CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Advanced hybrid composite coatings based on calcium phosphate on titanium for potential biomedical applications

Thumbnail
2022
Pantovic-Pavlovic_CEEC-PCMS-2022.pdf (3.928Mb)
Authors
Pantović-Pavlović, Marijana
Ignjatović, Nenad
Panić, Vladimir
Pavlović, Miroslav M.
Conference object (Published version)
Metadata
Show full item record
Abstract
This paper deals with the issue of defining a new method of anodizing/anaphoretic deposition for the application of calcium phosphate and hybrid coatings based on calcium phosphate ceramics on titanium and anodized titanium coatings with improved properties. Hybrid coatings consisted of chitosan oligolactate (ChOL) and ChOL with Se as immunomodulatory oligoelement. The paper contributes to solving the problem of multi-stage pre-treatment and posttreatment of titanium and oxidized titanium surface to obtain a coating on the substrate, adhesion of the coating, antimicrobial and cytotoxic properties that occur in biomaterials, as well as reduced immune inflammatory response of the organism. It primarily deals with the creation and optimization of a new in situ anodizing/anaphoretic deposition process for obtaining multifunctional composite biomaterials. The in situ method results in improved adhesion bioactive coating, increased bioactivity and biocompatibility with increased antimicrobia...l properties and absence of cytotoxicity. The studied biomaterials have improved properties such as: corrosion resistance, absence of toxicity to the human body and adequate strength, which enables their potential use in medicine and dentistry. The aim of the research was to define new in situ anodizing/anaphoretic deposition process and adequate modification of process parameters for application of composite calcium phosphate coatings on titanium and its alloys, wherein innovation is reflected in combining calcium phosphate coating synthesis and surface modification by partially incorporating a ceramic coating into the crystalline structure of the substrate. The characterization of the coatings obtained in this manner was performed by various physico-chemical, biochemical and biological methods. These characterization techniques included: AFM, SEM, FE-SEM, roughness testing, XRD, FTIR, bioactivity, biocompatibility, cytotoxicity, antimicrobial activity and in vivo testing.

Keywords:
composite coatings / calcium phosphate / titanium / biomedicine
Source:
Book of abstracts of the ISt Central and Eastern European Conference on Physical Chemistry and Materials Science (CEEC-PCMS1)), 2022, 44-44
Publisher:
  • Split : Central and EasternEuropeanCommittee for Thermal Analysis and Calorimetry (CEEC-TAC)
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200175 (Institute of Technical Sciences of SASA, Belgrade) (RS-200175)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200252 (State University of Novi Pazar) (RS-200252)

ISBN: 978-606-11-8164-3

[ Google Scholar ]
Handle
https://hdl.handle.net/21.15107/rcub_dais_13653
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/5539
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - CONF
AU  - Pantović-Pavlović, Marijana
AU  - Ignjatović, Nenad
AU  - Panić, Vladimir
AU  - Pavlović, Miroslav M.
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5539
AB  - This paper deals with the issue of defining a new method of anodizing/anaphoretic deposition for the application of calcium phosphate and hybrid coatings based on calcium phosphate ceramics on titanium and anodized titanium coatings with improved properties. Hybrid coatings consisted of chitosan oligolactate (ChOL) and ChOL with Se as immunomodulatory oligoelement. The paper contributes to solving the problem of multi-stage pre-treatment and posttreatment of titanium and oxidized titanium surface to obtain a coating on the substrate, adhesion of the coating, antimicrobial and cytotoxic properties that occur in biomaterials, as well as reduced immune inflammatory response of the organism. It primarily deals with the creation and optimization of a new in situ anodizing/anaphoretic deposition process for obtaining multifunctional composite biomaterials. The in situ method results in improved adhesion bioactive coating, increased bioactivity and biocompatibility with increased antimicrobial properties and absence of cytotoxicity. The studied biomaterials have improved properties such as: corrosion resistance, absence of toxicity to the human body and adequate strength, which enables their potential use in medicine and dentistry. The aim of the research was to define new in situ anodizing/anaphoretic deposition process and adequate modification of process parameters for application of composite calcium phosphate coatings on titanium and its alloys, wherein innovation is reflected in combining calcium phosphate coating synthesis and surface modification by partially incorporating a ceramic coating into the crystalline structure of the substrate. The characterization of the coatings obtained in this manner was performed by various physico-chemical, biochemical and biological methods. These characterization techniques included: AFM, SEM, FE-SEM, roughness testing, XRD, FTIR, bioactivity, biocompatibility, cytotoxicity, antimicrobial activity and in vivo testing.
PB  - Split : Central and EasternEuropeanCommittee for Thermal Analysis and Calorimetry (CEEC-TAC)
C3  - Book of abstracts of the ISt Central and Eastern European Conference on Physical Chemistry and Materials Science (CEEC-PCMS1))
T1  - Advanced hybrid composite coatings based on calcium phosphate on titanium for potential biomedical applications
SP  - 44
EP  - 44
UR  - https://hdl.handle.net/21.15107/rcub_dais_13653
ER  - 
@conference{
author = "Pantović-Pavlović, Marijana and Ignjatović, Nenad and Panić, Vladimir and Pavlović, Miroslav M.",
year = "2022",
abstract = "This paper deals with the issue of defining a new method of anodizing/anaphoretic deposition for the application of calcium phosphate and hybrid coatings based on calcium phosphate ceramics on titanium and anodized titanium coatings with improved properties. Hybrid coatings consisted of chitosan oligolactate (ChOL) and ChOL with Se as immunomodulatory oligoelement. The paper contributes to solving the problem of multi-stage pre-treatment and posttreatment of titanium and oxidized titanium surface to obtain a coating on the substrate, adhesion of the coating, antimicrobial and cytotoxic properties that occur in biomaterials, as well as reduced immune inflammatory response of the organism. It primarily deals with the creation and optimization of a new in situ anodizing/anaphoretic deposition process for obtaining multifunctional composite biomaterials. The in situ method results in improved adhesion bioactive coating, increased bioactivity and biocompatibility with increased antimicrobial properties and absence of cytotoxicity. The studied biomaterials have improved properties such as: corrosion resistance, absence of toxicity to the human body and adequate strength, which enables their potential use in medicine and dentistry. The aim of the research was to define new in situ anodizing/anaphoretic deposition process and adequate modification of process parameters for application of composite calcium phosphate coatings on titanium and its alloys, wherein innovation is reflected in combining calcium phosphate coating synthesis and surface modification by partially incorporating a ceramic coating into the crystalline structure of the substrate. The characterization of the coatings obtained in this manner was performed by various physico-chemical, biochemical and biological methods. These characterization techniques included: AFM, SEM, FE-SEM, roughness testing, XRD, FTIR, bioactivity, biocompatibility, cytotoxicity, antimicrobial activity and in vivo testing.",
publisher = "Split : Central and EasternEuropeanCommittee for Thermal Analysis and Calorimetry (CEEC-TAC)",
journal = "Book of abstracts of the ISt Central and Eastern European Conference on Physical Chemistry and Materials Science (CEEC-PCMS1))",
title = "Advanced hybrid composite coatings based on calcium phosphate on titanium for potential biomedical applications",
pages = "44-44",
url = "https://hdl.handle.net/21.15107/rcub_dais_13653"
}
Pantović-Pavlović, M., Ignjatović, N., Panić, V.,& Pavlović, M. M.. (2022). Advanced hybrid composite coatings based on calcium phosphate on titanium for potential biomedical applications. in Book of abstracts of the ISt Central and Eastern European Conference on Physical Chemistry and Materials Science (CEEC-PCMS1))
Split : Central and EasternEuropeanCommittee for Thermal Analysis and Calorimetry (CEEC-TAC)., 44-44.
https://hdl.handle.net/21.15107/rcub_dais_13653
Pantović-Pavlović M, Ignjatović N, Panić V, Pavlović MM. Advanced hybrid composite coatings based on calcium phosphate on titanium for potential biomedical applications. in Book of abstracts of the ISt Central and Eastern European Conference on Physical Chemistry and Materials Science (CEEC-PCMS1)). 2022;:44-44.
https://hdl.handle.net/21.15107/rcub_dais_13653 .
Pantović-Pavlović, Marijana, Ignjatović, Nenad, Panić, Vladimir, Pavlović, Miroslav M., "Advanced hybrid composite coatings based on calcium phosphate on titanium for potential biomedical applications" in Book of abstracts of the ISt Central and Eastern European Conference on Physical Chemistry and Materials Science (CEEC-PCMS1)) (2022):44-44,
https://hdl.handle.net/21.15107/rcub_dais_13653 .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB