CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Toward enhanced hydrogen production in a catalytic naphtha reforming process

Authorized Users Only
2012
Authors
Stijepović, Vladimir
Linke, Patrick
Alnouri, Sabla
Kijevčanin, Mirjana
Grujić, Aleksandar
Stijepović, Mirko Z.
Article (Published version)
Metadata
Show full item record
Abstract
Environmental regulations imposed on transport fuels, especially specifications on sulfur and nitrogen content, generally boost hydrogen requirements in refining industries. The catalytic naphtha reformer (CNR) process is one of the major sources of hydrogen in naphtha refinery, thus improving its hydrogen production would be of great importance for refining industries. Close examination of the reaction kinetics of CNR processes has identified temperature, hydrogen concentration and catalyst activity as key variables affecting the process's performance. In this paper, a new reactor concept is developed that better exploits these process variables. The proposed membrane moving-bed reactor promises to significantly outperform the conventional continuous catalyst regenerative (CCR) design. A case study identifies improvements of 23.6 mol% in hydrogen production, 18.8 mol% in aromatics production. Moreover, the reformate yield was found to increase by 10.6 wt%, while the production of ligh...t gases decreases to a value of 18.6 wt%. Copyright

Keywords:
Catalytic reforming / Enhanced hydrogen production / Membrane reactor / Conceptual process design
Source:
International Journal of Hydrogen Energy, 2012, 37, 16, 11772-11784
Publisher:
  • Oxford : Pergamon-Elsevier Science Ltd
Funding / projects:
  • Ministry of Education and Science, Republic of Serbia
  • New industrial and environmental application of chemical thermodynamics to the development of the chemical processes with multiphase and multicomponent systems (RS-172063)
  • Synthesis, processing and applications of nanostructured multifunctional materials with defined properties (RS-45019)

DOI: 10.1016/j.ijhydene.2012.05.103

ISSN: 0360-3199

WoS: 000307147500022

Scopus: 2-s2.0-84863775288
[ Google Scholar ]
11
9
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/960
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Stijepović, Vladimir
AU  - Linke, Patrick
AU  - Alnouri, Sabla
AU  - Kijevčanin, Mirjana
AU  - Grujić, Aleksandar
AU  - Stijepović, Mirko Z.
PY  - 2012
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/960
AB  - Environmental regulations imposed on transport fuels, especially specifications on sulfur and nitrogen content, generally boost hydrogen requirements in refining industries. The catalytic naphtha reformer (CNR) process is one of the major sources of hydrogen in naphtha refinery, thus improving its hydrogen production would be of great importance for refining industries. Close examination of the reaction kinetics of CNR processes has identified temperature, hydrogen concentration and catalyst activity as key variables affecting the process's performance. In this paper, a new reactor concept is developed that better exploits these process variables. The proposed membrane moving-bed reactor promises to significantly outperform the conventional continuous catalyst regenerative (CCR) design. A case study identifies improvements of 23.6 mol% in hydrogen production, 18.8 mol% in aromatics production. Moreover, the reformate yield was found to increase by 10.6 wt%, while the production of light gases decreases to a value of 18.6 wt%. Copyright
PB  - Oxford : Pergamon-Elsevier Science Ltd
T2  - International Journal of Hydrogen Energy
T1  - Toward enhanced hydrogen production in a catalytic naphtha reforming process
VL  - 37
IS  - 16
SP  - 11772
EP  - 11784
DO  - 10.1016/j.ijhydene.2012.05.103
ER  - 
@article{
author = "Stijepović, Vladimir and Linke, Patrick and Alnouri, Sabla and Kijevčanin, Mirjana and Grujić, Aleksandar and Stijepović, Mirko Z.",
year = "2012",
abstract = "Environmental regulations imposed on transport fuels, especially specifications on sulfur and nitrogen content, generally boost hydrogen requirements in refining industries. The catalytic naphtha reformer (CNR) process is one of the major sources of hydrogen in naphtha refinery, thus improving its hydrogen production would be of great importance for refining industries. Close examination of the reaction kinetics of CNR processes has identified temperature, hydrogen concentration and catalyst activity as key variables affecting the process's performance. In this paper, a new reactor concept is developed that better exploits these process variables. The proposed membrane moving-bed reactor promises to significantly outperform the conventional continuous catalyst regenerative (CCR) design. A case study identifies improvements of 23.6 mol% in hydrogen production, 18.8 mol% in aromatics production. Moreover, the reformate yield was found to increase by 10.6 wt%, while the production of light gases decreases to a value of 18.6 wt%. Copyright",
publisher = "Oxford : Pergamon-Elsevier Science Ltd",
journal = "International Journal of Hydrogen Energy",
title = "Toward enhanced hydrogen production in a catalytic naphtha reforming process",
volume = "37",
number = "16",
pages = "11772-11784",
doi = "10.1016/j.ijhydene.2012.05.103"
}
Stijepović, V., Linke, P., Alnouri, S., Kijevčanin, M., Grujić, A.,& Stijepović, M. Z.. (2012). Toward enhanced hydrogen production in a catalytic naphtha reforming process. in International Journal of Hydrogen Energy
Oxford : Pergamon-Elsevier Science Ltd., 37(16), 11772-11784.
https://doi.org/10.1016/j.ijhydene.2012.05.103
Stijepović V, Linke P, Alnouri S, Kijevčanin M, Grujić A, Stijepović MZ. Toward enhanced hydrogen production in a catalytic naphtha reforming process. in International Journal of Hydrogen Energy. 2012;37(16):11772-11784.
doi:10.1016/j.ijhydene.2012.05.103 .
Stijepović, Vladimir, Linke, Patrick, Alnouri, Sabla, Kijevčanin, Mirjana, Grujić, Aleksandar, Stijepović, Mirko Z., "Toward enhanced hydrogen production in a catalytic naphtha reforming process" in International Journal of Hydrogen Energy, 37, no. 16 (2012):11772-11784,
https://doi.org/10.1016/j.ijhydene.2012.05.103 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB