Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats
Authors
Ðoković, Jelena B.Savić, Sanela M.
Mitrović, Jelena R.
Nikolić, Ines

Marković, Bojan D.

Randjelović, Danijela

Antić-Stanković, Jelena

Božić, Dragana

Cekić, Nebojša D.
Stevanović, Vladimir
Batinić, Bojan
Aranđelović, Jovana
Savić, Miroslav M.
Savić, Snežana D.

Article (Published version)
Metadata
Show full item recordAbstract
The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of −40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078–0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT... test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.
Keywords:
Curcumin / Experimental design / Long-term stability / PEGylated nanoemulsionsSource:
International Journal of Molecular Sciences, 2021, 22, 15Publisher:
- MDPI
Funding / projects:
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200026 (University of Belgrade, Institute of Chemistry, Technology and Metallurgy - IChTM) (RS-200026)
- Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 200161 (University of Belgrade, Faculty of Pharmacy) (RS-200161)
DOI: 10.3390/ijms22157991
ISSN: 1661-6596
PubMed: 34360758
WoS: 000681856500001
Scopus: 2-s2.0-85111170948
Collections
Institution/Community
IHTMTY - JOUR AU - Ðoković, Jelena B. AU - Savić, Sanela M. AU - Mitrović, Jelena R. AU - Nikolić, Ines AU - Marković, Bojan D. AU - Randjelović, Danijela AU - Antić-Stanković, Jelena AU - Božić, Dragana AU - Cekić, Nebojša D. AU - Stevanović, Vladimir AU - Batinić, Bojan AU - Aranđelović, Jovana AU - Savić, Miroslav M. AU - Savić, Snežana D. PY - 2021 UR - https://cer.ihtm.bg.ac.rs/handle/123456789/4822 AB - The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of −40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078–0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings. PB - MDPI T2 - International Journal of Molecular Sciences T1 - Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats VL - 22 IS - 15 IS - 7991 DO - 10.3390/ijms22157991 ER -
@article{ author = "Ðoković, Jelena B. and Savić, Sanela M. and Mitrović, Jelena R. and Nikolić, Ines and Marković, Bojan D. and Randjelović, Danijela and Antić-Stanković, Jelena and Božić, Dragana and Cekić, Nebojša D. and Stevanović, Vladimir and Batinić, Bojan and Aranđelović, Jovana and Savić, Miroslav M. and Savić, Snežana D.", year = "2021", abstract = "The current study describes the experimental design guided development of PEGylated nanoemulsions as parenteral delivery systems for curcumin, a powerful antioxidant, as well as the evaluation of their physicochemical characteristics and antioxidant activity during the two years of storage. Experimental design setup helped development of nanoemulsion templates with critical quality attributes in line with parenteral application route. Curcumin-loaded nanoemulsions showed mean droplet size about 105 nm, polydispersity index <0.15, zeta potential of −40 mV, and acceptable osmolality of about 550 mOsm/kg. After two years of storage at room temperature, all formulations remained stable. Moreover, antioxidant activity remained intact, as demonstrated by DPPH (IC50 values 0.078–0.075 mg/mL after two years) and FRAPS assays. In vitro release testing proved that PEGylated phospholipids slowed down the curcumin release from nanoemulsions. The nanoemulsion carrier has been proven safe by the MTT test conducted with MRC-5 cell line, and effective on LS cell line. Results from the pharmacokinetic pilot study implied the PEGylated nanoemulsions improved plasma residence of curcumin 20 min after intravenous administration, compared to the non-PEGylated nanoemulsion (two-fold higher) or curcumin solution (three-fold higher). Overall, conclusion suggests that developed PEGylated nanoemulsions present an acceptable delivery system for parenteral administration of curcumin, being effective in preserving its stability and antioxidant capacity at the level highly comparable to the initial findings.", publisher = "MDPI", journal = "International Journal of Molecular Sciences", title = "Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats", volume = "22", number = "15, 7991", doi = "10.3390/ijms22157991" }
Ðoković, J. B., Savić, S. M., Mitrović, J. R., Nikolić, I., Marković, B. D., Randjelović, D., Antić-Stanković, J., Božić, D., Cekić, N. D., Stevanović, V., Batinić, B., Aranđelović, J., Savić, M. M.,& Savić, S. D.. (2021). Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats. in International Journal of Molecular Sciences MDPI., 22(15). https://doi.org/10.3390/ijms22157991
Ðoković JB, Savić SM, Mitrović JR, Nikolić I, Marković BD, Randjelović D, Antić-Stanković J, Božić D, Cekić ND, Stevanović V, Batinić B, Aranđelović J, Savić MM, Savić SD. Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats. in International Journal of Molecular Sciences. 2021;22(15). doi:10.3390/ijms22157991 .
Ðoković, Jelena B., Savić, Sanela M., Mitrović, Jelena R., Nikolić, Ines, Marković, Bojan D., Randjelović, Danijela, Antić-Stanković, Jelena, Božić, Dragana, Cekić, Nebojša D., Stevanović, Vladimir, Batinić, Bojan, Aranđelović, Jovana, Savić, Miroslav M., Savić, Snežana D., "Curcumin loaded pegylated nanoemulsions designed for maintained antioxidant effects and improved bioavailability: A pilot study on rats" in International Journal of Molecular Sciences, 22, no. 15 (2021), https://doi.org/10.3390/ijms22157991 . .