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This article is concerned with synthesis and characterization of electroconductive composite materials 

prepared by the compression molding of mixtures of lignocellulose and electrochemically deposited 

copper powder under different pressures, and investigation of the influence of particle size on 

conductivity and percolation threshold of obtained composites. Electrodeposited copper powder 

content was varied from 2.0-29.8 vol%. Analysis of the most significant properties of individual 

components and prepared composites included structural and morphological analysis and 

measurements of hardness and electrical conductivity. Hardness of the investigated composites, as 

expected, increased with the increase of the processing pressure, as well as lowering the particle size 

compared to previous work. The significant increase of the electrical conductivity can be observed as 

the copper powder content reaches the percolation threshold. The packaging effect and more 

pronounced interpartical contact with smaller, highly porous, highly dendritic particles with high 

values of specific area lead to “movement” of percolation threshold towards lower filler content, which 

for the particles <45 μm and highest processing pressure of 27 MPa was 7.2% (v/v). In the investigated 

range of electrodeposited copper powder concentrations and applied pressures the increase of the 

electrical conductivity of composites is as much as fourteen orders of magnitude. It was found that this 

transition occurs at lower volume fractions than stated in the literature which can be due to the filler 

with high specific area. 
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1. INTRODUCTION 

Due to growing environmental awareness, increased crude oil price and anxiety about global 

warming, there have been intensive attempts and interests to develop environmentally friendly and 

biodegradable products both in academic and industrial fields [1-3]. Cellulose microfibril in the cell 

wall is the basic structural unit generated during plant photosynthesis. It has very high strength and 

potential reinforcement for polymer materials. The high strength and elasticity of wood come from the 

composite structure of its cell walls [4-6]. Biopolymers, like lignocellulose (LC), are a good alternative 

to polymers based on petrochemical industry due to their environmental benefits like biodegradability 

and renewability [6]. Biocomposites based on raw materials derived from natural resources are of great 

interests and have been a major subject in a large number of publications. Produced by wooden plants 

and having a large range of properties, lignocellulose can be used for applications like packaging, 

agriculture, hygiene, and automotive industry [1-9]. 

Lignocelulose can be obtained by physical treatment such as high pressure homogenizer and 

grinder treatment, using high mechanical shear force to generate bundles of microfibrils called 

cellulose microfibril or microfibrillated cellulose with diameters from tens of nm to μm [6]. 

The research area of electrically conducting polymer composites filled with metallic powders 

has had a great development in the last two decades. The addition of metals fillers into a polymer 

matrix enables the preservation of the mechanical properties of the polymer while exploiting the 

electrical conduction properties of the metal [10,11]. The conductivity of filled polymers is usually 

strongly dependent on the nature of the contact between the conductive filler elements and depends 

critically on the volume fraction of the conducting filler particles. Therefore composites filled with 

conducting particles with high surface area will conduct electricity at lower volume fractions of the 

filler than the ones with smoother surface, which is explained by Pavlović et al [6]. 

Lower cost, ease of manufacture, high flexibility, reduced weight, mechanical shock absorption 

ability, corrosion resistance, and conductivity control are just some of the advantages that polymer-

based electrically conducting composites have several over their pure metal counterparts [10]. 

The method most often employed to alter the electrical properties of a polymer is the approach 

where the insulating polymer is combined with a conductive additive. The conducting additive is 

incorporated into polymers at levels that allow the composite to maintain its electrically insulative 

qualities, hence allowing the composite to become both electrically semiconductive and conductive. 

As the volume fraction of the conducting filler particles increases, the particles come into contact with 

one another to form the conduction paths through the composite [10,11]. 

In the previous research, the influence of the particle shape on the percolation threshold was 

investigated, which was explained in the Part one [6]. The aim of this work was to compare electrical 

properties of copper powder filled lignocellulose matrix composites produced under different pressures 

with previous results, where the influence of particle size and pressure on percolation threshold is 

observed. 
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2. EXPERIMENTAL PART 

 

Electrolytic copper powder used in this research was deposited galvanostatically in the same 

manner as stated by Pavlović et al. [6], with all the same parameters of electrolysis and deposition 

times. The wet powder was washed several times with a large amount of demineralized water until the 

powder was free from traces of acid, at room temperature, because the acid promotes rapid oxidation 

of the powder during drying. Obtained copper powder was washed afterwards with sodium soap SAP 

G-30 solution to protect the powder against subsequent oxidation, which was prepared and used as in 

previous work [6]. After drying in the tunnel furnaces at 110 – 120 ºC in a controlled nitrogen 

atmosphere, the copper powder was sieved through a mesh with 45μm openings. 

As a source of lignocellulose the same corn cob produced by Maize Research Institute "Zemun 

Polje" was used as in [6]. Celgran
®
 C fraction was used in experiments [6], milled and then sieved, with 

particle size below 45 μm as natural polymer matrix. 

Particle size distribution of obtained copper powder and lignocellulose was analysed using 

Nauchnye Pribory Co., St. Petersburg laser diffractometer MicroSizer 201. 

Qunatitative microstructural analysis of the copper powder was recorded by Leica Q500 MC 

(“Reichert-Jung”) [12,13]. 

The morphology of the electrochemically deposited copper powder and lignocellulose was 

further investigated by means of scanning electron microscopy using a JEOL JSM-6610LV 

microscope. 

Investigated lignocellulose and copper powder composites were prepared with filler contents in 

the range 2.0% (v/v) – 29.8% (v/v), while pure lignocellulose and copper samples were prepared as 

reference materials. The samples were produced from thoroughly homogenized powder mixtures that 

were pressed into 16 mm diameter tablets at ambient temperature (t = 25 
o
C) under pressures of 10, 20 

and 27 MPa.  

Sample thicknesss (necessary for the calculation of porosity and conductivity) was determined, 

as in previous research, using micrometer, to an accuracy of 0.01 mm. Several thickness measurements 

were taken per sample and then averaged. 

Electrical conductivity measurements were carried out by DC U/I-characteristic measurements 

of the samples using Digital Multimeter, Model 464, Simpson Electric Company. Geometry of the 

instrument contacts (rings) used is such that it minimizes edge effects thus it can be assumed that they 

do not exist.  

Hardness of the samples was determined at ambient temperature using Shore D hardness 

testing method in accordance with ASTM D 2240-68 standard using Omnitron OMGE003 hardness 

tester. Five data points were taken for each sample and no difference was found between values 

obtained for both faces of each sample. 

 

 

3. RESULTS AND DISCUSSION 

Electrical properties of a polymer are oftenly altered by addition of conductive filler in the 

insulating polymer. The conducting additive is incorporated into polymers at levels that allow the 
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composite to maintain its electrically insulative qualities, as well as at higher levels, which allow the 

composite to become electrically semiconductive. In this manner, the electrical conductivity of 

polymer composites does not increase continuously with increasing electroconductive filler content, 

but rather has rapid increase in conductivity when the percolation threshold of the conductive filler 

content is reached. This is observed as an increase of several (sometimes up to 14 [6]) orders of 

magnitude on the conductivitu vs. filer content curve, which has typical S shape. This phenomenon 

occurs at critical composition (percolation threshold) when insulating polymer composite becomes 

semiconductive or metallic conductive [6,11,14-16]. 

As previously mentioned, the conductivity of filled polymers is strongly dependent on the 

nature of the contact between the conductive filler elements. This was shown in [6] where highly 

dendritic copper powder was used, and the percolation threshold was moved to lower filler content. 

Therefore, the same copper powder was galvanostatically produced with distinct dendritic morphology 

and large specific area [17-19]. This feature can be seen in Figure 1b, which shows typical copper 

powder particle obtained by constant current deposition, while Figure 1a shows general view of the 

powder particles. Copper powder particles have pronounced dendrite branching and, hence, this 

powder is good prerequisite for formation of more interparticle contacts between conductive copper 

particles and lowering the percolation threshold. 

 

  
a) b) 

 

Figure 1. SEM photomicrographs of copper powder particles obtained in constant current deposition 

and sieved through mesh <45 μm. a) general view b) typical powder particle 

 

 

This powder was then dry-sieved through a mesh of 45 μm opening, hence being almost twice 

smaller in size than the one used in [6]. Particle size distribution curve of produced and sieved 

electrolytic copper powder is presented in Figure 2. 
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Figure 2. Copper powder particle size distribution curve 

 

The particles show uniform size distribution, with uniform Gaussian distribution and with the 

mean particle size of copper powder determined by laser diffractometry having following values: 

d(0.15) = 12.5 μm,  d(0.5) = 23.6 μm and d(0.9) = 46.6 μm.  The apparent density of electrodeposited 

copper powder was the same as in previous research, with the value of 0.557 g/cm
3
 [6]. 

Figure 3a shows SEM photomicrographs of the used lignocellulose. Distinct layered structure 

of the lignocellulose bionanocomposite used as matrix can be observed in Figure 3b. 

 

  
a) b) 

 

Figure 3. SEM photomicrographs lignocellulose matrix used in composite preparation. a) General 

view b) single particle view (layered structure) 

 

Lignocellulose powder used for composite preparation has particle size distribution presented 

in Figure 4. Lignocellulose particles show wider size distribution than the copper powder particles, 

with less uniformity and with higher volume fractions of larger particles. The mean particle size of 
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lignocellulose powder determined by laser diffractometry has following values: d(0.15) = 7.05 μm,  

d(0.5) = 24.0 μm and d(0.9) = 62.1 μm. 

 

 
 

Figure 4. Particle size distribution curve of used lignocellulose matrix 

 

Theoretical density of composites, ρt, was calculated according to relation [6]: 

 

 
ffmft VV  1                 (1) 

 

where V is volume fraction, ρ – density while f and m indexes correspond to filler (copper 

powder) and matrix (lignocellulose), respectively. 

Porosity of the investigated composites, τ, was determined by comparison of experimental and 

theoretical densities of the samples according to relation: 
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where ρe – is experimentally obtained value of composite density. 

Electrical conductivity was determined according to relation: 

 

S

l

U

I
                   (3) 

 

where σ is electrical conductivity, I – current through sample, U – potential difference, l – 

length and S – cross-section area of the sample. 

Figure 5 represents the porosity rate of different composites as function of the filler volume 

fraction at various processing pressures. It can be seen that, as shown in previous work, the porosity 
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decreases with the increase of pressure, due to higher packaging effect. However, as the volume 

fraction of the very porous natural matrix decreases, the porosity does not change, i.e. it is rather 

constant for the given pressure. This is due to smaller particle size, where the maximum packing is 

obtained. Comparing to the paricle size of <88 μm where the porosity was between 24% and 30%, in 

the case where paricle size was <45 μm the porosity was between 14% and 20%, which is quite 

smaller. These results show that the quality of the obtained composites was good, and that lowering the 

particle size leads to decrease in porosity. 

 
Figure 5. Porosity of the copper powder filled lignocellulose matrix composites at various pressures 

 

Figure 6 shows the dependence of hardness measured as shore D values, in various composites 

of lignocelluloses matrix and copper powder filler prepared under various pressures. Hardness of the 

investigated composites, as expected and shown in the previous work [6], increases with the increase 

of the molding pressure. On the other hand the increase of the filler fraction has less significant 

influence on the hardness values, resulting in approximately constant values, nearly independent of the 

filler fraction. However, it can be concluded that lowering the particle size leads to increase of 

hardness for the same pressure, which is the consequence of better packaging effect that smaller 

particles have. 

 

 
 

Figure 6. Hardness of lignocelluloses matrix and copper powder filler composites prepared under 

various pressures. Measurements are shown as Shore D values 
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The electrical conductivity of all the particle size composites as a function of filler content for 

all the samples was measured as stated in Experimental part. In previous research [6] it was shown that 

pressure does not play significant role for the percolation threshold for particles <88 μm, however 

more precise measurements are made around percolation threshold, and there is slight impact of 

pressure on it. As it can be seen in Figure 7, percolation threshold for the lowest pressure of 10 MPa 

was 14.4% (v/v), then 13.4% (v/v) for 20 MPa and 13.0% (v/v) for 27 MPa. The value of the 

percolation threshold was obtained from of the maximum of the derivative of the conductivity as a 

function of filler volume fraction. 

 

 
 

Figure 7. Variation of electrical conductivity, as a function of filler content, of lignocelluloses 

composites filled with copper powder under different processing pressures  

for particle sizes <88 μm 

 

The conductivity measurements for these samples are shown in Figure 8, and typical S-shaped 

dependency with three distinct regions: dielectric, transition and conductive can be observed. As in the 

previous case the value of the percolation threshold was obtained from of the maximum of the 

derivative of the conductivity as a function of filler volume fraction. 

 

 
 

Figure 8. Variation of electrical conductivity, as a function of filler content, of lignocellulose 

composites filled with copper powder under different processing pressures 

for particle sizes <45 μm 
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In both cases the samples with low filler content are nonconductive, where the electrical 

conductivity of the composites increases with the increase of the conductive filler content.  

Figure 9 shows the impact of the particle size on percolation threshold for equivalent 

processing pressures.  

 

 

a) 

 

b) 

 

c) 

Figure 9. Electrical conductivity, as a function of filler content, of lignocellulose composites filled 

with copper powder with different particle sizes under different processing pressures.  a) 10 

MPa, b) 20 MPa, c) 27 MPa 
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For all the pressures, percolation threshold for smaller particle sizes is lower than for larger 

ones. As the processing pressure increases this difference enlarges which is best seen at highest 

processing pressure. Due to the packaging effect and more pronounced interparticle contact with 

smaller, highly porous, highly dendritic particles with high values of specific area lead to “movement” 

of percolation threshold towards lower filler content. For the pressure of 10 MPa the percolation 

threshold was lowered to 12.5% (v/v) for particles <45 μm, for 20 MPa it was 11.6% (v.v), and for 27 

MPa was 7.2% (v/v) which is the difference of 5.8% (v/v) in filler content. As Flandin et al. [20] state 

that typical values of 20–40% (v/v) for percolation threshold for spherical filler particles, highly 

dendritic, high surface area electrodeposited copper powder particles represent excellent choice as 

conductive composite fillers. 

It can be observed from Figure 9 that even the lowest processing pressure for smaller particle 

size has lower percolation threshold than the highest processing pressure for larger particle size. As the 

particle size lowers, smaller volume fraction of filler is needed to obtain the clusters of connected 

particles that give rise to the so-called conducting infinite cluster above the threshold, which is 

explained by statistical percolation theory [21,22]. Being highly dendritic, electrolytic copper powder 

particles lower threshold even more. 

Above the percolation threshold, the conductivity of composite increased by much as fourteen 

orders of magnitude far all the investigated samples, which is in accordance with previous research [6].  

 

 

4. CONCLUSIONS 

 

In this article, experimental study about the effects of particle size of electrodeposited copper 

powder on the electrical conductivity of composites of lignocellulose matrix filled with powder of that 

metal has been described. Results have shown that particle size of this powder with very high surface 

area and pronounced dendrite branching plays significant role on electrical conductivity of the 

prepared samples. The conductivity measurements showed S-shaped dependency with percolation 

transition from non-conductive to conductive region. For all the processing pressures, percolation 

threshold for smaller particle sizes was lower than for larger ones. As the processing pressure 

increased, this difference enlarged. Packaging effect and more pronounced interpartical contact with 

smaller, highly porous, highly dendritic particles with high values of specific area lead to “movement” 

of percolation threshold towards lower filler content. For 27 MPa and particle size <45 μm this value 

was 7.2% (v/v), which is 7.2% (v/v) lower than for composite prepared under 10 MPa and with 

particle size of <88 μm. For a given range of filler concentration and pressures the increase of the 

electrical conductivity of composites is as much as 14 orders of magnitude, which is in accordance 

with previous research [6]. Smaller particle size also led to smaller porosity, as expected due to 

packaging effect, and the same was eligible for the Shore D hardness.  

This research has undoubtedly shown that particle size of galvanostatically obtained copper 

powder and lignocellulose matrix play significant role in electrical conductivity and some of the 

mechanical properties. The value of percolation threshold is lowered even more than in previous 
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research. Surely it would be interesting to investigate identical system, but with other 

electrochemically obtained metal powders.  
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