CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SO2 Retention by CaO-based sorbent spent in CO2 looping cycles

Authorized Users Only
2009
Authors
Manovic, V.
Anthony, E.J.
Lončarević, Davor
Article (Published version)
Metadata
Show full item record
Abstract
CaO-based looping cycles are promising processes for CO2 capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO3 in a dual fluidized-bed reactor to produce a pure CO2 stream suitable for sequestration. The main limitation of natural sorbents is the loss of carrying capacity with increasing number of reaction cycles, resulting in the need for extra sorbent, and subsequent spent sorbent waste. Use of spent sorbent from CO2 looping cycles for SO2 capture is investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercur...y porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However,final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/carbonation cycling resulted in a loss of sorbent porosity on the order of e48%, which corresponds to maximum sulfation levels of ∼55% for spent Kelly Rock and Katowice. This is ∼10% higher than that seen with the original samples after 15 h of sulfation. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to porosities lower than 35%, which resulted in sulfation conversion of spent samples <30%, which is significantly lower than that for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention in cases where significant porosity loss does not occur during CO2 reaction cycles. The higher conversions of spent samples are explained by a shift in pore size distribution toward larger pores that reduce the reaction rate and pore plugging near the particle's outer surface, with formation of either unreacted core or unreacted network patterns. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO4 product.

Source:
Industrial and Engineering Chemistry Research, 2009, 48, 14, 6627-6632
Publisher:
  • American Chemical Society (ACS)

DOI: 10.1021/ie9002365

ISSN: 0888-5885

WoS: 000268138300018

Scopus: 2-s2.0-67349127359
[ Google Scholar ]
46
40
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/571
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Manovic, V.
AU  - Anthony, E.J.
AU  - Lončarević, Davor
PY  - 2009
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/571
AB  - CaO-based looping cycles are promising processes for CO2 capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO3 in a dual fluidized-bed reactor to produce a pure CO2 stream suitable for sequestration. The main limitation of natural sorbents is the loss of carrying capacity with increasing number of reaction cycles, resulting in the need for extra sorbent, and subsequent spent sorbent waste. Use of spent sorbent from CO2 looping cycles for SO2 capture is investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However,final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/carbonation cycling resulted in a loss of sorbent porosity on the order of e48%, which corresponds to maximum sulfation levels of ∼55% for spent Kelly Rock and Katowice. This is ∼10% higher than that seen with the original samples after 15 h of sulfation. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to porosities lower than 35%, which resulted in sulfation conversion of spent samples <30%, which is significantly lower than that for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention in cases where significant porosity loss does not occur during CO2 reaction cycles. The higher conversions of spent samples are explained by a shift in pore size distribution toward larger pores that reduce the reaction rate and pore plugging near the particle's outer surface, with formation of either unreacted core or unreacted network patterns. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO4 product.
PB  - American Chemical Society (ACS)
T2  - Industrial and Engineering Chemistry Research
T1  - SO2 Retention by CaO-based sorbent spent in CO2 looping cycles
VL  - 48
IS  - 14
SP  - 6627
EP  - 6632
DO  - 10.1021/ie9002365
ER  - 
@article{
author = "Manovic, V. and Anthony, E.J. and Lončarević, Davor",
year = "2009",
abstract = "CaO-based looping cycles are promising processes for CO2 capture from both syngas and flue gas. The technology is based on cyclical carbonation of CaO and regeneration of CaCO3 in a dual fluidized-bed reactor to produce a pure CO2 stream suitable for sequestration. The main limitation of natural sorbents is the loss of carrying capacity with increasing number of reaction cycles, resulting in the need for extra sorbent, and subsequent spent sorbent waste. Use of spent sorbent from CO2 looping cycles for SO2 capture is investigated in this study. Three limestones were investigated: Kelly Rock (Canada), La Blanca (Spain), and Katowice (Poland, Upper Silesia). Carbonation/calcination cycles were performed in a tube furnace with both the original limestones and samples thermally pretreated for different times (i.e., sintered). The spent sorbent samples were sulfated in a thermogravimetric analyzer (TGA). The changes in the resulting sorbent pore structure were then investigated using mercury porosimetry. It has been shown that the sulfation rates of both thermally pretreated and spent sorbent samples are lower in comparison with those of the original samples. However,final conversions of both spent and pretreated sorbents after longer sulfation time were comparable or higher than those observed for the original sorbents under comparable conditions. Maximum sulfation levels strongly depend on sorbent porosity and pore surface area. The shrinkage of sorbent particles during calcination/carbonation cycling resulted in a loss of sorbent porosity on the order of e48%, which corresponds to maximum sulfation levels of ∼55% for spent Kelly Rock and Katowice. This is ∼10% higher than that seen with the original samples after 15 h of sulfation. By contrast, La Blanca limestone had more pronounced particle shrinkage during pretreatment and cycling, leading to porosities lower than 35%, which resulted in sulfation conversion of spent samples <30%, which is significantly lower than that for the original sample (45%). These results showed that spent sorbent samples from CO2 looping cycles can be used as sorbents for SO2 retention in cases where significant porosity loss does not occur during CO2 reaction cycles. The higher conversions of spent samples are explained by a shift in pore size distribution toward larger pores that reduce the reaction rate and pore plugging near the particle's outer surface, with formation of either unreacted core or unreacted network patterns. In the case of spent Kelly Rock and Katowice samples, sorbent particles are practically uniformly sulfated, achieving final conversions that are determined by the total pore volume available for the bulky CaSO4 product.",
publisher = "American Chemical Society (ACS)",
journal = "Industrial and Engineering Chemistry Research",
title = "SO2 Retention by CaO-based sorbent spent in CO2 looping cycles",
volume = "48",
number = "14",
pages = "6627-6632",
doi = "10.1021/ie9002365"
}
Manovic, V., Anthony, E.J.,& Lončarević, D.. (2009). SO2 Retention by CaO-based sorbent spent in CO2 looping cycles. in Industrial and Engineering Chemistry Research
American Chemical Society (ACS)., 48(14), 6627-6632.
https://doi.org/10.1021/ie9002365
Manovic V, Anthony E, Lončarević D. SO2 Retention by CaO-based sorbent spent in CO2 looping cycles. in Industrial and Engineering Chemistry Research. 2009;48(14):6627-6632.
doi:10.1021/ie9002365 .
Manovic, V., Anthony, E.J., Lončarević, Davor, "SO2 Retention by CaO-based sorbent spent in CO2 looping cycles" in Industrial and Engineering Chemistry Research, 48, no. 14 (2009):6627-6632,
https://doi.org/10.1021/ie9002365 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB