Upcycling biodegradable pva/starch film to a bacterial biopigment and biopolymer
Authors
Pantelić, Brana
Ponjavić, Marijana

Janković, Vukašin
Aleksić, Ivana

Stevanović, Sanja

Murray, James
Fournet, Margaret Brennan

Nikodinović-Runić, Jasmina

Article (Published version)
Metadata
Show full item recordAbstract
Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young’s modulus (E), 53–250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37◦C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacteria...l strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.
Keywords:
Biodegradation / Biopigments / Biopolymers / Mechanical properties / PVA / Thermoplastic starch / UpcyclingSource:
Polymers, 2021, 13, 21, 3692-Publisher:
- MDPI
Funding / projects:
- The European Union’s Horizon 2020 Research , grant agreement No. 870292 (BioICEP)
- The National Natural Science Foundation of China (Nos. 31961133016)
- The National Natural Science Foundation of China (Nos. 31961133015)
- The National Natural Science Foundation of China (Nos. 31961133014)
DOI: 10.3390/polym13213692
ISSN: 2073-4360
PubMed: 34771249
WoS: 000720471500001
Scopus: 2-s2.0-85118506665
Collections
Institution/Community
IHTMTY - JOUR AU - Pantelić, Brana AU - Ponjavić, Marijana AU - Janković, Vukašin AU - Aleksić, Ivana AU - Stevanović, Sanja AU - Murray, James AU - Fournet, Margaret Brennan AU - Nikodinović-Runić, Jasmina PY - 2021 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/4870 AB - Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young’s modulus (E), 53–250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37◦C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions. PB - MDPI T2 - Polymers T1 - Upcycling biodegradable pva/starch film to a bacterial biopigment and biopolymer VL - 13 IS - 21 SP - 3692 DO - 10.3390/polym13213692 ER -
@article{ author = "Pantelić, Brana and Ponjavić, Marijana and Janković, Vukašin and Aleksić, Ivana and Stevanović, Sanja and Murray, James and Fournet, Margaret Brennan and Nikodinović-Runić, Jasmina", year = "2021", abstract = "Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young’s modulus (E), 53–250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37◦C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.", publisher = "MDPI", journal = "Polymers", title = "Upcycling biodegradable pva/starch film to a bacterial biopigment and biopolymer", volume = "13", number = "21", pages = "3692", doi = "10.3390/polym13213692" }
Pantelić, B., Ponjavić, M., Janković, V., Aleksić, I., Stevanović, S., Murray, J., Fournet, M. B.,& Nikodinović-Runić, J.. (2021). Upcycling biodegradable pva/starch film to a bacterial biopigment and biopolymer. in Polymers MDPI., 13(21), 3692. https://doi.org/10.3390/polym13213692
Pantelić B, Ponjavić M, Janković V, Aleksić I, Stevanović S, Murray J, Fournet MB, Nikodinović-Runić J. Upcycling biodegradable pva/starch film to a bacterial biopigment and biopolymer. in Polymers. 2021;13(21):3692. doi:10.3390/polym13213692 .
Pantelić, Brana, Ponjavić, Marijana, Janković, Vukašin, Aleksić, Ivana, Stevanović, Sanja, Murray, James, Fournet, Margaret Brennan, Nikodinović-Runić, Jasmina, "Upcycling biodegradable pva/starch film to a bacterial biopigment and biopolymer" in Polymers, 13, no. 21 (2021):3692, https://doi.org/10.3390/polym13213692 . .