CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos

Authorized Users Only
2022
Authors
Bondžić, Aleksandra
Lazarević Pašti, Tamara
Pasti, Igor
Bondžić, Bojan
Momčilović, Miloš D.
Loosen, Alexandra
Parac-Vogt Tatjana
Article (Published version)
Metadata
Show full item record
Abstract
Organophosphate-based pesticides have remarkably contributed to the agriculture industry, but their toxicity has a large negative impact on the environment as well as on the health of humans and other living organisms. Most of the methods developed to remedy the organophosphate pesticide toxicity are very time-consuming and are based on their adsorption onto different materials and/or their degradation to nontoxic species. In this study, detoxification of three structurally different organophosphate pesticides was investigated using an NU-1000 metal-organic framework. We showed that NU-1000 is an excellent agent for fast (average time ≤ 3 min) and effective removal of organophosphate pesticides with an aromatic heterocyclic moiety. In particular, superior detoxification of chlorpyrifos solution after NU-1000 treatment was achieved after only 1 min. The combination of experimental and computational methods revealed that the synergic effects of sorption and hydrolysis are responsible for... the superior removal of CHP by NU-1000. The sorption process occurs on the Zr node (chemisorption) and pyrene linkers (physisorption) following pseudo-first-order kinetics during the first minute, and a pseudo-second-order model fits the entire time range. The multilayer adsorption of chlorpyrifos or its hydrolyzed product, 3,5,6-trichloro-2-pyridinol, takes place on a pyrene linker, whereas the aliphatic part of the molecule remains chemisorbed on the Zr node. Such unique synergy between induced sorption and hydrolysis of chlorpyrifos by NU-1000 results in its fast and effective removal with rapid detoxification in non-buffered solutions.

Keywords:
AChE / adsorption / hydrolysis / MOFs / neurotoxicity / NU-1000 / pesticides
Source:
ACS Applied Nano Materials, 2022, 5, 3, 3312-3324
Publisher:
  • USA : American Chemical Society
Funding / projects:
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200146 (University of Belgrade, Faculty of Physical Chemistry) (RS-200146)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • The Research Foundation Flanders (FWO)(48730/1S10318N)

DOI: 10.1021/acsanm.1c03863

ISSN: 2574-0970

WoS: 000800286500021

Scopus: 2-s2.0-85126108627
[ Google Scholar ]
2
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/5430
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Bondžić, Aleksandra
AU  - Lazarević Pašti, Tamara
AU  - Pasti, Igor
AU  - Bondžić, Bojan
AU  - Momčilović, Miloš D.
AU  - Loosen, Alexandra
AU  - Parac-Vogt Tatjana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5430
AB  - Organophosphate-based pesticides have remarkably contributed to the agriculture industry, but their toxicity has a large negative impact on the environment as well as on the health of humans and other living organisms. Most of the methods developed to remedy the organophosphate pesticide toxicity are very time-consuming and are based on their adsorption onto different materials and/or their degradation to nontoxic species. In this study, detoxification of three structurally different organophosphate pesticides was investigated using an NU-1000 metal-organic framework. We showed that NU-1000 is an excellent agent for fast (average time ≤ 3 min) and effective removal of organophosphate pesticides with an aromatic heterocyclic moiety. In particular, superior detoxification of chlorpyrifos solution after NU-1000 treatment was achieved after only 1 min. The combination of experimental and computational methods revealed that the synergic effects of sorption and hydrolysis are responsible for the superior removal of CHP by NU-1000. The sorption process occurs on the Zr node (chemisorption) and pyrene linkers (physisorption) following pseudo-first-order kinetics during the first minute, and a pseudo-second-order model fits the entire time range. The multilayer adsorption of chlorpyrifos or its hydrolyzed product, 3,5,6-trichloro-2-pyridinol, takes place on a pyrene linker, whereas the aliphatic part of the molecule remains chemisorbed on the Zr node. Such unique synergy between induced sorption and hydrolysis of chlorpyrifos by NU-1000 results in its fast and effective removal with rapid detoxification in non-buffered solutions.
PB  - USA : American Chemical Society
T2  - ACS Applied Nano Materials
T1  - Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos
VL  - 5
IS  - 3
SP  - 3312
EP  - 3324
DO  - 10.1021/acsanm.1c03863
ER  - 
@article{
author = "Bondžić, Aleksandra and Lazarević Pašti, Tamara and Pasti, Igor and Bondžić, Bojan and Momčilović, Miloš D. and Loosen, Alexandra and Parac-Vogt Tatjana",
year = "2022",
abstract = "Organophosphate-based pesticides have remarkably contributed to the agriculture industry, but their toxicity has a large negative impact on the environment as well as on the health of humans and other living organisms. Most of the methods developed to remedy the organophosphate pesticide toxicity are very time-consuming and are based on their adsorption onto different materials and/or their degradation to nontoxic species. In this study, detoxification of three structurally different organophosphate pesticides was investigated using an NU-1000 metal-organic framework. We showed that NU-1000 is an excellent agent for fast (average time ≤ 3 min) and effective removal of organophosphate pesticides with an aromatic heterocyclic moiety. In particular, superior detoxification of chlorpyrifos solution after NU-1000 treatment was achieved after only 1 min. The combination of experimental and computational methods revealed that the synergic effects of sorption and hydrolysis are responsible for the superior removal of CHP by NU-1000. The sorption process occurs on the Zr node (chemisorption) and pyrene linkers (physisorption) following pseudo-first-order kinetics during the first minute, and a pseudo-second-order model fits the entire time range. The multilayer adsorption of chlorpyrifos or its hydrolyzed product, 3,5,6-trichloro-2-pyridinol, takes place on a pyrene linker, whereas the aliphatic part of the molecule remains chemisorbed on the Zr node. Such unique synergy between induced sorption and hydrolysis of chlorpyrifos by NU-1000 results in its fast and effective removal with rapid detoxification in non-buffered solutions.",
publisher = "USA : American Chemical Society",
journal = "ACS Applied Nano Materials",
title = "Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos",
volume = "5",
number = "3",
pages = "3312-3324",
doi = "10.1021/acsanm.1c03863"
}
Bondžić, A., Lazarević Pašti, T., Pasti, I., Bondžić, B., Momčilović, M. D., Loosen, A.,& Parac-Vogt Tatjana. (2022). Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos. in ACS Applied Nano Materials
USA : American Chemical Society., 5(3), 3312-3324.
https://doi.org/10.1021/acsanm.1c03863
Bondžić A, Lazarević Pašti T, Pasti I, Bondžić B, Momčilović MD, Loosen A, Parac-Vogt Tatjana. Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos. in ACS Applied Nano Materials. 2022;5(3):3312-3324.
doi:10.1021/acsanm.1c03863 .
Bondžić, Aleksandra, Lazarević Pašti, Tamara, Pasti, Igor, Bondžić, Bojan, Momčilović, Miloš D., Loosen, Alexandra, Parac-Vogt Tatjana, "Synergistic Effect of Sorption and Hydrolysis by NU-1000 Nanostructures for Removal and Detoxification of Chlorpyrifos" in ACS Applied Nano Materials, 5, no. 3 (2022):3312-3324,
https://doi.org/10.1021/acsanm.1c03863 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB