $\beta$ , $6\beta$ -cyclization product **13**, formed by transannular cyclization of the 1,5-diketone **12** on silica gel, is discussed in this work.

*Keywords*: 5-Hydroxy-1-oxo- $5\alpha$ -cholestan- $3\beta$ -yl acetate, 1,5-dioxo-5,10-secocho-lest-10(19)-en- $3\beta$ -yl acetate,  $\beta$ -fragmentation, transannular cyclization.

# INTRODUCTION


It is well known that the alkoxy radical *i* (generated by the oxidation of the 5-hydroxy steroids 1 and 2 with lead tetraacetate (LTA) under thermal or photolytic conditions or with hypoiodite-forming reagents) readily undergoes  $\beta$ -fragmentation involving scission of the C(5)–C(10) bond, to afford, *via* the C(10)-radical intermediate *ii*, the diastereomeric (*Z*)- and (*E*)-1(10)-unsaturated 5,10-secosteroidal 5-ketones 3 and 4 in different proportions and, depending on the oxidant used, in high yield (Scheme 1).<sup>1–3</sup>

The direction of  $\beta$ -fragmentation in **1** and **2** to give exclusively the 5,10-secoketones **3** and **4** was explained by the stability of the tertiary C-radical intermediate *ii*, due to the presence of the angular Me(19) group at the C(10)-radical center.


In accordance with such an explanation, it was anticipated that other 5-hydroxy steroids with similar structures and with the same reagents should react in the same way. However, when LTA oxidations (thermal and hypoiodite) of the 5-hydroxy-8,9-seco-8,9-diketone **5**, a

<sup>\*</sup> Corresponding author. E-mail: nkrstic@chem.bg.ac.yu

<sup>#</sup> Serbian Chemical Society active member.



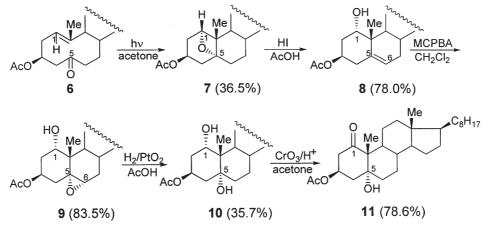
substrate with a polar oxo-group located at the  $\alpha$ -position to the corresponding C(10)-radical center (type  $\mathbf{ii}$ ), were performed under similar experimental conditions, the only obtained product was an unresolvable mixture of the 7-, 11- and 14-acetoxy derivatives arising from the competing acetoxylation of the  $\alpha$ -positions next to the C(8)- and C(9)-oxo groups.



Scheme 2.

On the other hand, when the oxidative fragmentation of the C(5)–C(10) bond in compound **5** was attempted with HgO/I<sub>2</sub> reagent, practically all the starting material remained unchanged (recovery being  $\approx 82$  %, while the rest was an unresolvable mixture) (Scheme 2).<sup>4</sup>

The resistance of compound **5** to undergo oxidative  $\beta$ -fragmentation of its C(5)–C(10) bond was explained by strong hydrogen bonding between the 5-OH group and the 9-oxo


#### OXIDATIVE FRAGMENTATION

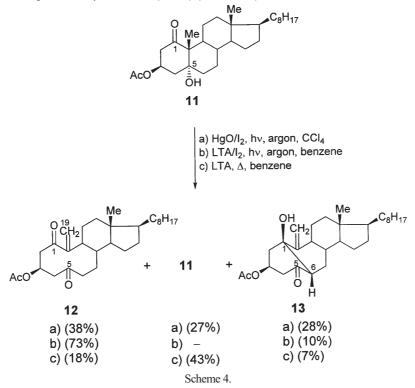
function. As a consequence of this interaction, the formation of the alkoxy radical was suppressed.

# RESULTS AND DISCUSSION

In order to obtain more information concerning the influence of an oxo-group in the  $\alpha$ -position to the C(10) on the oxidative fragmentation of the C(5)–C(10) bond, in the present work the possibility of inducing oxidative  $\beta$ -fragmentation of 5-hydroxy-1-oxo-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (11) was investigated.

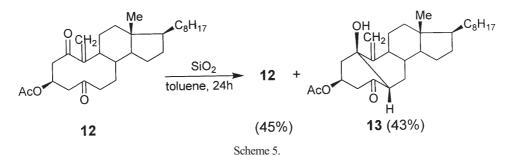
For the introduction of an oxygen function at the C(1)-position, the ten-membered ring containing (*E*)-3 $\beta$ -acetoxy-5,10-seco-1(10)-cholesten-5-one (**6**) was required. This compound was prepared from cholestane-3 $\beta$ ,5 $\alpha$ -diol 3-acetate according to the procedure given in Ref. 3. Substrate **11** was then synthesized in 5 steps, as shown in Scheme 3.




Scheme 3.

UV irradiation of **6** in acetone solution with a high pressure mercury lamp (TQ 150 Z2) afforded a photoproduct (Paterno-Büchi reaction) with an oxetane structure, *i.e.*  $1\alpha$ ,5-epoxy-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (**7**)<sup>5</sup> in 36.5 % yield. Treatment of the oxetane derivative **7** with hydroiodic acid in glacial acetic acid at 5 °C resulted in the opening of the four-membered ether ring and the formation of cholest-5-en-1 $\alpha$ ,3 $\beta$ -diol 3-acetate (**8**) in high yield (78.0 %).<sup>5</sup> The epoxy derivative **9** was prepared by *m*-chloroperbenzoic acid (MCPBA) oxidation of **8** (in 83.5 % yield).<sup>6</sup> This product under conditions of catalytic hydrogenation (performed over PtO<sub>2</sub> in acetic acid solution) gave 5 $\alpha$ -cholestan-1 $\alpha$ ,3 $\beta$ ,5-triol 3-acetate (**10**)<sup>7</sup> (35.7 %). Jones oxidation of the triol-monoacetate **10** in acetone solution at -5 °C afforded the 5-hydroxy-1-oxo-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (**11**) in 78.6 % yield.

Oxidations of alcohol 11 were performed with hypoiodite-forming reagents and LTA (thermal) under conditions similar to those previously applied to compounds 1, 2 and  $5.^{1-4}$ 


*The*  $HgO/I_2$  version of the hypoiodite reaction of **11** performed with an excess of oxidant in CCl<sub>4</sub> solution by irradiation with a 15 W-lamp at 220 V at room temperature for

90 min in the presence of air gave, besides starting material **11** (20 %), an unresolvable complex mixture from which not one product with a defined structure could be isolated. The same results were obtained when the reaction was performed under  $O_2$ . However, when the above irradiation was performed under Ar, the resulting mixture of reaction products, after separation by column chromatography on silica gel, gave the 1,5-dio-xo-5,10-secocholest-10(19)-en-3 $\beta$ -yl acetate (**12**) (38 %), the starting compound **11** (27 %) and the cyclization product **13** (28 %) (Scheme 4).



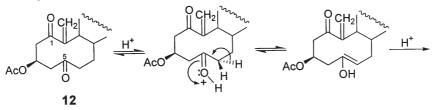
The structure of the product **12** was deduced from its analytical and spectral data (IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, MS). In the IR spectrum, the absorption of the 1-oxo group migrates from 1716 to 1670 cm<sup>-1</sup>, indicating an  $\alpha$ , $\beta$ -unsaturated carbonyl, and the absorption for the original  $5\alpha$ -hydroxyl group was missing and instead a new absorption at 1701 cm<sup>-1</sup> for the 5-oxo group appeared. In the <sup>13</sup>C-NMR spectrum, a new singlet appeared at 207.7 ppm for C(5). The presence of the exocyclic methylidene group CH<sub>2</sub>=C(10) was evident from the IR spectrum (absorptions at 3100 and 1620 cm<sup>-1</sup>) and confirmed by <sup>1</sup>H- and <sup>13</sup>C-NMR data. Instead of the signal for the Me(19) group, the <sup>1</sup>H-NMR spectrum showed a pair of singlets at 5.83 and 6.15 ppm, and the <sup>13</sup>C-NMR spectrum showed a triplet at 124.6 ppm for C(19) and a singlet at 155.0 ppm for C(10). Also, in the <sup>13</sup>C-NMR spectrum, a singlet at 199.4 ppm for C(1) in the 1,5-diketone **12** was situated upfield when compared to the resonance at 209.4 ppm for C(1) in compound **11**, indicating the influence of the exocyclic methylidene group in the  $\alpha$ -position.

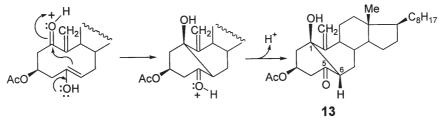
Compound **13** is a secondary reaction product, formed by intramolecular 1,6-cyclization of the 1,5-diketone **12**. This was confirmed by prolonged stirring (24 hours) of compound **12** with  $SiO_2$  in toluene solution which afforded, besides the starting material, only one product, *i.e.* compound **13** (Scheme 5).




The structure of **13** was deduced from its analytical and spectral data (IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, MS). In the IR spectrum, the absorption of the 1-oxo group was replaced by a new absorption at 3483 cm<sup>-1</sup> of the 1-hydroxy group. The IR band at 1643 cm<sup>-1</sup> indicates that the exocyclic methylidene group still existed, which was confirmed by <sup>1</sup>H- and <sup>13</sup>C-NMR data. Its <sup>1</sup>H-NMR spectrum contained a pair of singlets at 4.86 and 5.00 ppm of the CH<sub>2</sub>=C(10) group. Also, the <sup>13</sup>C-NMR spectrum contained the following characteristic signals: a triplet at 105.4 ppm of the C(19), a singlet at 74.0 ppm of the C(1) and a doublet at 56.0 ppm of the C(6). The *cis*-1 $\beta$ ,6 $\beta$ -stereochemistry for the cyclization product **13** was deduced from its <sup>1</sup>H-NMR spectral characteristics. The signal for the H<sub> $\beta$ </sub>-C(6) (due to the deshielding influence by the 5-carbonyl group), was shifted downfield and appeared at 2.88 ppm as a *fine doublet of doublets*, indicating a dihedral angle of about 60° (*J* = 5.5 Hz) between the H<sub> $\beta$ </sub>-C(6) and H<sub> $\beta$ </sub>-C(7) and 180° (*J* = 13.5 Hz) between the H<sub> $\beta$ </sub>-C(6) and H<sub>2</sub>C(7), and the "W" arrangement of the H<sub> $\beta$ </sub>-C(6)–C(5)–C(4)–H<sub> $\beta$ </sub> (*J* = 1.8 Hz), which is present only in the 1 $\beta$ ,6 $\beta$ -isomer.

*The LTA version of the hypoiodite reaction*<sup>8</sup> of **11** was carried out with a large excess of oxidant in benzene solution by irradiation with a 15 W-lamp at 220 V at room temperature for 30 min, *i.e.*, until **11** had been completely consumed. The resulting mixture was separated by column chromatography (silica gel), affording the previously described compound **12** in a very good yield of 73 % and the cyclization product **13** in a 10 % yield (Scheme 4).


*The thermal LTA oxidation* of **11** was carried out with an excess of oxidant in the presence of CaCO<sub>3</sub> in boiling benzene for 48 h (practically, the reaction mixture was not changed after 4 h). After separation by chromatography on silica gel, the reaction mixture gave 1,5-dioxo-5,10-secocholest-10(19)-en-3β-yl acetate (**12**) (18 %), the starting compound **11** (43 %) and the cyclization product **13** (7 %) (Scheme 4).


From the above results it follows that the described oxidations of 5-hydroxy-1-oxo-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (11) proceed (exclusively with HgO/I<sub>2</sub> and LTA/I<sub>2</sub> under Ar) as

expected *via* the C(10)-centered radical **C** (Scheme 6) which is formed according to the generally accepted mechanism,<sup>8,9</sup> *i.e.*, the homolysis of the O–I bond in the primarily formed species **A** is followed by fragmentation of the C(5)–C(10) bond in the thus obtained alkoxy radical **B**. The radical **C** is then stabilized by elimination of a H-atom from the Me(19) to give the 10-methylidene seco ketone **12**.



The formation of the cyclization product 13 may be explained by an acid-catalyzed intramolecular aldol reaction in compound 12 during the chromatography on  $SiO_2$  (Scheme 7).





Scheme 7.

#### EXPERIMENTAL

# General.

Prep. column chromatography: silica gel Merck 0.063–0.200 mm. TLC: control of reaction and separation of products on silica gel 60  $F_{254}$  (Merck) with benzene/EtOAc 9:1, 8:2 and 7:3, detection with 50 % aq.  $H_2SO_4$  soln. Mps.uncorrected. IR spectra: Perkin-Elmer-337 spectrophotometer;  $\nu$  in cm<sup>-1</sup>. NMR spectra: Varian Gemini 200 (<sup>1</sup>H at 200 MHz, <sup>13</sup>C at 50 MHz); CDCl<sub>3</sub> soln. at r.t., TMS as internal standard; chemical shifts in ppm as  $\delta$  values. *J* in Hz. Mass spectra: Finnigan-MAT 8230.

#### $1\alpha$ 5-Epoxy-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (7)<sup>5</sup>

A stirred solution of (*E*)-5-oxo-5,10-secocholest-1(10)-en-3β-yl acetate (**6**) (2 g) in acetone (200 ml) was irradiated with a high pressure mercury lamp TQ 150 Z2 (Hanau) at room temperature for 6 h, evaporated to dryness and the oily residue (2.16 g) chromatographed on silica gel (100 g). Elution with toluene-EtOAc (98:2) gave the unchanged (*E*)-secoketone **6** (0.36 g, 18 %). Further elution with the same eluent gave 1 $\alpha$ ,5-epoxy-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (**7**) (0.73 g, 36.5 %) as a white solid, m.p. 101–102 °C (from acetone). [ $\alpha$ ]<sub>D</sub> = +20±2 (c = 1.0). IR (CH<sub>2</sub>Cl<sub>2</sub>): 1732, 1238, 1025. <sup>1</sup>H-NMR: 0.68 (s, 3H, CH<sub>3</sub>(18)), 0.85 (s, 3H, CH<sub>3</sub>(19)), 0.88 (d, 6H, CH<sub>3</sub>(26), CH<sub>3</sub>(27)), 0.92 (d, 3H, CH<sub>3</sub>(21)), 2.07 (s, 3H, AcO), 2.41 (dd, J = 9.8, 14.8, 1H, H<sub> $\alpha$ </sub>-C(4)), 2.71 (m, 1H, H<sub> $\alpha$ </sub>-C(2)), 3.99 (d, J = 5.8, 1H, H–C(1)), 5.24 (m, 1H, H–C(3)). <sup>13</sup>C-NMR: 170.7 (s, OCOCH<sub>3</sub>), 88.6 (s, C(5)), 83.2 (d, C(1)), 66.7 (d, C(3)), 56.1 (2d, C(14), C(17)), 47.0 (d, C(20)), 45.4 (s, C(10)), 42.4 (s, C(13)), 39.8 (t, C(12)), 39.5 (t, C(24)), 38.6 (t, C(4)), 36.1 (t, C(22)), 35.8 (d, C(20)), 34.1 (d, C(8)), 31.5 (t, C(21)), 31.0 (t, C(6)), 28.1 (t, C(16)), 28.0 (d, C(25)), 27.8 (t, C(7)), 24.4 (t, C(15)), 23.8 (t, C(23)), 23.1 (t, C(11)), 22.8 (q, C(27)), 22.5 (q, C(26)), 21.3 (q, OCOCH<sub>3</sub>), 18.7 (q, C(21)), 11.8 (q, C(18)), 11.7 (q, C(19)). MS: m/z = 444 (M<sup>+</sup>). Anal. calcd. for C<sub>29</sub>H<sub>48</sub>O<sub>3</sub> (444.696): C 78.33, H 10.88; found: C 78.18, H 10.87.

#### Cholest-5-en- $1\alpha$ , $3\beta$ -diol 3-acetate (8)<sup>5</sup>

The oxetane derivative 7 (2.30 g) was dissolved in glacial AcOH (47 ml) and cooled to 5 °C. To this semi-solid solution, a cooled solution of hydroiodic acid (0.98 ml 57 % HI) in glacial AcOH (30.5 ml) was added portionwise. The resulting mixture was left at 5 °C for 30 min, diluted with H<sub>2</sub>O and extracted with Et<sub>2</sub>O. The ethereal extract was washed with H<sub>2</sub>O, saturated aq. NaHCO<sub>3</sub> and H<sub>2</sub>O, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated to dryness, leaving a crystalline solid (2.4 g) which was chromatographed on SiO<sub>2</sub> (100 g). Elution with toluene-EtOAc (95:5) gave cholest-5-en-1 $\alpha$ ,3 $\beta$ -diol 3-acetate (8) (1.80 g, 78 %), m.p. 166–168 °C (from acetone). [ $\alpha$ ]<sub>D</sub> = – 41 (c = 0.7). IR (KBr): 3450, 3020, 1730, 1275, 1040. <sup>1</sup>H-NMR: 0.68 (s, 3H, CH<sub>3</sub>(18)), 0.86 (d, 6H, CH<sub>3</sub>(26), CH<sub>3</sub>(27)), 0.91, (d, 3H, CH<sub>3</sub>(21)), 1.04 (s, 3H, CH<sub>3</sub>(19)), 2.03 (s, 3H, AcO), 3.86 (brs, 1H, H–C(1)), 5.03 (*heptet*, 1H, H–C(3)), 5.61 (bd, J = 5.2, 1H, H–C(6)). <sup>13</sup>C-NMR: 170.6 (s, OCOCH<sub>3</sub>), 136.2 (s, C(5)), 126.5 (d, C(6)), 72.5 (d, C(1)), 69.5 (d, C(3)), 56.5 (d, C(17)), 56.0 (d, C(14)), 42.2 (s, C(13)), 41.7 (s, C(10)), 41.4 (d, C(9)), 39.4 (2t, C(12), C(24)), 37.2 (t, C(2)), 36.1 (t, C(22)), 35.7 (d, C(20)), 34.4 (t, C(4)), 31.7 (d, C(8)), 31.7 (t, C(7)), 28.1 (t, C(16)), 28.0 (d, C(25)), 24.3 (t, C(15)), 23.8 (t, C(23)), 22.8 (q, C(27)), 22.5 (q, C(26)), 21.3 (q, OCOCH<sub>3</sub>), 20.1 (t, C(11)), 19.3 (q, C(21)), 18.7 (q, C(19)), 11.8 (q, C(18)). MS: m/z = 384 (M<sup>+</sup> – 60, 99 %). Anal. calcd. for C<sub>29</sub>H<sub>48</sub>O<sub>3</sub> (444.696): C 78.33, H 10.88; found: C 78.31, H 10.69.

### 5,6 $\alpha$ -Epoxy-5 $\alpha$ -cholestan-1 $\alpha$ ,3 $\beta$ -diol 3-acetate (9)<sup>6</sup>

A solution of **8** (1.00 g) in CH<sub>2</sub>Cl<sub>2</sub> (25 ml) was treated with 85 % *m*-chloroperbenzoic acid (500 mg in 25 ml CH<sub>2</sub>Cl<sub>2</sub>) at room temperature for 1 h. After the usual work–up, the obtained residue (0.980 g, 96.4 %) was recrystallized from acetone to give 5,6 $\alpha$ -epoxy-5 $\alpha$ -cholestan-1 $\alpha$ ,3 $\beta$ -diol 3-acetate (**9**) (0.865 g, 83.5 %), m.p. 156 °C. [ $\alpha$ ]<sub>D</sub> = -11.0 (*c* = 1.09). IR (KBr): 3450, 3030, 1730, 1710, 1275, 1042. <sup>1</sup>H-NMR: 0.62 (*s*, 3H, CH<sub>3</sub>(18)), 0.86 (*d*, 6H, CH<sub>3</sub>(26), CH<sub>3</sub>(27)), 0.89 (*d*, 3H, CH<sub>3</sub>(21)), 1.10 (*s*, 3H, CH<sub>3</sub>(19)), 2.02 (*s*, 3H, AcO), 2.82 (*d*, *J* = 4.8, 1H, H–C(6)), 3.90 (*brs*, 1H, H–C(1)), 5.30 (*heptet*, 1H, H–C(3)). <sup>13</sup>C-NMR: 170.1 (*s*, OCOCH<sub>3</sub>), 72.8 (*d*, C(3)), 67.6 (*d*, C(1)), 64.0 (*s*, C(5)), 56.7 (*d*, C(17)), 56.5 (*d*, C(6)), 55.8 (*d*, C(14)), 42.3 (2*s*, C(10), C(13)), 39.4 (*t*, C(24)), 39.0 (*t*, C(12)), 36.6 (*d*, C(9)), 36.1 (*d*, C(20)), 35.7 (*t*, C(4)), 35.6 (*t*, C(2)),

34.7 (*t*, C(22)), 29.8 (*d*, C(8)), 28.6 (*t*, C(16)), 28.0 (*d*, C(25)), 27.9 (*t*, C(7)), 24.1 (*t*, C(15), 23.8 (*t*, C(23)), 22.8 (*q*, C(27)), 22.5 (*q*, C(26)), 21.2 (*q*, OCOCH<sub>3</sub>), 19.7 (*t*, C(11)), 18.6 (*q*, C(21)), 16.5 (*q*, C(19)), 11.8 (*q*, C(18)). Anal. calcd. for  $C_{29}H_{48}O_4$  (460.699): C 75.61, H 10.50; found: C 74.43, H 10.68. CI-MS: *m*/*z* = 461 (M<sup>+</sup> + 1).

### $5\alpha$ -Cholestan- $1\alpha$ , $3\beta$ , 5-triol 3-acetate (10)<sup>7</sup>

A solution of **9** (1.8 g) in AcOH–EtOH (10:1, 110 ml) was hydrogenated over PtO<sub>2</sub> (180 mg) in a Parr Hydrogenator at room temperature and 3 atm pressure, for 13 h. After removal of the catalyst and solvent, the residue was chromatographed on SiO<sub>2</sub> (120 g). Elution with toluene–EtOAc (95:5) afforded the unchanged starting compound **9** (0.86 g, 44.0 %). Elution with toluene–EtOAc (90:10) gave 5 $\alpha$ -cholestan-1 $\alpha$ ,3 $\beta$ ,5-triol 3-acetate (**10**) (0.70 g, 35.7 %), m.p. 178–179 °C (from acetone). IR (KBr): 3368, 1737, 1467, 1374, 1247. <sup>1</sup>H-NMR: 0.66 (*s*, 3H, CH<sub>3</sub>(18)), 0.85 (*d*, 6H, CH<sub>3</sub>(26), CH<sub>3</sub>(27)), 0.92 (*d*, 3H, CH<sub>3</sub>(21)), 0.94 (*s*, 3H, CH<sub>3</sub>(19)), 2.03 (*s*, 3H, AcO), 2.99 (*s*, 1H, OH–C(5)), 3.82 (*m*, 2H, H–C(1) and OH–C(1)), 5.41 (*heptet*, 1H, H–C(3)). <sup>13</sup>C-NMR: 170.8 (*s*, OCOCH<sub>3</sub>), 77.3 (*s*, C(5)), 74.0 (*d*, C(3)), 67.8 (*d*, C(1)), 56.2 (*d*, C(17)), 56.0 (*d*, C(20)), 35.1 (*t*, C(22)), 34.7 (*t*, C(6)), 34.6 (*d*, C(8)), 29.6 (*t*, C(2)), 28.2 (*t*, C(16)), 28.0 (*d*, C(25)), 25.6 (*t*, C(7)), 24.1 (*t*, C(15)), 23.9 (*t*, C(23)), 22.8 (*q*, C(27)), 22.5 (*q*, C(26)), 21.4 (*q*, OCOCH<sub>3</sub>), 20.7 (*t*, C(11)), 18.6 (*q*, C(21)), 16.6 (*q*, C(19)), 12.1 (*q*, C(18)). CI-MS: *m/z* = 445 (463–18), 385 (463–60–18).

#### 5-Hydroxy-1-oxo-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (11)

To a cooled (-5 °C) solution of **10** (1.26 g) in acetone (165 ml), a slight excess of Killiani's chromic acid solution was added with constant stirring. After 20 min ice-cold H<sub>2</sub>O was added, the precipitate was filtered off, washed thoroughly with H<sub>2</sub>O and air-dried to give a residue (1.2 g, 95.7 %), which was chromatographed on SiO<sub>2</sub> (40 g). Elution with toluene–EtOAc (95:5) afforded 5-hydroxy-1-oxo-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (**11**) which was recrystallized from acetone (0.98 g, 78.6 %), m.p. 138.5–140 °C. IR (KBr): 3494, 3454, 1716, 1377, 1245, 1032. <sup>1</sup>H-NMR: 0.66 (*s*, 3H, CH<sub>3</sub>(18)), 0.85 (*d*, 6H, CH<sub>3</sub>(26), CH<sub>3</sub>(27)), 0.88 (*d*, 3H, CH<sub>3</sub>(21)), 1.28 (*s*, 3H, CH<sub>3</sub>(19)), 2.04 (*s*, 3H, AcO), 2.62 (*dd*, *J* = 6.8, 13.4, 1H, H<sub> $\alpha$ </sub>–C(4)), 2.81 (*dd*, *J* = 10.8, 12.8, 1H, H<sub> $\beta$ </sub>–C(2)), 5.30 (*m*, H–C(3)). <sup>13</sup>C-NMR: 209.4 (*s*, C(1)), 170.2 (*s*, OCOCH<sub>3</sub>), 76.0 (*s*, C(5)), 69.2 (*d*, C(12)), 56.2 (*d*, C(17)), 55.8 (*d*, C(14)), 53.8 (*s*, C(10)), 43.1 (*t*, C(2)), 42.7 (*s*, C(13)), 41.0 (*d*, C(9)), 39.8 (*t*, C(12)), (*d*, C(25)), 24.9 (*t*, C(7)), 24.0 (*t*, C(15)), 23.9 (*t*, C(23)), 22.8 (*t*, C(11)), 22.8 (*q*, C(27)), 22.5 (*q*, C(26)), 21.2 (*q*, OCOCH<sub>3</sub>), 18.5 (*q*, C(21)), 16.4 (*q*, C(19)), 12.3 (*q*, C(18)). MS: *m/z* = 460 (M<sup>+</sup>), 443 (460–17), 401 (460–59), 383 (460–60–17).

### Oxidation of 5-hydroxy-1-oxo-5 $\alpha$ -cholestan-3 $\beta$ -yl acetate (11)

(i) Hypoiodite mercuric oxide/iodine oxidation. A stirred suspension of 11 (100 mg, 0.217 mmol), yellow HgO (325 mg, 1.5 mmol) and I<sub>2</sub> (437 mg, 1.7 mmol) in CCl<sub>4</sub> (30 ml) was irradiated with a 15 W (220 V) fluorescent lamp for 90 min without heating. All the time argon was introduced through the reaction mixture. The solid was removed by filtration, washed with Et<sub>2</sub>O, and filtrate washed successively with water, 10 % aq. Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub>, saturated NaHCO<sub>3</sub> and water, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated to dryness. The resulting mixture (111 mg) was chromatographed on silica gel (10 g). Elution with toluene-EtOAc (99:1, 98:2, 97:3) afforded a complex mixture (11 mg) which was not further investigated. Toluene-EtOAc (96:4) eluted 1,5-dioxo-5,10-secocholest-10(19)-en-3β-yl acetate 12 which was recrystallized from acetone/methanol (38 mg, 38 %), m.p. 157–158 °C. IR (KBr): 1735, 1701, 1672, 1620, 1251, 1032. <sup>1</sup>H-NMR: 0.74 (s, 3H, CH<sub>3</sub>(18)), 0.86 (*d*, 6H, CH<sub>3</sub>(26), CH<sub>3</sub>(27)), 0.90 (*d*, 3H, CH<sub>3</sub>(21)), 2.05 (*s*, 3H, AcO), 2.44 (*m*, 2H, H<sub>2</sub>–C(6)), 2.65 (*dd*, *J* = 3.5, 15.7, 1H, H–C(4)), 2.93 (*d*, *J* = 11.4, 1H, H–C(4)), 3.00 (*ABq*, *J* = 3.6, 2H, H<sub>2</sub>C(2)), 5.60 (*m*, H-C(3)), 5.83 and 6.15 (2s, 2H, H<sub>2</sub>C(19)). <sup>13</sup>C-NMR: 207.7 (s, C(5)), 199.4 (s, C(1)), 169.8 (s, OCOCH<sub>3</sub>), 155.0 (s, C(10)), 124.6 (t, C(19)), 68.8 (d, C(3)), 56.1 (d, C(17)), 54.2 (d, C(14)), 46.5 (t, C(4)), 44.5 (d, C(9)), 43.1 (*t*, C(2)), 42.5 (*s*, C(13)), 41.8 (*t*, C(12)), 39.7 (*t*, C(24)), 39.5 (*t*, C(6)), 38.3 (*d*, C(8)), 36.0 (*t*, C(22)), 35.7 (t, C(20)), 33.4 (t, C(7)), 28.0 (d, C(25)), 27.8 (t, C(16)), 26.8 (t, C(15)), 24.9 (t, C(11)), 23.8 (t, C(23)), 22.8  $(q, C(27)), 22.5 (q, C(26)), 21.1 (q, OCOCH_3), 18.6 (q, C(21)), 11.8 (q, C(18)), CI-MS: m/z = 459 (M^+ + 1).$ 

#### OXIDATIVE FRAGMENTATION

Further elution with the same eluent afforded the starting compound 11 (27 mg, 27 %).

Further elution with toluene–EtOAc (95:5) gave compound **13** (28 mg, 28 %). Oil. IR (KBr): 3483, 1732, 1708, 1643, 1269, 1028. <sup>1</sup>H-NMR: 0.67 (*s*, 3H, CH<sub>3</sub>(18)), 0.85 (*d*, 6H, CH<sub>3</sub>(26), CH<sub>3</sub>(27)), 0.92 (*d*, 3H, CH<sub>3</sub>(21)), 2.08 (*s*, 3H, AcO), 2.20–2.64 (*m*, 4H, H<sub>2</sub>C(2), H<sub>2</sub>C(4)), 2.88 (*fdd*, J = 1.8, 5.5, 13.5, 1H, H<sub>β</sub>–C(6)), 4.86 and 5.00 (*zfs*, J = 1.6, 2H, H<sub>2</sub>–C(19)), 5.38 (*heptet*, 1H, H–C(3)). <sup>13</sup>C-NMR: 206.2 (*s*, C(5)), 170.2 (*s*, OCOCH<sub>3</sub>), 154.3 (*s*, C(10)), 105.4 (*t*, C(19)), 74.0 (*s*, C(1)), 69.2 (*d*, C(3)), 56.7 (*d*, C(17)), 56.0 (2*d*, C(6), C(14)), 46.5 (*t*, C(4)), 42.8 (*s*, C(13)), 42.3 (*d*, C(9)), 41.1 (*d*, C(8)), 40.4 (*t*, C(2)), 39.4 (*t*, C(12)), 39.3 (*t*, C(24)), 36.1 (*t*, C(22)), 35.8 (*d*, C(20)), 29.7 (*t*, C(7)), 28.2 (*t*, C(16)), 28.0 (*d*, C(25)), 25.3 (*t*, C(15)), 24.8 (*t*, C(11)), 23.8 (*t*, C(23)), 22.8 (*q*, C(27)), 22.5 (*q*, C(26)), 21.2 (*q*, OCOCH<sub>3</sub>), 18.6 (*q*, C(21)), 12.0 (*q*, C(18)).

(ii) Hypoiodite lead tetraacetate/iodine oxidation. A stirred suspension of LTA (450 mg, 0.91 mmol), I<sub>2</sub> (94 mg, 0.37 mmol) and **11** (100 mg, 0.217 mmol), in dry benzene was irradiated with a 15 W (220 V) fluorescent lamp at room temperature for 30 min. All the time argon was introduced through the reaction mixture. The solid was removed by filtration, washed with  $Et_2O$  and filtrate washed successively with water, 10 % aq.  $Na_2S_2O_3$ , saturated NaHCO<sub>3</sub> and water, dried over  $Na_2SO_4$  and evaporated to dryness. The resulting mixture (141 mg) was chromatographed on silica gel (10 g). Elution with toluene–EtOAc (99:1, 98:2, 97:3) afforded a complex mixture (17 mg) which was not further investigated. Toluene–EtOAc (96:4) eluted 1,5-dio-xo-5,10-secocholest-10(19)-en-3\beta-yl acetate **12** which was recrystallized from acetone/methanol (73 mg, 73 %), m.p. 157–158 °C.

Further elution with toluene–EtOAc (95:5) gave compound 13 (10 mg, 10 %).

(iii) Thermal lead tetraacetate oxidation. A suspension of **11** (100 mg, 0.217 mmol), LTA (450 mg, 0.900 mmol) and anh.  $CaCO_3$  (95 mg, 0.960 mmol) in anh. benzene (15 ml) was heated under reflux with stirring for 48 h, after which time the starch-iodine test became negative. The cooled mixture was diluted with Et<sub>2</sub>O, washed with water, sat. aq. NaHCO<sub>3</sub> and water, dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated to dryness. The resulting mixture (116 mg) was chromatographed on silica gel (20 g). Elution with toluene–EtOAc (99:1, 98:2, 97:3) afforded a complex mixture (15 mg, 15 %) which was not further investigated. Toluene–EtOAc (96:4) eluted the 1,5-dioxo compound **12** (18 mg, 18 %).

Further elution with same eluent afforded the starting compound **11** (43 mg, 43 %). Elution with toluene–EtOAc (95:5) gave the cyclic compound **13** (7 mg, 7 %).

# Cyclization of 1,5-dioxo-5,10-secocholest-10(19)-en-3β-yl acetate 12 on SiO<sub>2</sub>

1,5-Diketone **12** (40 mg) was stirred with SiO<sub>2</sub> (Merck, 0.063–0.20 mm) in toluene (5 ml) for 24 h at room temperature. After removal of the SiO<sub>2</sub> and solvent the residue was chromatographed on SiO<sub>2</sub> (4 g). Elution with toluene–EtOAc (96:4) gave unchanged starting material **12** (18 mg, 45 %).

Further elution with toluene-EtOAc (95:5) afforded compound 13 (17.2 mg, 43 %).

Acknowledgement: The authors acknowledge financial support by the Ministry of Science, Technology and Development of Serbia. (Part of the project "Synthesis and chemical transformations of steroidal and modified steroidal molecules" - Project No. 1702).

#### ИЗВОД

# ОКСИДАТИВНЕ ФРАГМЕНТАЦИЈЕ 5-ХИДРОКСИ-1-ОКСО-5α-ХОЛЕСТАН-3β-ИЛ-АЦЕТАТА

#### НАТАЛИЈА М. КРСТИЋ<sup>а</sup>, МИРА С. БЈЕЛАКОВИЋ<sup>а</sup>, ЉУБИНКА Б. ЛОРЕНЦ<sup>а,б</sup> и ВЛАДИМИР Д. ПАВЛОВИЋ<sup>а,б</sup>

# <sup>а</sup>Ценійар за хемију, ИХТМ, й. йр. 473, 11001 Београд и <sup>б</sup>Хемијски факулитей, Универзийней у Београду, Сиуденийски иџрг 12-16, й. йр. 158, 11001 Београд

Синтетизован је 5-хидрокси-1-оксо-5 $\alpha$ -холестан-3 $\beta$ -ил-ацетат (**11**) у 5 фаза полазећи од (*E*)-3 $\beta$ -ацетокси-5,10-секо-1(10)-холестен-5-она (**6**). Дејством олово-тетраацетата (LTA) (под термичким или хипојодитним условима), или меркури-оксид/јодног реагенса (HgO/I<sub>2</sub>) на 1-ок-со-5-хидрокси дериват **11**, врши се оксидативна  $\beta$ -фрагментација његове C(5)–C(10) везе, при чему се добија 1,5-диоксо-5,10-секохолест-10(19)-ен-3 $\beta$ -ил-ацетат (**12**), у различитим приносима у зависности од употребљеног реагенса. Такође, дискутована је стереохемија 1 $\beta$ ,6 $\beta$ -циклизационог производа **13**, насталог интрамолекулском циклизацијом 1,5-диоксо-5,10-секо једињења **12** на силика гелу.

(Примљено 22. маја 2003)

# REFERENCES

- M. Lj. Mihailović, Lj. Lorenc, M. Gašić, M. Rogić, A. Melera, M. Stefanović, *Tetrahedron* 22 (1966) 2345
- 2. M. Akhtar, S. March, J. Chem. Soc. (C) (1966) 937
- M. Lj. Mihailović, Lj. Lorenc, J. Foršek, V. Pavlović, M. Dabović, J. Kalvoda, J. Serb. Chem. Soc. 54 (1989) 645
- M. Lj. Mihailović, M. M. Dabović, V. D. Pavlović, N. M. Krstić, Lj. B. Lorenc, J. Serb. Chem. Soc. 62 (1997) 719
- 5. M. Lj. Mihailović, Lj. Lorenc, V. Pavlović, J. Kalvoda, Tetrahedron 33 (1977) 441
- 6. M. Dabović, M. Bjelaković, V. Andrejević, Lj. Lorenc, M. Lj. Mihailović, Tetrahedron 50 (1994) 1833
- 7. Pl. A. Plattner, H. Heuser, A. B. Kulkarni, Helv. Chim. Acta 32 (1941) 267
- 8. J. Kalvoda, K. Heusler, Synthesis (1971) 525
- 9. K. Heusler, J. Kalvoda, Angew. Chem. Int. Ed. Engl. 3 (1964) 525
- 10. M. Lj. Mihailović, Ž. Čeković, Synthesis (1970) 209.