CER - Central Repository
Institute of Chemistry, Technology and Metallurgy
    • English
    • Српски
    • Српски (Serbia)
  • English 
    • English
    • Serbian (Cyrillic)
    • Serbian (Latin)
  • Login
View Item 
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
  •   CER
  • IHTM
  • Radovi istraživača / Researchers' publications
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Chemical modification of glycoproteins’ carbohydrate moiety as a general strategy for the synthesis of efficient biocatalysts by biomimetic mineralization: The case of glucose oxidase

Thumbnail
2021
osnovni rad (1.967Mb)
Authors
Stanišić, Marija D.
Popović Kokar, Nikolina
Ristić, Predrag
Balaž, Ana Marija
Senćanski, Milan
Ognanović, Miloš
Đokić, Veljko R.
Prodanović, Radivoje
Todorović, Tamara
Article (Published version)
Metadata
Show full item record
Abstract
Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to en-capsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization exp...eriments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.

Keywords:
Biocatalysts / Biocomposites / Biomimetic mineralization / Metal–organic frameworks / ZIF-8
Source:
Polymers, 2021, 13, 22, 2-12
Publisher:
  • MDPI
Funding / projects:
  • SYMBIOSIS - Controllable Design of Efficient Enzyme"Mof Composites for Biocatalysis (RS-6066997)

DOI: 10.3390/polym13223875

ISSN: 2073-4360

PubMed: 34833174

WoS: 000727517900001

Scopus: 2-s2.0-85119301454
[ Google Scholar ]
1
URI
https://cer.ihtm.bg.ac.rs/handle/123456789/4895
Collections
  • Radovi istraživača / Researchers' publications
Institution/Community
IHTM
TY  - JOUR
AU  - Stanišić, Marija D.
AU  - Popović Kokar, Nikolina
AU  - Ristić, Predrag
AU  - Balaž, Ana Marija
AU  - Senćanski, Milan
AU  - Ognanović, Miloš
AU  - Đokić, Veljko R.
AU  - Prodanović, Radivoje
AU  - Todorović, Tamara
PY  - 2021
UR  - https://cer.ihtm.bg.ac.rs/handle/123456789/4895
AB  - Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to en-capsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.
PB  - MDPI
T2  - Polymers
T1  - Chemical modification of glycoproteins’ carbohydrate moiety as a general strategy for the synthesis of efficient biocatalysts by biomimetic mineralization: The case of glucose oxidase
VL  - 13
IS  - 22
SP  - 2
EP  - 12
DO  - 10.3390/polym13223875
ER  - 
@article{
author = "Stanišić, Marija D. and Popović Kokar, Nikolina and Ristić, Predrag and Balaž, Ana Marija and Senćanski, Milan and Ognanović, Miloš and Đokić, Veljko R. and Prodanović, Radivoje and Todorović, Tamara",
year = "2021",
abstract = "Zeolitic imidazolate framework-8 (ZIF-8) is widely used as a protective coating to en-capsulate proteins via biomimetic mineralization. The formation of nucleation centers and further biocomposite crystal growth is entirely governed by the pure electrostatic interactions between the protein’s surface and the positively charged Zn(II) metal ions. It was previously shown that enhancing these electrostatic interactions by a chemical modification of surface amino acid residues can lead to a rapid biocomposite crystal formation. However, a chemical modification of carbohydrate components by periodate oxidation for glycoproteins can serve as an alternative strategy. In the present study, an industrially important enzyme glucose oxidase (GOx) was selected as a model system. Periodate oxidation of GOx by 2.5 mM sodium periodate increased negative charge on the enzyme molecule, from −10.2 to −36.9 mV, as shown by zeta potential measurements and native PAGE electrophoresis. Biomineralization experiments with oxidized GOx resulted in higher specific activity, effectiveness factor, and higher thermostability of the ZIF-8 biocomposites. Periodate oxidation of carbohydrate components for glycoproteins can serve as a facile and general method for facilitating the biomimetic mineralization of other industrially relevant glycoproteins.",
publisher = "MDPI",
journal = "Polymers",
title = "Chemical modification of glycoproteins’ carbohydrate moiety as a general strategy for the synthesis of efficient biocatalysts by biomimetic mineralization: The case of glucose oxidase",
volume = "13",
number = "22",
pages = "2-12",
doi = "10.3390/polym13223875"
}
Stanišić, M. D., Popović Kokar, N., Ristić, P., Balaž, A. M., Senćanski, M., Ognanović, M., Đokić, V. R., Prodanović, R.,& Todorović, T.. (2021). Chemical modification of glycoproteins’ carbohydrate moiety as a general strategy for the synthesis of efficient biocatalysts by biomimetic mineralization: The case of glucose oxidase. in Polymers
MDPI., 13(22), 2-12.
https://doi.org/10.3390/polym13223875
Stanišić MD, Popović Kokar N, Ristić P, Balaž AM, Senćanski M, Ognanović M, Đokić VR, Prodanović R, Todorović T. Chemical modification of glycoproteins’ carbohydrate moiety as a general strategy for the synthesis of efficient biocatalysts by biomimetic mineralization: The case of glucose oxidase. in Polymers. 2021;13(22):2-12.
doi:10.3390/polym13223875 .
Stanišić, Marija D., Popović Kokar, Nikolina, Ristić, Predrag, Balaž, Ana Marija, Senćanski, Milan, Ognanović, Miloš, Đokić, Veljko R., Prodanović, Radivoje, Todorović, Tamara, "Chemical modification of glycoproteins’ carbohydrate moiety as a general strategy for the synthesis of efficient biocatalysts by biomimetic mineralization: The case of glucose oxidase" in Polymers, 13, no. 22 (2021):2-12,
https://doi.org/10.3390/polym13223875 . .

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB
 

 

All of DSpaceInstitutions/communitiesAuthorsTitlesSubjectsThis institutionAuthorsTitlesSubjects

Statistics

View Usage Statistics

DSpace software copyright © 2002-2015  DuraSpace
About CeR – Central Repository | Send Feedback

re3dataOpenAIRERCUB