ЦЕР - Централни Репозиторијум ИХТМ-а
Институт за хемију, технологију и металургију
    • English
    • Српски
    • Српски (Serbia)
  • Српски (ћирилица) 
    • Енглески
    • Српски (ћирилица)
    • Српски (латиница)
  • Пријава
Преглед записа 
  •   ЦЕР
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Преглед записа
  •   ЦЕР
  • IHTM
  • Radovi istraživača / Researchers' publications
  • Преглед записа
JavaScript is disabled for your browser. Some features of this site may not work without it.

PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution

Thumbnail
2022
osnovni rad (324.7Kb)
Аутори
Rakočević, Lazar
Stojković Simatović, Ivana
Maksić, Aleksandar
Rajić, Vladimir
Štrbac, Svetlana
Srejić, Irina
Чланак у часопису (Објављена верзија)
Метаподаци
Приказ свих података о документу
Апстракт
PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution. SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were 0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement performed for 40 min for hydrogen evolution at a constant potential indicated good stability and durability of the PtAu/rGO electrode.
Кључне речи:
platinum / gold / PtAu nanoparticles / graphene / SEM / XPS / hydrogen evolution
Извор:
Catalysis, 2022, 12, 43, 2-13
Финансирање / пројекти:
  • This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia.

DOI: 10.3390/catal12010043

ISSN: 2073-4344

WoS: 000749504600001

Scopus: 2-s2.0-85122024529
[ Google Scholar ]
11
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/5292
Колекције
  • Radovi istraživača / Researchers' publications
Институција/група
IHTM
TY  - JOUR
AU  - Rakočević, Lazar
AU  - Stojković Simatović, Ivana
AU  - Maksić, Aleksandar
AU  - Rajić, Vladimir
AU  - Štrbac, Svetlana
AU  - Srejić, Irina
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5292
AB  - PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown
remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution.
SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform
in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of
graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were
0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO
was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial
potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This
was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement
performed for 40 min for hydrogen evolution at a constant potential indicated good stability and
durability of the PtAu/rGO electrode.
T2  - Catalysis
T1  - PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution
VL  - 12
IS  - 43
SP  - 2
EP  - 13
DO  - 10.3390/catal12010043
ER  - 
@article{
author = "Rakočević, Lazar and Stojković Simatović, Ivana and Maksić, Aleksandar and Rajić, Vladimir and Štrbac, Svetlana and Srejić, Irina",
year = "2022",
abstract = "PtAu nanoparticles spontaneously deposited on graphene support, PtAu/rGO, have shown
remarkably high catalytic activity for hydrogen evolution reaction (HER) in sulfuric acid solution.
SEM images of the PtAu/rGO electrode surface showed that Pt nanoparticles that are non-uniform
in size occupy both the edges of previously deposited uniform Au nanoparticles and the edges of
graphene support. XPS analysis showed that the atomic percentages of Au and Pt in PtAu/rGO were
0.6% and 0.3%, respectively. The atomic percentage of Au alone on previously prepared Au/rGO
was 0.7%. Outstanding HER activity was achieved for the PtAu/rGO electrode, showing the initial
potential close to the equilibrium potential for HER and a low Tafel slope of −38 mV/dec. This
was confirmed by electrochemical impedance spectroscopy. The chronoamperometric measurement
performed for 40 min for hydrogen evolution at a constant potential indicated good stability and
durability of the PtAu/rGO electrode.",
journal = "Catalysis",
title = "PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution",
volume = "12",
number = "43",
pages = "2-13",
doi = "10.3390/catal12010043"
}
Rakočević, L., Stojković Simatović, I., Maksić, A., Rajić, V., Štrbac, S.,& Srejić, I.. (2022). PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution. in Catalysis, 12(43), 2-13.
https://doi.org/10.3390/catal12010043
Rakočević L, Stojković Simatović I, Maksić A, Rajić V, Štrbac S, Srejić I. PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution. in Catalysis. 2022;12(43):2-13.
doi:10.3390/catal12010043 .
Rakočević, Lazar, Stojković Simatović, Ivana, Maksić, Aleksandar, Rajić, Vladimir, Štrbac, Svetlana, Srejić, Irina, "PtAu Nanoparticles Supported by Reduced Graphene Oxide as a Highly Active Catalyst for Hydrogen Evolution" in Catalysis, 12, no. 43 (2022):2-13,
https://doi.org/10.3390/catal12010043 . .

DSpace software copyright © 2002-2015  DuraSpace
О Централном репозиторијуму (ЦеР) | Пошаљите запажања

re3dataOpenAIRERCUB
 

 

Комплетан репозиторијумИнституције/групеАуториНасловиТемеОва институцијаАуториНасловиТеме

Статистика

Преглед статистика

DSpace software copyright © 2002-2015  DuraSpace
О Централном репозиторијуму (ЦеР) | Пошаљите запажања

re3dataOpenAIRERCUB