CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Protein interactions of six tea plant extracts

Thumbnail
2022
bitstream_24276.pdf (197.2Kb)
Authors
Mišić, Milan
Drulović, Nenad
Margetić, Aleksandra
Vujčić, Zoran
Vujčić, Miroslava
Conference object (Published version)
Metadata
Show full item record
Abstract
Polyphenols are a large group of natural organic compounds mainly found in plants, in whom they have diverse protective and metabolic functions. It’s also known that phenolic compounds, especially tannins, interact with proteins in various significant and distinct ways. Tannins also complex proteins, which generally precipitates them and it’s their most important industrially utilised characteristic. This study, which was a continuation of our previous work, focused on interactions of aqueous tea plant extracts with laccase from Trametes 63ersicolour and β-amylase from Ipomoea batatas. Tea plants used in this study wereSaturejamontana, Menthapiperita, Salvia officinalis, Matricariachamomilla, Camellia cinensis and Arctostaphylosuva-ursi. Total phenolic content was determined using Folin-Ciocalteu reagent, which showed us that chosen plants vary considerably in their total phenolic content and the highest concentration was found to be in Arctostaphylosuva-ursi. Protein interactions betw...een tea plant extracts were measured using spectrophotometric, spectrofluorimetric and electrophoretic methods. These methods showed that tea plant extracts lead to various structural changes within the protein, nature of which require further research. Finally, it was also found that all tea plant extracts, except Matricariachamomillaextract, reversibly precipitate β-amylase – whilst retaining most of its enzymatic activity after dissolving.Best results were obtained using Arctostaphylosuva-ursi extract, which precipitated the highest quantity of β-amylase, with highest activity retention. Although being an interesting phenomenon, furtherresearch is necessary to determine the nature andimportance of reversible tannic enzyme precipitation.

Keywords:
Polyphenols / tea plant / laccase / Trametes versicolour / Ipomoea batatas / β-amylase
Source:
Book of Abstracts, Proceedings - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, June 9-10, 2022 / Kratki izvodi radova, kjniga radova - 58. Savetovanje Srpskog hemijskog društva, Beograd 9. i 10. jun 2022. godine, 2022, 63-
Publisher:
  • Serbian Chemical Society
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)

ISBN: 978-86-7132-079-5

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_cer_5841
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/5841
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - CONF
AU  - Mišić, Milan
AU  - Drulović, Nenad
AU  - Margetić, Aleksandra
AU  - Vujčić, Zoran
AU  - Vujčić, Miroslava
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5841
AB  - Polyphenols are a large group of natural organic compounds mainly found in plants, in whom they have diverse protective and metabolic functions. It’s also known that phenolic compounds, especially tannins, interact with proteins in various significant and distinct ways. Tannins also complex proteins, which generally precipitates them and it’s their most important industrially utilised characteristic. This study, which was a continuation of our previous work, focused on interactions of aqueous tea plant extracts with laccase from Trametes 63ersicolour and β-amylase from Ipomoea batatas. Tea plants used in this study wereSaturejamontana, Menthapiperita, Salvia officinalis, Matricariachamomilla, Camellia cinensis and Arctostaphylosuva-ursi. Total phenolic content was determined using Folin-Ciocalteu reagent, which showed us that chosen plants vary considerably in their total phenolic content and the highest concentration was found to be in Arctostaphylosuva-ursi. Protein interactions between tea plant extracts were measured using spectrophotometric, spectrofluorimetric and electrophoretic methods. These methods showed that tea plant extracts lead to various structural changes within the protein, nature of which require 
further research. Finally, it was also found that all tea plant extracts, except Matricariachamomillaextract, reversibly precipitate β-amylase – whilst retaining most of 
its enzymatic activity after dissolving.Best results were obtained using Arctostaphylosuva-ursi extract, which precipitated the highest quantity of β-amylase, with highest activity retention. Although being an interesting phenomenon, furtherresearch is necessary to determine the nature andimportance of reversible tannic enzyme precipitation.
PB  - Serbian Chemical Society
C3  - Book of Abstracts, Proceedings - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, June 9-10, 2022 / Kratki izvodi radova, kjniga radova - 58. Savetovanje Srpskog hemijskog društva, Beograd 9. i 10. jun 2022. godine
T1  - Protein interactions of six tea plant extracts
SP  - 63
UR  - https://hdl.handle.net/21.15107/rcub_cer_5841
ER  - 
@conference{
author = "Mišić, Milan and Drulović, Nenad and Margetić, Aleksandra and Vujčić, Zoran and Vujčić, Miroslava",
year = "2022",
abstract = "Polyphenols are a large group of natural organic compounds mainly found in plants, in whom they have diverse protective and metabolic functions. It’s also known that phenolic compounds, especially tannins, interact with proteins in various significant and distinct ways. Tannins also complex proteins, which generally precipitates them and it’s their most important industrially utilised characteristic. This study, which was a continuation of our previous work, focused on interactions of aqueous tea plant extracts with laccase from Trametes 63ersicolour and β-amylase from Ipomoea batatas. Tea plants used in this study wereSaturejamontana, Menthapiperita, Salvia officinalis, Matricariachamomilla, Camellia cinensis and Arctostaphylosuva-ursi. Total phenolic content was determined using Folin-Ciocalteu reagent, which showed us that chosen plants vary considerably in their total phenolic content and the highest concentration was found to be in Arctostaphylosuva-ursi. Protein interactions between tea plant extracts were measured using spectrophotometric, spectrofluorimetric and electrophoretic methods. These methods showed that tea plant extracts lead to various structural changes within the protein, nature of which require 
further research. Finally, it was also found that all tea plant extracts, except Matricariachamomillaextract, reversibly precipitate β-amylase – whilst retaining most of 
its enzymatic activity after dissolving.Best results were obtained using Arctostaphylosuva-ursi extract, which precipitated the highest quantity of β-amylase, with highest activity retention. Although being an interesting phenomenon, furtherresearch is necessary to determine the nature andimportance of reversible tannic enzyme precipitation.",
publisher = "Serbian Chemical Society",
journal = "Book of Abstracts, Proceedings - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, June 9-10, 2022 / Kratki izvodi radova, kjniga radova - 58. Savetovanje Srpskog hemijskog društva, Beograd 9. i 10. jun 2022. godine",
title = "Protein interactions of six tea plant extracts",
pages = "63",
url = "https://hdl.handle.net/21.15107/rcub_cer_5841"
}
Mišić, M., Drulović, N., Margetić, A., Vujčić, Z.,& Vujčić, M.. (2022). Protein interactions of six tea plant extracts. in Book of Abstracts, Proceedings - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, June 9-10, 2022 / Kratki izvodi radova, kjniga radova - 58. Savetovanje Srpskog hemijskog društva, Beograd 9. i 10. jun 2022. godine
Serbian Chemical Society., 63.
https://hdl.handle.net/21.15107/rcub_cer_5841
Mišić M, Drulović N, Margetić A, Vujčić Z, Vujčić M. Protein interactions of six tea plant extracts. in Book of Abstracts, Proceedings - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, June 9-10, 2022 / Kratki izvodi radova, kjniga radova - 58. Savetovanje Srpskog hemijskog društva, Beograd 9. i 10. jun 2022. godine. 2022;:63.
https://hdl.handle.net/21.15107/rcub_cer_5841 .
Mišić, Milan, Drulović, Nenad, Margetić, Aleksandra, Vujčić, Zoran, Vujčić, Miroslava, "Protein interactions of six tea plant extracts" in Book of Abstracts, Proceedings - 58th Meeting of the Serbian Chemical Society, Belgrade, Serbia, June 9-10, 2022 / Kratki izvodi radova, kjniga radova - 58. Savetovanje Srpskog hemijskog društva, Beograd 9. i 10. jun 2022. godine (2022):63,
https://hdl.handle.net/21.15107/rcub_cer_5841 .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB