The predicted spectrum of the hypermetallic molecule MgOMg
Само за регистроване кориснике
2011
Чланак у часопису (Објављена верзија)

Метаподаци
Приказ свих података о документуАпстракт
The present study of MgOMg is a continuation of our theoretical work on Group 2 M2O hypermetallic oxides. Previous ab initio calculations have shown that MgOMg has a linear (1)Sigma(+)(g) ground electronic state and a very low lying first excited triplet electronic state that is also linear; the triplet state has (3)Sigma(+)(u) symmetry. No gas phase spectrum of this molecule has been assigned, and here we simulate the infrared absorption spectrum for both states. We calculate the three-dimensional potential energy surface, and the electric dipole moment surfaces, of each of the two states using a multireference configuration interaction (MRCISD) approach based on full-valence complete active space self-consistent field (FV-CASSCF) wavefunctions with a cc-pCVQZ basis set. A variational MORBID calculation using our potential energy and dipole moment surfaces is performed to determine rovibrational term values and to simulate the infrared absorption spectrum of the two states. We also ca...lculate the dipole polarizability of both states at their equilibrium geometry in order to assist in the interpretation of future beam deflection experiments. Finally, in order to assist in the analysis of the electronic spectrum, we calculate the vertical excitation energies, and electric dipole transition matrix elements, for six excited singlet states and five excited triplet states using the state-average full valence CASSCF-MRCISD/aug-cc-pCVQZ procedure.
Извор:
Physical Chemistry Chemical Physics, 2011, 13, 16, 7546-7553Издавач:
- Royal Soc Chemistry, Cambridge
Финансирање / пројекти:
- Deutsche Forschungsgemeinschaft
- Fonds der Chemischen Industrie
- Синтеза, карактеризација и тестирање каталитичких својстава специјално дизајнираних материјала (RS-142019)
- Marsden Fund (Wellington)
DOI: 10.1039/c0cp02996c
ISSN: 1463-9076
PubMed: 21431108
WoS: 000289203800034
Scopus: 2-s2.0-79953890311
Институција/група
IHTMTY - JOUR AU - Ostojić, Bojana AU - Bunker, P. R. AU - Schwerdtfeger, Peter AU - Assadollahzadeh, B. AU - Jensen, Per PY - 2011 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/906 AB - The present study of MgOMg is a continuation of our theoretical work on Group 2 M2O hypermetallic oxides. Previous ab initio calculations have shown that MgOMg has a linear (1)Sigma(+)(g) ground electronic state and a very low lying first excited triplet electronic state that is also linear; the triplet state has (3)Sigma(+)(u) symmetry. No gas phase spectrum of this molecule has been assigned, and here we simulate the infrared absorption spectrum for both states. We calculate the three-dimensional potential energy surface, and the electric dipole moment surfaces, of each of the two states using a multireference configuration interaction (MRCISD) approach based on full-valence complete active space self-consistent field (FV-CASSCF) wavefunctions with a cc-pCVQZ basis set. A variational MORBID calculation using our potential energy and dipole moment surfaces is performed to determine rovibrational term values and to simulate the infrared absorption spectrum of the two states. We also calculate the dipole polarizability of both states at their equilibrium geometry in order to assist in the interpretation of future beam deflection experiments. Finally, in order to assist in the analysis of the electronic spectrum, we calculate the vertical excitation energies, and electric dipole transition matrix elements, for six excited singlet states and five excited triplet states using the state-average full valence CASSCF-MRCISD/aug-cc-pCVQZ procedure. PB - Royal Soc Chemistry, Cambridge T2 - Physical Chemistry Chemical Physics T1 - The predicted spectrum of the hypermetallic molecule MgOMg VL - 13 IS - 16 SP - 7546 EP - 7553 DO - 10.1039/c0cp02996c ER -
@article{ author = "Ostojić, Bojana and Bunker, P. R. and Schwerdtfeger, Peter and Assadollahzadeh, B. and Jensen, Per", year = "2011", abstract = "The present study of MgOMg is a continuation of our theoretical work on Group 2 M2O hypermetallic oxides. Previous ab initio calculations have shown that MgOMg has a linear (1)Sigma(+)(g) ground electronic state and a very low lying first excited triplet electronic state that is also linear; the triplet state has (3)Sigma(+)(u) symmetry. No gas phase spectrum of this molecule has been assigned, and here we simulate the infrared absorption spectrum for both states. We calculate the three-dimensional potential energy surface, and the electric dipole moment surfaces, of each of the two states using a multireference configuration interaction (MRCISD) approach based on full-valence complete active space self-consistent field (FV-CASSCF) wavefunctions with a cc-pCVQZ basis set. A variational MORBID calculation using our potential energy and dipole moment surfaces is performed to determine rovibrational term values and to simulate the infrared absorption spectrum of the two states. We also calculate the dipole polarizability of both states at their equilibrium geometry in order to assist in the interpretation of future beam deflection experiments. Finally, in order to assist in the analysis of the electronic spectrum, we calculate the vertical excitation energies, and electric dipole transition matrix elements, for six excited singlet states and five excited triplet states using the state-average full valence CASSCF-MRCISD/aug-cc-pCVQZ procedure.", publisher = "Royal Soc Chemistry, Cambridge", journal = "Physical Chemistry Chemical Physics", title = "The predicted spectrum of the hypermetallic molecule MgOMg", volume = "13", number = "16", pages = "7546-7553", doi = "10.1039/c0cp02996c" }
Ostojić, B., Bunker, P. R., Schwerdtfeger, P., Assadollahzadeh, B.,& Jensen, P.. (2011). The predicted spectrum of the hypermetallic molecule MgOMg. in Physical Chemistry Chemical Physics Royal Soc Chemistry, Cambridge., 13(16), 7546-7553. https://doi.org/10.1039/c0cp02996c
Ostojić B, Bunker PR, Schwerdtfeger P, Assadollahzadeh B, Jensen P. The predicted spectrum of the hypermetallic molecule MgOMg. in Physical Chemistry Chemical Physics. 2011;13(16):7546-7553. doi:10.1039/c0cp02996c .
Ostojić, Bojana, Bunker, P. R., Schwerdtfeger, Peter, Assadollahzadeh, B., Jensen, Per, "The predicted spectrum of the hypermetallic molecule MgOMg" in Physical Chemistry Chemical Physics, 13, no. 16 (2011):7546-7553, https://doi.org/10.1039/c0cp02996c . .