Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database
Authors
Milovanović, Milan R.Živković, Jelena M.

Ninković, Dragan B.

Blagojević Filipović, Jelena P.

Vojislavljević-Vasilev, Dubravka Z.
Veljković, Ivana S.

Stanković, Ivana M.

Malenov, Dušan P.

Medaković, Vesna

Veljković, Dušan Ž.

Zarić, Snežana D.

Conference object (Published version)
Metadata
Show full item recordAbstract
In the recent review it was point out that the crystal structures in the Cambridge Structural Database (CSD), collected, have contributeto various fields of chemical research such as geometries of molecules, noncovalent interactions of molecules, and large assemblies ofmolecules. The CSD also contributed to the study and the design of biologically active molecules and the study of gas storage anddelivery [1].In our group we use analysis of the crystal structures in the CSD to recognize and characterize new types of noncovalent interactionsand to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions,frequency of the interactions, and preferred geometries of the interactions in the crystal structures. In addition, we perform quantumchemical calculations to evaluate the energies of the interactions. Based on the calculated potential energy surfaces for theinteractions, we can determine the most stable geometries, as wel...l as stability of various geometries. We also can determine theinteraction energies for the preferred geometries in the crystal structures. In the cases where the most preferred geometries in thecrystal structures are not the most stable geometries at the potential energy surface, one can find significant influence of thesupramolecular structures in the crystals.Using this methodology our group recognized stacking interactions of planar metal-chelate rings; stacking interactions with organicaromatic rings and stacking interactions between two chelate rings. The calculated energies indicate strong stacking interactions ofmetal-chelate rings; the stacking of metal-chelate rings is stronger than stacking between two benzene molecules [2]. The data indicateinfluence of the metal and ligand type in the metal chelate ring on the strength of the interactions. Our results also indicate strongstacking interactions of coordinated aromatic rings [3]. Studies of interactions of coordinated water indicate stronger hydrogen bondsand stronger OH/π interactions of coordinated in comparison to noncoordianted water molecule [4,5]. The calculations on OH/Minteractions between metal ion in square-planar complexes and water molecule indicate that these interactions are among the strongesthydrogen bonds in any molecular system [6].The studies on stacking interactions of benzene molecules in the crystal structures in the CSD show preference for interactions at largehorizontal displacements, while high level quantum chemical calculations indicate significantly strong interactions at large offsets; theenergy is 70% of the strongest stacking geometry [7].
Keywords:
Cambridge Structural Database / noncovalent interactions / ab initio calculations / aromatic molecules / metal complexesSource:
Acta Crystallographica, section A, 2021, A77, C192-Publisher:
- The International Union of Crystallography (IUCr)
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200168 (University of Belgrade, Faculty of Chemistry) (RS-200168)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200288 (Innovation Center of the Faculty of Chemistry) (RS-200288)
Collections
Institution/Community
IHTMTY - CONF AU - Milovanović, Milan R. AU - Živković, Jelena M. AU - Ninković, Dragan B. AU - Blagojević Filipović, Jelena P. AU - Vojislavljević-Vasilev, Dubravka Z. AU - Veljković, Ivana S. AU - Stanković, Ivana M. AU - Malenov, Dušan P. AU - Medaković, Vesna AU - Veljković, Dušan Ž. AU - Zarić, Snežana D. PY - 2021 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/5347 AB - In the recent review it was point out that the crystal structures in the Cambridge Structural Database (CSD), collected, have contributeto various fields of chemical research such as geometries of molecules, noncovalent interactions of molecules, and large assemblies ofmolecules. The CSD also contributed to the study and the design of biologically active molecules and the study of gas storage anddelivery [1].In our group we use analysis of the crystal structures in the CSD to recognize and characterize new types of noncovalent interactionsand to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions,frequency of the interactions, and preferred geometries of the interactions in the crystal structures. In addition, we perform quantumchemical calculations to evaluate the energies of the interactions. Based on the calculated potential energy surfaces for theinteractions, we can determine the most stable geometries, as well as stability of various geometries. We also can determine theinteraction energies for the preferred geometries in the crystal structures. In the cases where the most preferred geometries in thecrystal structures are not the most stable geometries at the potential energy surface, one can find significant influence of thesupramolecular structures in the crystals.Using this methodology our group recognized stacking interactions of planar metal-chelate rings; stacking interactions with organicaromatic rings and stacking interactions between two chelate rings. The calculated energies indicate strong stacking interactions ofmetal-chelate rings; the stacking of metal-chelate rings is stronger than stacking between two benzene molecules [2]. The data indicateinfluence of the metal and ligand type in the metal chelate ring on the strength of the interactions. Our results also indicate strongstacking interactions of coordinated aromatic rings [3]. Studies of interactions of coordinated water indicate stronger hydrogen bondsand stronger OH/π interactions of coordinated in comparison to noncoordianted water molecule [4,5]. The calculations on OH/Minteractions between metal ion in square-planar complexes and water molecule indicate that these interactions are among the strongesthydrogen bonds in any molecular system [6].The studies on stacking interactions of benzene molecules in the crystal structures in the CSD show preference for interactions at largehorizontal displacements, while high level quantum chemical calculations indicate significantly strong interactions at large offsets; theenergy is 70% of the strongest stacking geometry [7]. PB - The International Union of Crystallography (IUCr) C3 - Acta Crystallographica, section A T1 - Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database VL - A77 SP - C192 DO - 10.1107/S0108767321094903 ER -
@conference{ author = "Milovanović, Milan R. and Živković, Jelena M. and Ninković, Dragan B. and Blagojević Filipović, Jelena P. and Vojislavljević-Vasilev, Dubravka Z. and Veljković, Ivana S. and Stanković, Ivana M. and Malenov, Dušan P. and Medaković, Vesna and Veljković, Dušan Ž. and Zarić, Snežana D.", year = "2021", abstract = "In the recent review it was point out that the crystal structures in the Cambridge Structural Database (CSD), collected, have contributeto various fields of chemical research such as geometries of molecules, noncovalent interactions of molecules, and large assemblies ofmolecules. The CSD also contributed to the study and the design of biologically active molecules and the study of gas storage anddelivery [1].In our group we use analysis of the crystal structures in the CSD to recognize and characterize new types of noncovalent interactionsand to study already known noncovalent interactions. Based on the data from the CSD we can determine existence of the interactions,frequency of the interactions, and preferred geometries of the interactions in the crystal structures. In addition, we perform quantumchemical calculations to evaluate the energies of the interactions. Based on the calculated potential energy surfaces for theinteractions, we can determine the most stable geometries, as well as stability of various geometries. We also can determine theinteraction energies for the preferred geometries in the crystal structures. In the cases where the most preferred geometries in thecrystal structures are not the most stable geometries at the potential energy surface, one can find significant influence of thesupramolecular structures in the crystals.Using this methodology our group recognized stacking interactions of planar metal-chelate rings; stacking interactions with organicaromatic rings and stacking interactions between two chelate rings. The calculated energies indicate strong stacking interactions ofmetal-chelate rings; the stacking of metal-chelate rings is stronger than stacking between two benzene molecules [2]. The data indicateinfluence of the metal and ligand type in the metal chelate ring on the strength of the interactions. Our results also indicate strongstacking interactions of coordinated aromatic rings [3]. Studies of interactions of coordinated water indicate stronger hydrogen bondsand stronger OH/π interactions of coordinated in comparison to noncoordianted water molecule [4,5]. The calculations on OH/Minteractions between metal ion in square-planar complexes and water molecule indicate that these interactions are among the strongesthydrogen bonds in any molecular system [6].The studies on stacking interactions of benzene molecules in the crystal structures in the CSD show preference for interactions at largehorizontal displacements, while high level quantum chemical calculations indicate significantly strong interactions at large offsets; theenergy is 70% of the strongest stacking geometry [7].", publisher = "The International Union of Crystallography (IUCr)", journal = "Acta Crystallographica, section A", title = "Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database", volume = "A77", pages = "C192", doi = "10.1107/S0108767321094903" }
Milovanović, M. R., Živković, J. M., Ninković, D. B., Blagojević Filipović, J. P., Vojislavljević-Vasilev, D. Z., Veljković, I. S., Stanković, I. M., Malenov, D. P., Medaković, V., Veljković, D. Ž.,& Zarić, S. D.. (2021). Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database. in Acta Crystallographica, section A The International Union of Crystallography (IUCr)., A77, C192. https://doi.org/10.1107/S0108767321094903
Milovanović MR, Živković JM, Ninković DB, Blagojević Filipović JP, Vojislavljević-Vasilev DZ, Veljković IS, Stanković IM, Malenov DP, Medaković V, Veljković DŽ, Zarić SD. Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database. in Acta Crystallographica, section A. 2021;A77:C192. doi:10.1107/S0108767321094903 .
Milovanović, Milan R., Živković, Jelena M., Ninković, Dragan B., Blagojević Filipović, Jelena P., Vojislavljević-Vasilev, Dubravka Z., Veljković, Ivana S., Stanković, Ivana M., Malenov, Dušan P., Medaković, Vesna, Veljković, Dušan Ž., Zarić, Snežana D., "Study of noncovalent interactions using crystal structure data in the Cambridge Structural Database" in Acta Crystallographica, section A, A77 (2021):C192, https://doi.org/10.1107/S0108767321094903 . .