CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

(Electro)chemical and antimicrobial characterization of novel Ru(II) bipyridine complexes with acetylpyridine analogs

Authorized Users Only
2022
Authors
Mihajlović-Lalić, Ljiljana E.
Stanković, Dalibor
Novaković, Irena
Grgurić-Šipka, Sanja
Article (Published version)
Metadata
Show full item record
Abstract
Three ruthenium-bipyridine complexes (1–3) carrying acetylpyridine ligand unit were synthesized in methanol via the reaction of [RuCl2(bpy)2] with corresponding acetylpyridine (2-, 3-, and 4-acpy). Obtained complexes were characterized by (1H and 13C) NMR and IR spectroscopy, MS spectrometry, UV‒vis spectrophotometry, and cyclic voltammetry. Their structural characterization revealed bidentate coordination mode for 2-acpy while 3- and 4-acpy acted as monodentate ligands. The electrochemical profile of newly synthesized compounds was investigated by cyclic voltammetry which confirmed their electrochemical activity. Voltammetric responses within the −1.20 < Ep < 1.50 V range of potentials were summarized in two major events: Ru(II)→Ru(III) oxidation spotted at app. ΔEp = 0.65 V and successive reductions of bpy units located from ‒0.79 V to 0.47 V (vs. Ag/AgCl (3 M) electrode). The DNA-binding activity of the complexes was evaluated by both UV‒vis spectrophotometry and cyclic voltammetry ...indicating DNA-intercalation with a slight contribution of electrostatic interactions. Furthermore, antimicrobial activity was tested against bacterial and fungal strains, for which moderate activity was observed. Assessment of in vitro toxicity against freshly hatched nauplii of Artemia salina as well as radical scavenging capacity was evaluated. The test compounds showed neither toxicity nor antioxidant activity.

Keywords:
Ruthenium / acetylpyridine / cyclic voltammetry / antimicrobial / UV–vis
Source:
Journal of Coordination Chemistry, 2022, 75, 7-8, 1035-1049
Publisher:
  • Informa UK Limited
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)

DOI: 10.1080/00958972.2022.2090247

ISSN: 0095-8972; 1029-0389

WoS: 00081371740000

Scopus: 2-s2.0-85132376565
[ Google Scholar ]
1
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/5619
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Mihajlović-Lalić, Ljiljana E.
AU  - Stanković, Dalibor
AU  - Novaković, Irena
AU  - Grgurić-Šipka, Sanja
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5619
AB  - Three ruthenium-bipyridine complexes (1–3) carrying acetylpyridine ligand unit were synthesized in methanol via the reaction of [RuCl2(bpy)2] with corresponding acetylpyridine (2-, 3-, and 4-acpy). Obtained complexes were characterized by (1H and 13C) NMR and IR spectroscopy, MS spectrometry, UV‒vis spectrophotometry, and cyclic voltammetry. Their structural characterization revealed bidentate coordination mode for 2-acpy while 3- and 4-acpy acted as monodentate ligands. The electrochemical profile of newly synthesized compounds was investigated by cyclic voltammetry which confirmed their electrochemical activity. Voltammetric responses within the −1.20 < Ep < 1.50 V range of potentials were summarized in two major events: Ru(II)→Ru(III) oxidation spotted at app. ΔEp = 0.65 V and successive reductions of bpy units located from ‒0.79 V to 0.47 V (vs. Ag/AgCl (3 M) electrode). The DNA-binding activity of the complexes was evaluated by both UV‒vis spectrophotometry and cyclic voltammetry indicating DNA-intercalation with a slight contribution of electrostatic interactions. Furthermore, antimicrobial activity was tested against bacterial and fungal strains, for which moderate activity was observed. Assessment of in vitro toxicity against freshly hatched nauplii of Artemia salina as well as radical scavenging capacity was evaluated. The test compounds showed neither toxicity nor antioxidant activity.
PB  - Informa UK Limited
T2  - Journal of Coordination Chemistry
T1  - (Electro)chemical and antimicrobial characterization of novel Ru(II) bipyridine complexes with acetylpyridine analogs
VL  - 75
IS  - 7-8
SP  - 1035
EP  - 1049
DO  - 10.1080/00958972.2022.2090247
ER  - 
@article{
author = "Mihajlović-Lalić, Ljiljana E. and Stanković, Dalibor and Novaković, Irena and Grgurić-Šipka, Sanja",
year = "2022",
abstract = "Three ruthenium-bipyridine complexes (1–3) carrying acetylpyridine ligand unit were synthesized in methanol via the reaction of [RuCl2(bpy)2] with corresponding acetylpyridine (2-, 3-, and 4-acpy). Obtained complexes were characterized by (1H and 13C) NMR and IR spectroscopy, MS spectrometry, UV‒vis spectrophotometry, and cyclic voltammetry. Their structural characterization revealed bidentate coordination mode for 2-acpy while 3- and 4-acpy acted as monodentate ligands. The electrochemical profile of newly synthesized compounds was investigated by cyclic voltammetry which confirmed their electrochemical activity. Voltammetric responses within the −1.20 < Ep < 1.50 V range of potentials were summarized in two major events: Ru(II)→Ru(III) oxidation spotted at app. ΔEp = 0.65 V and successive reductions of bpy units located from ‒0.79 V to 0.47 V (vs. Ag/AgCl (3 M) electrode). The DNA-binding activity of the complexes was evaluated by both UV‒vis spectrophotometry and cyclic voltammetry indicating DNA-intercalation with a slight contribution of electrostatic interactions. Furthermore, antimicrobial activity was tested against bacterial and fungal strains, for which moderate activity was observed. Assessment of in vitro toxicity against freshly hatched nauplii of Artemia salina as well as radical scavenging capacity was evaluated. The test compounds showed neither toxicity nor antioxidant activity.",
publisher = "Informa UK Limited",
journal = "Journal of Coordination Chemistry",
title = "(Electro)chemical and antimicrobial characterization of novel Ru(II) bipyridine complexes with acetylpyridine analogs",
volume = "75",
number = "7-8",
pages = "1035-1049",
doi = "10.1080/00958972.2022.2090247"
}
Mihajlović-Lalić, L. E., Stanković, D., Novaković, I.,& Grgurić-Šipka, S.. (2022). (Electro)chemical and antimicrobial characterization of novel Ru(II) bipyridine complexes with acetylpyridine analogs. in Journal of Coordination Chemistry
Informa UK Limited., 75(7-8), 1035-1049.
https://doi.org/10.1080/00958972.2022.2090247
Mihajlović-Lalić LE, Stanković D, Novaković I, Grgurić-Šipka S. (Electro)chemical and antimicrobial characterization of novel Ru(II) bipyridine complexes with acetylpyridine analogs. in Journal of Coordination Chemistry. 2022;75(7-8):1035-1049.
doi:10.1080/00958972.2022.2090247 .
Mihajlović-Lalić, Ljiljana E., Stanković, Dalibor, Novaković, Irena, Grgurić-Šipka, Sanja, "(Electro)chemical and antimicrobial characterization of novel Ru(II) bipyridine complexes with acetylpyridine analogs" in Journal of Coordination Chemistry, 75, no. 7-8 (2022):1035-1049,
https://doi.org/10.1080/00958972.2022.2090247 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB