Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection
Authors
Stanković, Vesna
Manojlović, Dragan

Roglić, Goran

Tolstoguzov, Dmitry S.
Zherebtsov, Dmitry A.
Uchaev, Daniel A.
Avdin, Viacheslav V.

Stanković, Dalibor

Article (Published version)
Metadata
Show full item recordAbstract
Nanoparticles of TiO2 are suitable for many catalytic and photocatalytic applications due to their extraordinary properties such as superhydrophobicity, semiconductivity, electron-rich, and environmental compatibility. The main crystalline phases of TiO2, anatase, and rutile possess different crystal structures, crystallinity, crystalline sizes, and specific surface areas, and these characteristics directly affect the catalytic performance of TiO2. In the present study, domestic carbon material enhanced with TiO2 nanoparticles was synthesized and used for the construction of a modified carbon paste electrode. The electrocatalytic activity of the modified electrodes was investigated depending on the TiO2 crystalline phases in the electrode material. Furthermore, the obtained working electrode was utilized for triclosan detection. Under optimized experimental conditions, the developed electrode showed a submicromolar triclosan detection limit of 0.07 µM and a wide linear range of 0.1 to ...15 µM. The relative standard deviations for repeatability and reproducibility were lower than 4.1%, and with satisfactory selectivity, the proposed system was successfully applied to triclosan monitoring in groundwater. All these results confirm that the sustainable production of new and domestically prepared materials is of great benefit in the field of electrocatalysis and that the morphology of such produced materials is strongly related to their catalytic properties.
Keywords:
titanium dioxide / electrocatalysis / carbon paste electrode / triclosan / irgasanSource:
Catalysts, 2022, 12, 12, 1571-Publisher:
- MDPI AG
Funding / projects:
- Ministry of Science and Higher Education of the Russian Federation (agreement no. 075-15-2022-1135)
- South Ural State University
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
- EUREKA project call E!13303
Collections
Institution/Community
IHTMTY - JOUR AU - Stanković, Vesna AU - Manojlović, Dragan AU - Roglić, Goran AU - Tolstoguzov, Dmitry S. AU - Zherebtsov, Dmitry A. AU - Uchaev, Daniel A. AU - Avdin, Viacheslav V. AU - Stanković, Dalibor PY - 2022 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/5567 AB - Nanoparticles of TiO2 are suitable for many catalytic and photocatalytic applications due to their extraordinary properties such as superhydrophobicity, semiconductivity, electron-rich, and environmental compatibility. The main crystalline phases of TiO2, anatase, and rutile possess different crystal structures, crystallinity, crystalline sizes, and specific surface areas, and these characteristics directly affect the catalytic performance of TiO2. In the present study, domestic carbon material enhanced with TiO2 nanoparticles was synthesized and used for the construction of a modified carbon paste electrode. The electrocatalytic activity of the modified electrodes was investigated depending on the TiO2 crystalline phases in the electrode material. Furthermore, the obtained working electrode was utilized for triclosan detection. Under optimized experimental conditions, the developed electrode showed a submicromolar triclosan detection limit of 0.07 µM and a wide linear range of 0.1 to 15 µM. The relative standard deviations for repeatability and reproducibility were lower than 4.1%, and with satisfactory selectivity, the proposed system was successfully applied to triclosan monitoring in groundwater. All these results confirm that the sustainable production of new and domestically prepared materials is of great benefit in the field of electrocatalysis and that the morphology of such produced materials is strongly related to their catalytic properties. PB - MDPI AG T2 - Catalysts T1 - Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection VL - 12 IS - 12 SP - 1571 DO - 10.3390/catal12121571 ER -
@article{ author = "Stanković, Vesna and Manojlović, Dragan and Roglić, Goran and Tolstoguzov, Dmitry S. and Zherebtsov, Dmitry A. and Uchaev, Daniel A. and Avdin, Viacheslav V. and Stanković, Dalibor", year = "2022", abstract = "Nanoparticles of TiO2 are suitable for many catalytic and photocatalytic applications due to their extraordinary properties such as superhydrophobicity, semiconductivity, electron-rich, and environmental compatibility. The main crystalline phases of TiO2, anatase, and rutile possess different crystal structures, crystallinity, crystalline sizes, and specific surface areas, and these characteristics directly affect the catalytic performance of TiO2. In the present study, domestic carbon material enhanced with TiO2 nanoparticles was synthesized and used for the construction of a modified carbon paste electrode. The electrocatalytic activity of the modified electrodes was investigated depending on the TiO2 crystalline phases in the electrode material. Furthermore, the obtained working electrode was utilized for triclosan detection. Under optimized experimental conditions, the developed electrode showed a submicromolar triclosan detection limit of 0.07 µM and a wide linear range of 0.1 to 15 µM. The relative standard deviations for repeatability and reproducibility were lower than 4.1%, and with satisfactory selectivity, the proposed system was successfully applied to triclosan monitoring in groundwater. All these results confirm that the sustainable production of new and domestically prepared materials is of great benefit in the field of electrocatalysis and that the morphology of such produced materials is strongly related to their catalytic properties.", publisher = "MDPI AG", journal = "Catalysts", title = "Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection", volume = "12", number = "12", pages = "1571", doi = "10.3390/catal12121571" }
Stanković, V., Manojlović, D., Roglić, G., Tolstoguzov, D. S., Zherebtsov, D. A., Uchaev, D. A., Avdin, V. V.,& Stanković, D.. (2022). Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection. in Catalysts MDPI AG., 12(12), 1571. https://doi.org/10.3390/catal12121571
Stanković V, Manojlović D, Roglić G, Tolstoguzov DS, Zherebtsov DA, Uchaev DA, Avdin VV, Stanković D. Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection. in Catalysts. 2022;12(12):1571. doi:10.3390/catal12121571 .
Stanković, Vesna, Manojlović, Dragan, Roglić, Goran, Tolstoguzov, Dmitry S., Zherebtsov, Dmitry A., Uchaev, Daniel A., Avdin, Viacheslav V., Stanković, Dalibor, "Synthesis and Application of Domestic Glassy Carbon TiO2 Nanocomposite for Electrocatalytic Triclosan Detection" in Catalysts, 12, no. 12 (2022):1571, https://doi.org/10.3390/catal12121571 . .