Rare-Earth/Manganese Oxide-Based Composites Materials for Electrochemical Oxygen Reduction Reaction
Authors
Panić, Stefan
Pantović Pavlović, Marijana

Varničić, Miroslava

Tadić, Vojin
Stopić, Srećko

Friedrich, Bernd

Pavlović, Miroslav M.

Article (Published version)
Metadata
Show full item recordAbstract
The main objective of this research was a systematic development of advanced micro/nanostructured materials based on the most used metal-oxides for ORR and metal-oxides with an extremely low-loading of Pt for comparison. Hybrid composites compared were: MnO2, La2O3, mixed lanthanum manganese oxides (LMO), and mixed lanthanum manganese oxides with reduced platinum load (LMO-Pt). The influence of the reduced amount of noble metal, as well as single oxide activity toward ORR, was analyzed. The complete electrochemical performance of the hybrid materials has been performed by means of CV, LSV, and EIS. It was shown that all synthesized catalytic materials were ORR-active with noticeable reduction currents in O2 saturated 0.1 M KOH. The ORR behavior indicated that the La2O3 electrode has a different mechanism than the other tested electrode materials (MnO2, LMO, and LMO-Pt). The EIS results have revealed that the ORR reaction is of a mixed character, being electrochemically and diffusion co...ntrolled. Even more, diffusion is of mixed character due to transport of O2 molecules and the chemical reaction of oxygen reduction. O2 diffusion was shown to be the dominant process for MnO2, LMO, and LMO-Pt electrolytic materials, while chemical reaction is the dominant process for La2O3 electrolytic materials.
Keywords:
oxygen reduction / hybrid materials / manganese oxide / lanthanum oxide / Pt as catalyst / cathode reaction / fuel cellSource:
Catalysts, 2022, 12, 6, 641-Publisher:
- MDPI AG
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- German Academic Exchange Service (57334757)
DOI: 10.3390/catal12060641
ISSN: 2073-4344
WoS: 00081652360000
Scopus: 2-s2.0-85131674160
Collections
Institution/Community
IHTMTY - JOUR AU - Panić, Stefan AU - Pantović Pavlović, Marijana AU - Varničić, Miroslava AU - Tadić, Vojin AU - Stopić, Srećko AU - Friedrich, Bernd AU - Pavlović, Miroslav M. PY - 2022 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/5598 AB - The main objective of this research was a systematic development of advanced micro/nanostructured materials based on the most used metal-oxides for ORR and metal-oxides with an extremely low-loading of Pt for comparison. Hybrid composites compared were: MnO2, La2O3, mixed lanthanum manganese oxides (LMO), and mixed lanthanum manganese oxides with reduced platinum load (LMO-Pt). The influence of the reduced amount of noble metal, as well as single oxide activity toward ORR, was analyzed. The complete electrochemical performance of the hybrid materials has been performed by means of CV, LSV, and EIS. It was shown that all synthesized catalytic materials were ORR-active with noticeable reduction currents in O2 saturated 0.1 M KOH. The ORR behavior indicated that the La2O3 electrode has a different mechanism than the other tested electrode materials (MnO2, LMO, and LMO-Pt). The EIS results have revealed that the ORR reaction is of a mixed character, being electrochemically and diffusion controlled. Even more, diffusion is of mixed character due to transport of O2 molecules and the chemical reaction of oxygen reduction. O2 diffusion was shown to be the dominant process for MnO2, LMO, and LMO-Pt electrolytic materials, while chemical reaction is the dominant process for La2O3 electrolytic materials. PB - MDPI AG T2 - Catalysts T1 - Rare-Earth/Manganese Oxide-Based Composites Materials for Electrochemical Oxygen Reduction Reaction VL - 12 IS - 6 SP - 641 DO - 10.3390/catal12060641 ER -
@article{ author = "Panić, Stefan and Pantović Pavlović, Marijana and Varničić, Miroslava and Tadić, Vojin and Stopić, Srećko and Friedrich, Bernd and Pavlović, Miroslav M.", year = "2022", abstract = "The main objective of this research was a systematic development of advanced micro/nanostructured materials based on the most used metal-oxides for ORR and metal-oxides with an extremely low-loading of Pt for comparison. Hybrid composites compared were: MnO2, La2O3, mixed lanthanum manganese oxides (LMO), and mixed lanthanum manganese oxides with reduced platinum load (LMO-Pt). The influence of the reduced amount of noble metal, as well as single oxide activity toward ORR, was analyzed. The complete electrochemical performance of the hybrid materials has been performed by means of CV, LSV, and EIS. It was shown that all synthesized catalytic materials were ORR-active with noticeable reduction currents in O2 saturated 0.1 M KOH. The ORR behavior indicated that the La2O3 electrode has a different mechanism than the other tested electrode materials (MnO2, LMO, and LMO-Pt). The EIS results have revealed that the ORR reaction is of a mixed character, being electrochemically and diffusion controlled. Even more, diffusion is of mixed character due to transport of O2 molecules and the chemical reaction of oxygen reduction. O2 diffusion was shown to be the dominant process for MnO2, LMO, and LMO-Pt electrolytic materials, while chemical reaction is the dominant process for La2O3 electrolytic materials.", publisher = "MDPI AG", journal = "Catalysts", title = "Rare-Earth/Manganese Oxide-Based Composites Materials for Electrochemical Oxygen Reduction Reaction", volume = "12", number = "6", pages = "641", doi = "10.3390/catal12060641" }
Panić, S., Pantović Pavlović, M., Varničić, M., Tadić, V., Stopić, S., Friedrich, B.,& Pavlović, M. M.. (2022). Rare-Earth/Manganese Oxide-Based Composites Materials for Electrochemical Oxygen Reduction Reaction. in Catalysts MDPI AG., 12(6), 641. https://doi.org/10.3390/catal12060641
Panić S, Pantović Pavlović M, Varničić M, Tadić V, Stopić S, Friedrich B, Pavlović MM. Rare-Earth/Manganese Oxide-Based Composites Materials for Electrochemical Oxygen Reduction Reaction. in Catalysts. 2022;12(6):641. doi:10.3390/catal12060641 .
Panić, Stefan, Pantović Pavlović, Marijana, Varničić, Miroslava, Tadić, Vojin, Stopić, Srećko, Friedrich, Bernd, Pavlović, Miroslav M., "Rare-Earth/Manganese Oxide-Based Composites Materials for Electrochemical Oxygen Reduction Reaction" in Catalysts, 12, no. 6 (2022):641, https://doi.org/10.3390/catal12060641 . .