CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains

Thumbnail
2022
Research Article (7.981Mb)
Authors
Dorontić, Slađana
Bonasera, Aurelio
Scopelliti, Michelangelo
Marković, Olivera
Bajuk-Bogdanović, Danica
Ciasca, Gabriele
Romanò, Sabrina
Dimkić, Ivica
Budimir, Milica
Marinković, Dragana
Jovanović, Svetlana
Article (Published version)
Metadata
Show full item record
Abstract
Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was 5.4 μmol L−1 for Carbofuran. For the first time, Amitrole was detecte...d by GQDs in a turn-off/turn-on mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration (turn-on). LOD was 2.03 μmol L−1. These results suggest that modified GQDs can be used as an efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the toxic effects were not observed.

Keywords:
graphene quantum dots / N-doping / gamma-irradiation / photoluminescence / carbofuran / 3-amino-1,2,4-triazole / detection / antibacterial effects
Source:
Nanomaterials, 2022, 12, 15, 2714-
Publisher:
  • MDPI
Funding / projects:
  • PHOTOGUN4MICROBES - Are photoactive nanoparticles salvation for global infectional treath? (RS-7741955)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
  • Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200017 (University of Belgrade, Institute of Nuclear Sciences 'Vinča', Belgrade-Vinča) (RS-200017)
  • The Italian Ministry of University and Research (MURST, ex-MIUR) - PON “AIM: Attrazione e Mobilità Internazionale”, call AIM1809078-2, CUP B78D19000280001
  • The Advanced Technologies Network (ATeN) Center (University of Palermo; project “Mediterranean Center for Human Health Advanced Biotechnologies (CHAB)”, PON R&C 2007–2013)

DOI: 10.3390/nano12152714

ISSN: 2079-4991

WoS: 00083975480000

[ Google Scholar ]
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/5222
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Dorontić, Slađana
AU  - Bonasera, Aurelio
AU  - Scopelliti, Michelangelo
AU  - Marković, Olivera
AU  - Bajuk-Bogdanović, Danica
AU  - Ciasca, Gabriele
AU  - Romanò, Sabrina
AU  - Dimkić, Ivica
AU  - Budimir, Milica
AU  - Marinković, Dragana
AU  - Jovanović, Svetlana
PY  - 2022
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/5222
AB  - Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was 5.4 μmol L−1 for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration (turn-on). LOD was 2.03 μmol L−1. These results suggest that modified GQDs can be used as an efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the toxic effects were not observed.
PB  - MDPI
T2  - Nanomaterials
T1  - Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains
VL  - 12
IS  - 15
SP  - 2714
DO  - 10.3390/nano12152714
ER  - 
@article{
author = "Dorontić, Slađana and Bonasera, Aurelio and Scopelliti, Michelangelo and Marković, Olivera and Bajuk-Bogdanović, Danica and Ciasca, Gabriele and Romanò, Sabrina and Dimkić, Ivica and Budimir, Milica and Marinković, Dragana and Jovanović, Svetlana",
year = "2022",
abstract = "Structural modification of different carbon-based nanomaterials is often necessary to improve their morphology and optical properties, particularly the incorporation of N-atoms in graphene quantum dots (GQDs). Here, a clean, simple, one-step, and eco-friendly method for N-doping of GQDs using gamma irradiation is reported. GQDs were irradiated in the presence of the different ethylenediamine (EDA) amounts (1 g, 5 g, and 10 g) and the highest % of N was detected in the presence of 10 g. N-doped GQDs emitted strong, blue photoluminescence (PL). Photoluminescence quantum yield was increased from 1.45, as obtained for non-irradiated dots, to 7.24% for those irradiated in the presence of 1 g of EDA. Modified GQDs were investigated as a PL probe for the detection of insecticide Carbofuran (2,2-Dimethyl-2,3-dihydro-1-benzofuran-7-yl methylcarbamate) and herbicide Amitrole (3-amino-1,2,4-triazole). The limit of detection was 5.4 μmol L−1 for Carbofuran. For the first time, Amitrole was detected by GQDs in a turn-off/turn-on mechanism using Pd(II) ions as a quenching agent. First, Pd(II) ions were quenched (turn-off) PL of GQDs, while after Amitrole addition, PL was recovered linearly with Amitrole concentration (turn-on). LOD was 2.03 μmol L−1. These results suggest that modified GQDs can be used as an efficient new material for Carbofuran and Amitrole detection. Furthermore, the phototoxicity of dots was investigated on both Gram-positive and Gram-negative bacterial strains. When bacterial cells were exposed to different GQD concentrations and illuminated with light of 470 nm wavelength, the toxic effects were not observed.",
publisher = "MDPI",
journal = "Nanomaterials",
title = "Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains",
volume = "12",
number = "15",
pages = "2714",
doi = "10.3390/nano12152714"
}
Dorontić, S., Bonasera, A., Scopelliti, M., Marković, O., Bajuk-Bogdanović, D., Ciasca, G., Romanò, S., Dimkić, I., Budimir, M., Marinković, D.,& Jovanović, S.. (2022). Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains. in Nanomaterials
MDPI., 12(15), 2714.
https://doi.org/10.3390/nano12152714
Dorontić S, Bonasera A, Scopelliti M, Marković O, Bajuk-Bogdanović D, Ciasca G, Romanò S, Dimkić I, Budimir M, Marinković D, Jovanović S. Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains. in Nanomaterials. 2022;12(15):2714.
doi:10.3390/nano12152714 .
Dorontić, Slađana, Bonasera, Aurelio, Scopelliti, Michelangelo, Marković, Olivera, Bajuk-Bogdanović, Danica, Ciasca, Gabriele, Romanò, Sabrina, Dimkić, Ivica, Budimir, Milica, Marinković, Dragana, Jovanović, Svetlana, "Gamma-Ray-Induced Structural Transformation of GQDs towards the Improvement of Their Optical Properties, Monitoring of Selected Toxic Compounds, and Photo-Induced Effects on Bacterial Strains" in Nanomaterials, 12, no. 15 (2022):2714,
https://doi.org/10.3390/nano12152714 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB