CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Heat transfer to a sphere immersed in a fluidized bed of coarse particles with transition from bubbling to turbulent flow regime

Authorized Users Only
2023
Authors
Brzić, Danica
Pešić, Radojica
Arsenijević, Zorana
Đuriš, Mihal
Bošković-Vragolović, Nevenka
Kaluđerović-Radoičić, Tatjana
Article (Published version)
Metadata
Show full item record
Abstract
The present work concerns an experimental study on heat transfer in gas-solid fluidized bed of coarse (Geldart D) particles to a larger immersed sphere at high superficial velocities from 2 to 5.5 Umf. The heat transfer coefficient was determined by measuring the temperature of the test sphere during its heating in a fluidized bed in the temperature range of 65–175 °C. The test spheres of different sizes and different materials were utilized. For the given gas-particles system the flow regime changes from rapidly growing bubbles to turbulent fluidization at superficial velocity Uc ≈ 3Umf. It has been found that in rapidly growing bubbles regime, the heat transfer coefficient is higher for smaller test spheres while it is almost independent of the superficial gas velocity. In turbulent regime, the heat transfer coefficient increases with increase of gas velocity while the size of the test sphere exhibits less influence. In the rapidly growing bubbles regime, experimental data for heat t...ransfer coefficient can be predicted adequately with correlation of Scott et al.. For the turbulent flow regime a new correlation for prediction of the heat transfer coefficient has been proposed.

Keywords:
heat transfer / turbulent flow regime / Geldart D particles
Source:
Particulate Science and Technology, 2023, 41, 1, 75-83
Publisher:
  • Taylor & Francis
Funding / projects:
  • The development of efficient chemical-engineering processes based on the transport phenomena research and process intensification principles (RS-172022)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)

DOI: 10.1080/02726351.2022.2053015

ISSN: 0272-6351

WoS: 000772781800001

Scopus: 2-s2.0-85127111936
[ Google Scholar ]
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/5247
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Brzić, Danica
AU  - Pešić, Radojica
AU  - Arsenijević, Zorana
AU  - Đuriš, Mihal
AU  - Bošković-Vragolović, Nevenka
AU  - Kaluđerović-Radoičić, Tatjana
PY  - 2023
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5247
AB  - The present work concerns an experimental study on heat transfer in gas-solid fluidized bed of coarse (Geldart D) particles to a larger immersed sphere at high superficial velocities from 2 to 5.5 Umf. The heat transfer coefficient was determined by measuring the temperature of the test sphere during its heating in a fluidized bed in the temperature range of 65–175 °C. The test spheres of different sizes and different materials were utilized. For the given gas-particles system the flow regime changes from rapidly growing bubbles to turbulent fluidization at superficial velocity Uc ≈ 3Umf. It has been found that in rapidly growing bubbles regime, the heat transfer coefficient is higher for smaller test spheres while it is almost independent of the superficial gas velocity. In turbulent regime, the heat transfer coefficient increases with increase of gas velocity while the size of the test sphere exhibits less influence. In the rapidly growing bubbles regime, experimental data for heat transfer coefficient can be predicted adequately with correlation of Scott et al.. For the turbulent flow regime a new correlation for prediction of the heat transfer coefficient has been proposed.
PB  - Taylor & Francis
T2  - Particulate Science and Technology
T1  - Heat transfer to a sphere immersed in a fluidized bed of coarse particles with transition from bubbling to turbulent flow regime
VL  - 41
IS  - 1
SP  - 75
EP  - 83
DO  - 10.1080/02726351.2022.2053015
ER  - 
@article{
author = "Brzić, Danica and Pešić, Radojica and Arsenijević, Zorana and Đuriš, Mihal and Bošković-Vragolović, Nevenka and Kaluđerović-Radoičić, Tatjana",
year = "2023",
abstract = "The present work concerns an experimental study on heat transfer in gas-solid fluidized bed of coarse (Geldart D) particles to a larger immersed sphere at high superficial velocities from 2 to 5.5 Umf. The heat transfer coefficient was determined by measuring the temperature of the test sphere during its heating in a fluidized bed in the temperature range of 65–175 °C. The test spheres of different sizes and different materials were utilized. For the given gas-particles system the flow regime changes from rapidly growing bubbles to turbulent fluidization at superficial velocity Uc ≈ 3Umf. It has been found that in rapidly growing bubbles regime, the heat transfer coefficient is higher for smaller test spheres while it is almost independent of the superficial gas velocity. In turbulent regime, the heat transfer coefficient increases with increase of gas velocity while the size of the test sphere exhibits less influence. In the rapidly growing bubbles regime, experimental data for heat transfer coefficient can be predicted adequately with correlation of Scott et al.. For the turbulent flow regime a new correlation for prediction of the heat transfer coefficient has been proposed.",
publisher = "Taylor & Francis",
journal = "Particulate Science and Technology",
title = "Heat transfer to a sphere immersed in a fluidized bed of coarse particles with transition from bubbling to turbulent flow regime",
volume = "41",
number = "1",
pages = "75-83",
doi = "10.1080/02726351.2022.2053015"
}
Brzić, D., Pešić, R., Arsenijević, Z., Đuriš, M., Bošković-Vragolović, N.,& Kaluđerović-Radoičić, T.. (2023). Heat transfer to a sphere immersed in a fluidized bed of coarse particles with transition from bubbling to turbulent flow regime. in Particulate Science and Technology
Taylor & Francis., 41(1), 75-83.
https://doi.org/10.1080/02726351.2022.2053015
Brzić D, Pešić R, Arsenijević Z, Đuriš M, Bošković-Vragolović N, Kaluđerović-Radoičić T. Heat transfer to a sphere immersed in a fluidized bed of coarse particles with transition from bubbling to turbulent flow regime. in Particulate Science and Technology. 2023;41(1):75-83.
doi:10.1080/02726351.2022.2053015 .
Brzić, Danica, Pešić, Radojica, Arsenijević, Zorana, Đuriš, Mihal, Bošković-Vragolović, Nevenka, Kaluđerović-Radoičić, Tatjana, "Heat transfer to a sphere immersed in a fluidized bed of coarse particles with transition from bubbling to turbulent flow regime" in Particulate Science and Technology, 41, no. 1 (2023):75-83,
https://doi.org/10.1080/02726351.2022.2053015 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB