Periodate oxidized glucose oxidase@ZIF-8 nanocomposite
Authors
Ristić, Predrag
Stanišić, Marija
Đokić, Veljko

Balaž, Ana Marija

Mitić, Dragana

Prodanović, Radivoje

Todorović, Tamara

Conference object (Published version)
Metadata
Show full item recordAbstract
The durability of enzymes in harsh conditions can be enhanced by immobilization within metal-organic frameworks(MOFs) via a process called biomimetic mineralisation. Zeolitic imidazolate framework-8 (ZIF-8) is widely used as aprotective coating to encapsulate proteins. The formation of nucleation centres and further biocomposite particlegrowth is entirely governed by the pure electrostatic interactions between the protein’s surface and positively chargedZn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modificationof surface amino acid residues can lead to a rapid biocomposite formation. However, a chemical modification ofcarbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the presentstudy, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidationof GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule. B...iomineralizationexperiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability ofthe ZIF-8 biocomposites.
Keywords:
glucose oxidase / biomimetic mineralisation / ZIF-8 / nanocompositeSource:
Book of abstracts - NANOTEXNOLOGY NN22, 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece, 2022, 138-138Funding / projects:
Collections
Institution/Community
IHTMTY - CONF AU - Ristić, Predrag AU - Stanišić, Marija AU - Đokić, Veljko AU - Balaž, Ana Marija AU - Mitić, Dragana AU - Prodanović, Radivoje AU - Todorović, Tamara PY - 2022 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/5563 AB - The durability of enzymes in harsh conditions can be enhanced by immobilization within metal-organic frameworks(MOFs) via a process called biomimetic mineralisation. Zeolitic imidazolate framework-8 (ZIF-8) is widely used as aprotective coating to encapsulate proteins. The formation of nucleation centres and further biocomposite particlegrowth is entirely governed by the pure electrostatic interactions between the protein’s surface and positively chargedZn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modificationof surface amino acid residues can lead to a rapid biocomposite formation. However, a chemical modification ofcarbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the presentstudy, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidationof GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule. Biomineralizationexperiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability ofthe ZIF-8 biocomposites. C3 - Book of abstracts - NANOTEXNOLOGY NN22, 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece T1 - Periodate oxidized glucose oxidase@ZIF-8 nanocomposite SP - 138 EP - 138 UR - https://hdl.handle.net/21.15107/rcub_cherry_5753 ER -
@conference{ author = "Ristić, Predrag and Stanišić, Marija and Đokić, Veljko and Balaž, Ana Marija and Mitić, Dragana and Prodanović, Radivoje and Todorović, Tamara", year = "2022", abstract = "The durability of enzymes in harsh conditions can be enhanced by immobilization within metal-organic frameworks(MOFs) via a process called biomimetic mineralisation. Zeolitic imidazolate framework-8 (ZIF-8) is widely used as aprotective coating to encapsulate proteins. The formation of nucleation centres and further biocomposite particlegrowth is entirely governed by the pure electrostatic interactions between the protein’s surface and positively chargedZn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modificationof surface amino acid residues can lead to a rapid biocomposite formation. However, a chemical modification ofcarbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the presentstudy, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidationof GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule. Biomineralizationexperiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability ofthe ZIF-8 biocomposites.", journal = "Book of abstracts - NANOTEXNOLOGY NN22, 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece", title = "Periodate oxidized glucose oxidase@ZIF-8 nanocomposite", pages = "138-138", url = "https://hdl.handle.net/21.15107/rcub_cherry_5753" }
Ristić, P., Stanišić, M., Đokić, V., Balaž, A. M., Mitić, D., Prodanović, R.,& Todorović, T.. (2022). Periodate oxidized glucose oxidase@ZIF-8 nanocomposite. in Book of abstracts - NANOTEXNOLOGY NN22, 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece, 138-138. https://hdl.handle.net/21.15107/rcub_cherry_5753
Ristić P, Stanišić M, Đokić V, Balaž AM, Mitić D, Prodanović R, Todorović T. Periodate oxidized glucose oxidase@ZIF-8 nanocomposite. in Book of abstracts - NANOTEXNOLOGY NN22, 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece. 2022;:138-138. https://hdl.handle.net/21.15107/rcub_cherry_5753 .
Ristić, Predrag, Stanišić, Marija, Đokić, Veljko, Balaž, Ana Marija, Mitić, Dragana, Prodanović, Radivoje, Todorović, Tamara, "Periodate oxidized glucose oxidase@ZIF-8 nanocomposite" in Book of abstracts - NANOTEXNOLOGY NN22, 19th International Conference on Nanosciences & Nanotechnologies, 5-8 July 2022, Thessaloniki, Greece (2022):138-138, https://hdl.handle.net/21.15107/rcub_cherry_5753 .